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The double nature of didactic models in conceptualizing the evolution 

of number systems: A mathematical model and a learning tool 
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This paper is a small part of an on-going theoretical study on didactic models as a form of didactic 

transformations of mathematical notions, concepts and ideas, i.e. of adjusting mathematics for 

teaching. In what we propose here we argue that regarding this adjustment as mathematical modeling 

should be inherent to the mathematics teaching: they may enhance the concept development as the 

on-going result of students’ learning; foster embedding the “big ideas” approach to mathematics 

learning, and lead to more self-consistently evolving mathematical knowledge. The “big idea” is that 

numbers are to be studied in the context of number structures, i.e. together with operations defined 

on them and properties of these operations, and that a familiar number system may serve a model for 

studying a new one. We illustrate the didactical model’s approach at the initial stage of learning 

fractions. 

Keywords: Didactic models, acquiring notion of number systems, evolution of mathematical 

knowledge, arithmetic at elementary school. 

Introduction 

This paper is a small part of an on-going theoretical study on didactic models as a form of didactic 

transformations of mathematical notions, concepts and ideas, i.e. of adjusting mathematics for 

teaching in a way that would preserve to a maximal possible extent its structure and spirit. “We want 

the students to be exposed as early as possible to the idea that beyond the nuts and bolts of 

mathematics, there are unifying undercurrents that connect disparate pieces” (Wu, 2009). The 

theoretical framework for the research is inspired by ideas such as Wu’s idea cited above, and sprouts 

from the works by Freudenthal (in particular, Freudenthal, 1975), Kirsch (2000) and from the 

discussion on applied-mathematic nature of didactic transformations (Borovik, 2012). These and 

other sources reflect the need for the merged input of deep mathematical, psychological and didactic 

considerations in constructing the mathematics feasible and meaningful for students of various ages 

and levels of mathematics learning. 

Any form of teaching mathematics involves adjusting it for the students. In what we propose here we 

argue that regarding this adjustment as mathematical modeling should be inherent to the mathematics 

teaching. The philosophy behind mathematic models is applying a user-attainable mathematica l 

apparatus to study an unknown subject or phenomenon. No mathematical model fully represents the 

subject being studied. One should always be aware of limitations of a model being used along with 

its purpose and benefits, and also of what Freudenthal (1975) presents as the dual character of 

mathematical models: “Models of something are after-images of a piece of given reality; models for 

something are pre-images for a piece of to be created reality” (p. 6). 

An educated usage of models is supposed to shed light on phenomena and subjects being studied and 

seems to be indispensable as a tool at any level of mathematic studies. This implies that the 

mathematical models usage should become an integral part of the teaching/learning procedure in 



mathematics lessons. In particular, concerning the models for something – the “to be created reality” 

in school mathematics is first and foremost the new mathematical knowledge hopefully to become in 

due time reality for the pupils. Thus, when the unknown subject to be studied belongs to mathematics, 

the model illustrating it serves didactic purposes; in this case, we are referring to didactic models 

(DMs) (see Figure 1):  

 

Figure 1. Didactic models as mathematical models and as a learning tool 

Examples of well-known and widely used DMs are the Dienes model demonstrating the princip les of 

the decimal system, and the rectangle-area model used to impart some properties of multiplicat ion 

and division. In this paper, we would like to look closer at didactic models as mathematical models 

of the to be created reality, in order to appreciate their educational value provided they are used 

knowingly and systematically. We suggest that mindfully and systematically applied to teaching, they 

may enhance the concept development as the on-going result of students’ learning; foster embedding 

the “big ideas” approach to mathematics learning, and lead to more self-consistently evolving 

mathematical knowledge. 

A more-or less usual applied-mathematics scheme for the mathematical model usage is (Figure 2):  

 

Figure 2. Applied- mathematics scheme for the mathematical model 

An initial model is the result of a simplification rendering the phenomenon being studied 

mathematically feasible, solvable, analyzable. The mathematical model is applied to obtain results, 

which are supposed to reflect at least to a certain extent the “real thing” – the phenomenon or object 

being studied. The analysis of the results of the model application usually indicates situations at which 

the model fails to reflect adequately and fully the “real thing”, and should therefore be improved to 

better reflect it. The improved model leads to more understandings concerning the object, provided it 

is mathematically feasible for the user. This looks like a never-ending story, and in mathematics it 

usually is.  

Applying this concept of mathematical model as is in the didactic context, i.e., as a didactic model, 

does not differ conceptually from application of mathematical models to any other field. It is just that 

the “real thing” being studied is of mathematical nature. In what follows, we illustrate the approach, 

emphasizing the need for the expertise in using it, which means knowledgeably following the main 

steps represented in the scheme above, accounting for the students’ level, so that the model being 

used is feasible to them; otherwise it cannot serve a basis for the further learning.  
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A model The analysis 

of the results;  

An improved model Limitations of the 
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Didactic models  

Didactic models are the result of didactic transformation, being a form of applied mathematica l  

activity aimed at teaching: „We have to accept that, in mathematics, didactic transformation is indeed 

a form of mathematical practice. Moreover, it is in a sense applied research since it is aimed at a 

specific application of mathematics teaching.” (Borovik, 2012, p.99). Didactically transforming a 

mathematical concept is no trivial matter, since it is supposed to cater to both the mathematical and 

the didactic aspects of the concept: to simplify without distorting the mathematical concept and to 

present it to pupils in an accessible form.  

Shternberg & Yerushalmy consider didactic models to be a means for learning mathematics on the 

basis of mathematics already familiar to the students and rigorous mapping of learned operations onto 

the formal mathematical operations (2004). In line with this, we argue that a properly and consistent ly 

applied DM approach is a way to enhance the concept-development aspect of mathematical learning.   

Prior to presenting the examples illustrating this assertion, we will sum up the main principles on 

which we propose to base the DMs approach in school. First of all, following Kirsch who claims that 

activating the existing knowledge is the way to attain accessibility of the new knowledge; DMs should 

be based on the existing mathematical knowledge, skills and understandings of a student (Kirsch, 

2000). Second, the mathematical idea in the basis of the notion should not be distorted as a result of 

simplifications leading to a didactic model. The definition, operations and properties of a 

mathematical object should be lucid to those who construct a DM for its learning and to those who 

use it in its teaching (teachers, textbook writers, curriculum designers etc.)1 Kirsch (2000) asserts that 

simplification is a way of making mathematics accessible, but explicitly refers to the “dividing line 

between legitimate simplification and falsification that does not get past critical pupils” (p. 267). “Not 

getting past critical pupils” does not ensure that less critical and mathematically aware students do 

not acquire the falsification as a true image of the mathematical concept. Third, properly used DM 

approach is a link between the student’s existing mathematical knowledge, the knowledge being 

currently acquired and the future study of the subject, exactly as the mathematical model is the main 

tool of the on-going upgrading of the mathematics-based understanding of a phenomenon or an 

object. Thus, properly used DM approach is a tool for inherently mathematical way of studying it.  

 In addition, no DM is unique in presentation of a mathematical object (as any mathematical model 

is not the unique mathematical presentation of any object, for that matter). No contradiction should 

exist between various DMs; they are supposed to complete each other in the representation of the 

mathematical object. A student may be exposed only to some DMs representing the concept, 

appropriate to the didactic circumstances (such as the stage of acquaintance with the subject; level of 

mathematical development of the students; aims of the specific lesson etc.); the properties represented 

by a DM must be coherent with mathematics, even if it is not explicitly presented to a student.   

The efficient usage of DMs involves two equally important components of the DM-based approach: 

regarding DM as a mathematical model and as a learning tool. As a mathematical model, the proposed 

approach enables gradual building-up of an appropriate and consistent concept using the 

mathematical phenomena, objects and skills familiar to a student. As a learning tool, it provides a 

                                                 

1 This is obviously the matter of Specialized Mathematics Knowledge for Teaching (see Hill et al., 2004). 



precious experience of utilizing models in the process of acquiring a new piece of mathematica l 

knowledge, which necessitates critical and mindful insight into the existing knowledge being used.  

In what follows, we consider two possible appearances of DMs at school. The outline of the first one 

appearance is presented in Examples 1-4. The reference to the second one we found appropriate to 

include as a part of the Discussion. 

The beginning of fractions  

To illustrate what we consider to be a consistent and educated mode of DMs usage in elementary 

school, we will apply it to the initial stage of fractions learning. This is an example that we believe to 

be especially valuable at the elementary school level, when the young pupils do not yet have 

experience in the process of developing a mathematical concept, while they gradually accumula t e 

some mathematical knowledge. Beliefs, skills and concepts they have acquired are supposed to serve 

them for the further study. The properly planned and applied model usage for learning may be one of 

the most important experiences in learning mathematics (Van Den Heuvel-Panhuizen, 2003).   

Much too often the term “fraction” is used as a synonym to “a number smaller than 1”, which is the 

more problematic since in the very beginning of fractions learning the pupils really meet mostly 

fractions smaller than 1. Moreover, dominating approaches to the beginning of the fractions teaching 

are based on the “part-of-the-whole” concept and on geometric-visual representations )Hurst & 

Hurrel, 2014). Important and intuitively supportive as they are, they are detached from the only 

arithmetic and the only number system the students have come to know to a certain extent at this 

stage, which is the system of natural numbers. Hurst & Hurrel (ibid.) suggest that it might be plausib le 

to present fractions already at the early stages of learning in a way that will not inhibit, but rather 

support the future acquiring of the fraction concept without having to significantly change it. Their 

approach is that of “big ideas”, which we interpret as constructing coherent DMs consistent with the 

future evolution of fractions into (final and infinite) decimal fractions, notion of ratio, algebraic 

fractions, the slope of a line and the derivative, and other advanced mathematical appearances of 

fractions. We suggest that the big idea behind the notion of fraction is the division operation (Mamede 

& Vasconcelos, 2016). In mathematics, a fraction is either the division operation itself or its result 

(quotient) (not necessarily a number). If the numerator and the denominator are both natural numbers, 

the fraction represents a rational number. Fraction is also an operator acting on other mathematica l 

objects, and this is also directly related to its being the division operation. Hence, “the big idea” we 

propose as the mathematical background, is fraction as division: operation or result. Needless to 

mention that the idea itself is not intended for elementary school pupils, but the teachers should be 

cognizant of it.  

We illustrate the DMs approach at the initial stage of learning fractions, the model being the 

arithmetic of natural numbers. We are fully aware of the risk of inhibition effect of this approach. 

Davis (1989) includes whole number schemes among inhibitors on the way to the rational numbers. 

Nevertheless, we assert that there is no other mathematical knowledge to build upon for the simple 

reason that the natural number arithmetic is more or less everything the pupils know before their first 

encounter with fractions, but for their possible acquaintance with ½ (also justly included by Davis 

among inhibitors), some primary geometric intuition and some idea of a number line.  



Following Shternberg & Yerushalmy (2004), we provide here examples of “mapping” ideas familiar 

to pupils from the natural numbers arithmetic onto the new mathematical object - fractions, applying 

the usual scheme for a mathematical model use presented above.  

We use it in the first example to impart a meaning of fractions needed for the understanding of 

addition of fractions; in the second example - to impart conventions of fractions presentations; in the 

third example – to adjust to fractions a handy geometric model used for integers. In all three examples 

we refer briefly both to advantages and to limitations of the chosen model, and propose an improved 

model. Last but not the least is the fourth example of a meaning of natural numbers inapplicable to 

fractions. 

Example 1:  Addition of fractions.  

The model: a natural number as a cardinal number of a finite set of objects. In a fraction whose 

numerator and denominator are natural numbers, the numerator serves as a cardinal number of a set 

of equal parts - unit fractions, into which the whole is divided. The denominator indicates the number 

of parts and their magnitude. Different unit fractions are different objects and cannot be added, unless 

they are united into one set, just as apples and pears are to be united into the set of fruit to be counted 

together. For unit fractions, this means representing them with a common denominator. Limitations: 

applicable only to rational numbers. Any other fraction, for example, 
√2

1+𝑎
, has to be understood 

otherwise, namely, as the division operation √2:(1+a) written in another form.  

Example 2: Conventions concerning representation of fractions. 

The model: the decimal representation of natural numbers. The decimal representation is an equally 

important appearance of two ideas: of a representation of numbers per se, and of conventions in 

mathematics. As a decimal representation, it is the model applied almost as is to decimal fractions, 

when the pupils are prepared to deal with them. As an example of a representation convention, it may 

pave the way to the understanding that in mathematics there may be different forms of presenting 

commonly used objects; these forms should be familiar to everybody; this is the part of the 

mathematical language. 
7

5
 is just another form of writing 7:5, meaning either the operation or the 

number resulting from it. Limitations: the final decimal representation is inapplicable for some 

numbers; it has to undergo adjustments to infinite (periodic or non-periodic) decimal representations, 

and provide meanings for their truncations of various kinds. 

Example 3: The area model 

To adjust the useful area model from a rectangle whose sides’ length are integers to the rectangle 

whose sides are rational numbers, it suffices to count “unit rectangles” whose sides are unit fractions 

corresponding to the factors’ denominators, instead of unit squares. Limitations: the area model “as 

is” is hardly applicable, for example, to infinite decimal fractions2, to fractions with irrationa l 

nominators or denominators, and would demand serious amendment to apply it to negative rational 

                                                 

2 Some ideas as presented e.g. in Nelsen (1993, pp.118-122) are based on this type of visual reasoning linking the 

area notion to numerical reasoning and convergence ideas. 

 



numbers. Nevertheless, speaking of irrational numbers - the segments division in an arbitrary ratio is 

defined for incommensurable segments as well, for example, by Thales similarity theorems in 

geometry, on the basis of segments measurement directly related to the number line. Having 

recognized that the segments ratios is attainable for irrational lengths as well, one can happily keep 

using the rectangle model for distribution properties of multiplication and division provided it is 

transfigured so that a subdivision neither into unit squares nor into small “unit” rectangles is needed 

anymore to apply it. Moreover, the basic fact that the whole segment of length a may be represented 

as the sum of the two parts, for example, 
𝑎

(1+√2)
 and 

𝑎√2

(1+√2)
, is consistent with a similar idea for rational 

ratio, which again is beneficial for the further goal of regarding the system of real numbers as a whole.  

Example 4: Addition of natural numbers as continued counting.  

Consider the addition of natural numbers as continued counting: m+n as n times the addition of 1 to 

m, or m times the addition of 1 to n. Here the limitations of the model render it inapplicable as a 

model for fractions. Obviously, these examples are not meant to be used simultaneously and 

immediately and not necessarily explicitly in the beginning of acquaintance with the notion of 

fraction. We do assert though that the ideas represented in these examples must be intertwined in 

appropriate detail in the course of primary school arithmetic as a general approach to mathematics 

teaching and learning (DM being a learning tool) and as a groundwork to further encounter with 

irrational numbers (DM being a mathematical model).    

Discussion 

The examples above include instances of appearance of new features when the object evolves from 

an existing one, of transforming the existing feature to adjust to the evolving object, and instances 

when some features disappear in the new object. Systematically focusing on such occurrences as a 

teaching norm may foster the concept development as an integral part of learning, provided the notion 

being taught is regarded as a concept to be permanently developed as a result of teaching and not 

merely as a topic in a curriculum. One important observation should be made here: should this 

approach be adopted for fractions or for real numbers, it has to be kept in mind already in the natural 

numbers teaching. More generally, it will hardly be useful if applied sporadically instead of being a 

systematic mindful approach. The more so in view of constraints of educational systems: in Israel, 

for example, and in many other countries, the primary schools are separated from the secondary and 

the mode of mathematics teaching at different levels is not always coordinated. This transit ion 

between the levels is therefore intrinsically discontinuous. We believe that systematic adoption in the 

primary school of DMs may help to cope with this discontinuity. We regard this to be an issue worth 

theoretical and empiric study.  

Speaking of the encounter with the real number system, we refer here again to the double-sided role 

of DMs. DMs as a mathematical model: similarly to the initial encounter with fractions which is 

based on natural numbers as a model, in the case of irrational and in general, real numbers, the initia l 

models to build upon are those originating from the system of rational numbers more or less familiar 

to the students. DMs as a learning tool: should the students have acquired appropriate mathematica l 

concepts and learning skills prior to the encounter with real numbers system, these will determine  

their ability to take-in this new, rather advanced concept, and the extent to which they may take it in. 

They should have experienced testing the properties of new numbers and operations on them vs. the 



familiar ones and the appearance of a new system that includes the previous one not only as a set of 

numbers, but also as a number system. 

Examples of the challenges anticipating the students in their encounter with irrational and in general 

with real numbers in which the DM approach seems to be promising and worth a close empiric study, 

are appearance of the root operation and sign; operations on roots (arithmetic and later - algebraic), 

on expressions of like 𝑎 + √𝑏, and rules of these operations; decimal representations, in particular, 

decimal approximations of irrational numbers and the necessity to decide when, whether and how to 

approximate; inclusion of rational and irrational numbers in the same number system, etc. One of the 

key problems with the notion of irrational numbers is based first and foremost on impossibility of 

writing an irrational number as a fraction of two integers. Thus, their mere existence seems to claim 

for a new model because of the impossibility of using the previous one. On the other hand, any number 

a may be written as a fraction at least in a trivial way as 
𝑎

1
 meaning nothing more than a:1. A 

representation of an irrational number by a fraction means just that at least one of the two parts of the 

fraction: its nominator or denominator or both, are not rational3. This does not prevent one from using 

operations on these fractions the way they were used on fractions as rational numbers; sometimes this 

representation calls for formulation of new rules. For example, to avoid fractions with irrationa l 

denominator, the students are sometimes taught to expand them following the rule familiar from 

rational fractions and based on division properties, for example, 
1

√2
=

1

√2

√2

√2
=

√2

2
. On the other hand, an 

equality like 
√3

√5
= √

3

5
 represents actually a new rule, to be both understood and adopted into the set 

of mathematical skills. Thus, the notion of fraction as division operation and its properties retains its 

usefulness. Comprehension of this can be the result of recurrent examination of the notion of fraction 

and operations defined on it and by it for “new” numbers, based on the DM approach. 

Not less important, we suggest that a process of learning that systematically involves DMs is intrins ic 

to mathematics. No DM adequately represents “the real thing”, in our case eventually the system of 

real numbers. Various facets of the same complicated mathematical object awaiting the students in 

their forthcoming studies based, at least to some extent, on the analytic abilities acquired with the 

help of DMs, is a didactic challenge not less that it was a mathematical challenge, and mathematica l 

and didactic tools should be combined in their teaching and learning.  We suggest that the didactic 

models should be seriously regarded as a tool for this type of learning and closely studied in various 

theoretical and empiric aspects. 
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