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This study investigated one prospective secondary mathematics teacher’s (Jana’s) reasoning on 

between-state ratios in missing value problems and comparison problems.  In two one-and-one-half 

hour written problem solving sessions followed by one hour-long clinical interview, Jana’s use of 

informal and formal strategies and justifications behind those strategies in the context of ratio were 

examined. Extending previous research, results of this study showed that someone could quantify 

between-state ratios acting as an operator in fraction form once she has understood ratio as an 

association of amounts of quantities in within-state ratios. Results indicated a dichotomy within the 

boundaries of identical groups conception in terms of within-state ratios and between-state ratios 

prior to an understanding of between-state ratios as a single intensive quantity.  

Keywords: Between-state ratio, within-state ratio, division, multiplication, extensive and intensive 

quantity. 

Theoretical framework 

Students might approach to a proportion such as a/b=c/d by comparing the first set of ratios a/b or c/d or 

the second set of ratios a/c or b/d (Noelting, 1980). In the first case, the ratios a/b or c/d are called within 

(state) ratios, where the ratio represents the original quantities within one state.  In the second case, the 

ratios a/c or b/d are called between (state) ratios, where the ratio represents quantities between two 

situations (Noelting, 1980).  For instance, envision the Recipe 1 Problem in this study. The original 

quantities of 9 tablespoons of oil and 4 tablespoons of vinegar could be represented by the within-state 

ratio, 9/4; and, the 4 tablespoons of vinegar and the 7 tablespoons of vinegar from two situations could be 

represented by the between-state ratio, 7/4. 

Researchers investigating prospective teachers’ conceptions of ratio have revealed how teachers 

interpreted the relationships between quantities in ratio situations to quantify some attribute of interest such 

as lemon-lime flavor (Heinz, 2000; Karagoz Akar, 2007; Simon & Blume, 1994; Simon & Placa, 2012; 

Thompson, 1994). For instance, envision the Mixture Problem in this study. For this problem, research has 

shown that one might interpret the relationship between the quantities of 36 grams of pure lemon juice and 

32 grams of pure lime juice in the following three different ways: First, someone having a robust conception 

of ratio conceptualizes that ratio is a single intensive quantity that expresses the size of one quantity (i.e., 

amount of lemon) relative to the size of the other quantity (i.e., amount of lime) represented by within-state 

ratios (Simon & Placa, 2012). In this conception one can utilize both partitive and quotitive division of the 

quantities in within-state ratios to quantify the attribute (i.e., lemon-lime flavor) in the situation. That is, 

either engaging in partitive or quotitive division, one might interpret the quotient (i.e., 1.125) of the original 

quantities represented in the within-state ratios, 36/32 , as a single intensive quantity representing the 

invariant multiplicative relationship between the quantities (Simon & Placa, 2012). This concept of ratio is 

also called as ratio as measure conception (Simon & Blume, 1994).  

Secondly, in order to quantify the lemon-lime flavor, one might think of the within-state ratio, 36/32, as 

representing an association of amounts of two quantities (Johnson, 2015). In this regard, s/he thinks of the 

quantities making up a particular combination that quantifies the taste of the mixture. This understanding 



aligns with the identical groups conception (Heinz, 2000) and ratio as a composed unit (e.g., Lobato & 

Ellis, 2010). Within the boundaries of such conception, one might find equivalent ratios by dividing for 

instance, 36 and 32, simultaneously with 4 and come up with 9/8 ratio (i.e., as a composed unit, Lobato & 

Ellis, 2010), representing the same lemon-lime flavor (Beckmann, 2011). Third, to quantify the attribute, 

one might engage in partitive division of quantities in within-state ratios, 36/32 (Heinz, 2000; Karagoz 

Akar, 2007; Johnson, 2015). The quotient 1.125 then represents an association between the quantities of 

1.125 grams of pure lemon juice per one gram of pure lime juice. Therefore, ratio as identical groups 

conception (Heinz, 2000) and ratio as per-one conception (Simon & Placa, 2012) involves one’s 

interpreting within-state ratios as an extensive quantity rather than a single intensive quantity (Heinz, 2000; 

Karagoz Akar, 2007; Johnson, 2015). The study reported in this paper attempted at extending the 

previous research results in the following way: As the previous research has shown, students interpreting 

within-state ratios as representing an association between quantities (i.e., identical groups conception) 

could utilize equivalent fractions to handle missing value problems and /or comparison problems (Heinz, 

2000; Lobato & Ellis, 2010). However, they cannot reason in missing value and/or comparison problems 

with quantities non-integer multiples of each other (Heinz, 2000). In this study, data from one prospective 

teacher documented that given that she interpreted within-state ratios as representing an association of 

quantities, she could reason with between-state ratios for situations involving quantities non-integer 

multiples of each other. In particular, Jana quantified the relationship between the quantities in between-

state ratios as representing a particular combination and acted it on the within-state ratios as an operator. 

This is important because earlier research focused only on students’ reasoning on the relationship between 

the quantities in within-state ratios. However, there is also need to focus on how someone reasons with 

between-state ratios; because, the conceptions of between-state ratios and within-state ratios have 

cognitively different underpinnings and that the understanding of proportion integrates both of these 

conceptions (Noelting, 1980). Also, the results from Karagoz Akar (2007) study showed that an 

understanding of between-state ratios as an intensive quantity (as percent-increase/ decrease) does not 

necessarily depend on an understanding of within-state ratios as per-one. Together with the results of 

Karagoz Akar (2007) study, the results of this study indicated a dichotomy within the boundaries of 

identical groups conception without having within-state ratios as per-one. Also, knowing about different 

levels of sophistication in the conception of ratio might shed light on determining and detecting students’ 

reasoning along the way to advanced understandings of ratio, such as ratio as measure. In this regard, this 

study scrutinized the following research question: How might a prospective secondary mathematics teacher 

quantify the relationship between the quantities in between-state ratios and within-state ratios in missing 

value and comparison problems?  

 

 

Methodology  

The voluntary participant was a prospective secondary mathematics teacher, Jana, at one of the universities 

in the United States. In this study data was collected through the structured task-based clinical interviewing 

method (Clement, 2000) following two one-and-one-half-hour long written problem solving sessions. 

During the written sessions, Jana, was asked to provide solutions with explanations and justifications to the 

tasks. The reason for doing written sessions was to determine Jana’s solution processes prior to the clinical 

interviewing so that her reasoning,  justifications of her solution processes, and the connections she made 



among her interpretations of multiplication, division and part-part-whole relationships in missing value 

problems and comparison problems could be further elucidated. The interview was videotaped. The 

transcript of the interview and artifacts from written problem solving sessions and the interview were all 

used as data sources in the analysis.  

In analyzing clinical interviews, the researcher “…is constructing a model of hidden mental structures and 

processes that are grounded in detailed observations from protocols” (Clement, 2000, p. 549). In this 

regard, the unit of analysis was Jana’s strategies, solution processes and justifications she provided in 

externally written or uttered arguments (the observations from the point of view of the researcher). The goal 

was to determine what underlying conceptions of ratio Jana might be revealing. Thus, the analysis was 

interpretive (Clement, 2000). In this respect, reading the whole transcript line-by-line having in mind 

previous research, I determined chunks of relevant data that would allow generate the descriptions of 

Jana’s mental structures such as her thinking of ratio as extensive or intensive quantities. Then, to further 

validate interpretations I went back to how she reasoned during the written sessions and how she reasoned 

on different tasks. Then I wrote a narrative. Following, another researcher was consulted to challenge the 

conjectures and/or to affirm their reasonableness to further validate the plausibleness of the interpretations.  

Tasks (used in the study) 

For the study, I wrote the Hair Color 1 and 2 problems and adopted the others from the existing literature 

(see Table-1). The rationale for the choice of problems was the following: Heinz (2000) study showed that 

prospective teachers had quantified ratio at different levels. For instance, within the identical groups 

conception, some teachers engaged in partitive division of the quantities in within-state ratios and quantified 

within-state ratios as an association of amount of one quantity per one unit of another quantity.  To the 

contrary, some teachers engaged in quotitive division to quantify the within-state ratios as a single intensive 

quantity. Thus, I wrote The Mixture Problem in reference to the distinctions in partitioning and measuring. 

Also, Heinz (2000) stated that within the identical groups conception someone might have used either their 

part-whole understanding to make sense of the problems, or have gone back to additive thinking. Thus, I 

wrote The Hair Color-1 Problem. Further, within the identical groups conception teachers were not able to 

deal with the quantities non integer multiples of each other (in between-state ratios). So I hypothesized that 

there might have been teachers who could do so by using adjustment strategies (e.g., Kaput & West, 

1994). Thus, I adopted and modified the Recipe-1 Problem from Kaput and West (1994) since also they 

ranked it among the highest levels of difficulty (13th out of 15th difficulty). I also wrote The Hair Color-2 

Problem based on the research results on rational number as operator (Marshall, 1993). 



 

Table-1: Tasks used in the study 

Results 

Jana’s understanding of between-state ratios 

Data from the “b” option of The Hair Color-2 Problem and the Recipe-1 Problem showed that Jana left 

the between-state ratio in the fraction form, contrary to the previous research results (e.g., Karagoz Akar, 

2007; Heinz, 2000). She did not think of finding the quotient in between-state ratios once the problem 

required her to think of it as quantifying percent decrease/increase. On the other hand, data from the 

interview showed that once her goal was to find out how many times the quantities were incremented, 

she was able to divide the quantities in between-state ratios. Jana had solved the Hair Color-2 Problem 

using the cross and multiply rule during the written sessions. So, during the interview, the first question I 

asked Jana was The Hair Color-2 Problem “a” and “b” options. 

R: All right, okay, without solving the problem. What does that 22 divided by 15 represent in the 

problem? 

J: It doesn't represent. Umm, 22 over 15, it kind of just says that she is adding 7 grams to the new 

amount over and it is over the old amount… well, 17, She put it in a fraction that new amount over the 

old amount, 22 over 15, she multiplied it by 17 because that was the old amount of brown, so that is 

what she was doing…she already know what she wants to change the red one to, so, she has to make 

one of the numbers and she has to make sure that the other color is the same ratio as before. 

It is interesting that, although I told her ”22 divided by 15” Jana thought that 22/15 represented the change 

in color, as in a fraction of the new amount of red to the old amount of red. She knew that the other color 

needed to be kept in the same ratio, and she knew that she could do it by multiplying the other quantity in 



the original ratio with the same number. Yet, whether she thought of the 22/15 as the “change factor” was 

not clear. In fact, further data clarified this. Jana’s reasoning about the between-state ratios, once given in 

the simplest, reduced form, was the same on The Recipe-1 Problem, too. During the written sessions, Jana 

had written the following (see Figure-1): 

 

 

 

 

 

 

Figure-1: Jana’s reasoning on the Recipe-1 Problem in problem solving sessions  

Two interesting points need to considered: Jana thought of adding 3 grams to both ingredients, which was a 

characteristic of the identical groups conception. Kaput & West (1994) also stated that students revert 

back to additive reasoning once the numbers used in the original ratio are very close to each other. Thus, 

first, if Jana had the conception of ratio as a single intensive quantity, she would not have thought of 

subtracting the quantities magnitudes of which are close to each other; rather, she would have thought of 

dividing (e.g., Heinz, 2000; Karagoz Akar, 2007). Secondly, Jana used equivalent fractions, after her 

addition strategy, to check her solution, leading her to the conclusion that her solution was not correct. Her 

use of equivalent fractions indicated that she did not have any other way of verifying whether the proportion 

held. This claim will be further supported by her reasoning on the Hair-Color-1 Problem. To figure out the 

extent of her knowledge, I asked Jana during the interview to account for a solution for The Recipe-1 

Problem provided by another student as 9x(7/4). Jana said, “Because you are trying to get the same 

combination, so this is like the new combination of the vinegar where it is changes from 4 to 7 so it is like a 

new ratio and you want the ratio of oil to be the same as it was before so you are allowed to multiply the 

old oil times its new ratio in order to get the new oil”. Her reasoning on this problem was similar to the 

Hair-Color-2 Problem option “b,” a between-state ratio represented a particular combination in fraction 

form. Taken together, data indicated a deviation from the identical groups conception: She did not solely go 

back to additive reasoning when the numbers in the original ratio were very close to each other. Also, she 

interpreted the fraction form of the between-state ratio as an extensive quantity, creating a particular 

combination, representing so many of the old quantity (from the first situation) for so many of new quantity 

(from the second situation).  

 

 

 

 

 

 

 



 

Figure-2: Jana’s reasoning on The Hair Color-1 Problem in problem solving  

Data above (see Figure-2) together with her statement in the interview below, once again indicated why 

Jana‟s stage of knowing was within the scope of the identical groups conception, albeit with deviations 

from it. During the interview, Jana stated “ this[referring to equivalent fractions] helps us to compare 

because you need to make one of them the same in order to compare actually compare ”. The excerpt and 

her solution above (see Figure-2) are important in two ways: first, it shows that Jana used the equivalence 

of fractions as a way to compare whether two different dyes are the same color. Second, it shows how 

she related the equivalence of fractions and the common denominator algorithm. Jana thought that the 

within-state ratio represented an association between two extensive quantities, representing so many for so 

many other parts. This was evident when she said she could change the order (brown to red) of the ratios. 

So she did not need the second quantity to compare the ratios once she equaled them out. Here, she again 

deviated from identical groups conception since she was able to deal with quantities non-integer multiples 

of each other. 

Limitations of Jana’s understanding in within-state ratio context 

Jana’s understanding in the within-state ratio context showed some limitations and deviations from the 

identical groups conception. During the interview, for the “c” option of The Mixture Problem, Jana claimed 

the following: 

[First Part] J: Yeah, fractions even though when you actually these fractions, when you divide the 

fractions you get this number 1.125 but you when you look at that number you don't know how much 

lemon juice there is and how much actual lime juice. 

[Second Part] R: Does this tell like tell you anything like the lemon and lime about the juice or does this 

represent anything [referring to 1.125] 

J: Well, if you have different number which I don't, I can't calculate numbers, where you have a different 

amount of like I don't know if you have like x and y this is lemon over lime and when you divide it you 

get 1.125 then you know this combination [referring to b option] equals this one [referring to the ratio of 

x to y], that they will taste the same… because they are in the same ratio, so that kind of. 

[Third Part] R: other than that this is going to help you? 

J: No, actually, you can't, you can't, it is not going to help because you can't create more juice like this 

from just this number, you have to, because you don't know how much lemon juice is in there compared 

to actually how much lime. 

The first part shows that Jana understood that, given the fractions of 36/32 and 20/16, when she divided 

those numbers she got 1.125 and 1.25 respectively. However, although she realized that when she divided 

36 by 32 she would get 1.125, she had not abstracted the fact that the quotient was the invariant 

multiplicative relationship that quantifies the taste. In the Second Part, data also suggested that Jana could 

tell that two fractions are equal if they equal the same decimal, but she did not think of the quotient as 

indicating something about the situation modeled by the ratios (Simon & Blume, 1994). Data from the 

Third Part suggest that Jana did not realize 1.125 lemons per lime as at least the representation of a 

particular mixture: for 1.125 grams of lemon there is 1 gram of lime. This indicates that Jana did not 

anticipate the quotient as per-one. If she had, she would have been able to add the quantities of 1.125 



lemons and 1 lime until she reached the targeted quantities. To the contrary, she claimed “you can't create 

more juice like this from just this number [referring to 1.125]”, deviating from the identical groups 

conception. 

Discussion 

Results showed that, regardless of the type of tasks, Jana interpreted the relationship between quantities in 

within-state ratios as association of amounts of quantities. This is similar to the previous research results 

(Heinz, 2000; Johnson, 2015). Yet, she deviated from such level of reasoning by interpreting the between-

state ratios as an operator acting on the quantities in the original ratio situation (i.e., within-state ratios) since 

she was able to deal with the non-integer multiples of quantities. Also data from the Hair-Color 1 and 2 

and the Recipe-1 Problems indicated that Jana understood between-states ratios as a particular 

combination of two extensive quantities. For instance, for her, the 7/4 ratio from one situation to the other 

in the Recipe-1 Problem was a new combination of vinegar, a new ratio, acting as an operator (Noelting, 

1980). Also, deviating from the identical groups conception, when the numbers in the original ratio were 

very close to each other, she did not go back to additive reasoning, though attempting at it. Such attempt 

indicated that she did not have an understanding of between-state ratios as an intensive quantity, quantifying 

the change from one situation to the other in percent-increase decrease Karagoz Akar (2007). She also 

deviated from the identical groups conception (Heinz, 2000) and ratio as per-one (Johnson, 2015; Simon 

& Placa, 2012), such that she was not able to anticipate the quotient in The Mixture Problem as how much 

of one quantity associates with one unit of another quantity even when she divided it. These results 

suggested a different level of reasoning in between-state ratios and also a dichotomy within the continuum 

of identical groups conception in term of the conceptions of within-state and between state ratios prior to 

interpreting between-state ratios as a single intensive quantity. These results also have some implications for 

teaching ratio to both students and prospective teachers: The tasks in the study might be used to introduce 

prospective teachers with different strategies students might engage in while solving missing value and 

comparison problems. Secondly, Jana’s reasoning seem to be at a higher stage than an understanding of 

ratio as an association of quantities, as reported in the field (e.g., Johnson, 2015). Teachers and teacher 

educators might expect to observe these different kinds of reasoning while developing an understanding of 

ratio on the part of their students. Also, they might refer to these kinds of reasoning while assessing their 

students’ understanding of ratio at different levels.  
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