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Electro-pneumatic cylinder backstepping
position controller design with real time
closed-loop stiffness and damping tuning

Abry Frédéric, Brun Xavier, Sesmat Sylvie, Bideaux Éric and Ducat Christophe

Abstract—This paper develops a backstepping based algorithm
to control the position of an electro-pneumatic actuator while
allowing the precise tuning of the closed-loop stiffness and
damping. The proposed strategy offers an efficient method to
choose the controller parameters based on a physical and linear
analysis. The strict feedback form of the model, which is required
in order to apply the backstepping methodology, is obtained
through the use of a transformation of the system’s inputs. The
proposed MIMO control law as well as its parameters tuning
method are validated experimentally. Experimental results are
provided using an innovative test bench combining an electro-
pneumatic cylinder and an electric linear motor. The two main
contributions are, firstly, the use of a new decoupling transforma-
tion to control the system’s two degrees of freedom and, secondly,
the description of a closed-loop damping and stiffness tuning
strategy. Simultaneous position and stiffness control results in a
more precise and adjustable Variable Stiffness Actuator (VSA)
than the simultaneous pneumatic force - stiffness control laws
generally encountered in the literature. Moreover, a specific study
is conducted to clarify the interaction between pneumatic and
closed-loop stiffnesses in order to combine the advantages of
passive and active compliant actuators.

Index Terms—Nonlinear control, backstepping controller de-
sign, electro-pneumatic actuator, stiffness control, damping con-
trol

I. INTRODUCTION

POSItion control of linear actuators is a subject which has
been widely addressed in the literature, for many different

kinds of actuators technology. Still, most of the propositions
made over the years tend to focus on the performances in terms
of precision or rapidity: few deal with the issue of controlling
the actuator’s response to an external force disturbance. As-
suming that a linear actuator is controlled to stay still or track a
given position trajectory, when submitted to an external force,
depending on the situation the objective can be to maintain
a high stiffness (in order to reduce the steady state error)
or to act in a compliant manner (to reduce the disturbance
transmission to the rest of the system or prevent any danger
for a human operator for instance). This closed-loop behavior
should normally be described by the specifications and could
even vary over time for a given system. Actuators fulfilling this
requirements are generally referred to as compliant actuators
or, more precisely, as Variable Stiffness Actuators (VSA).

VSA can be divided between passive and active ones [1].
Actuators of the first category basically contain an elastic ele-
ment which can store energy while, on the other hand, active
compliant actuators are stiff actuators which are controlled to
behave as a spring (and, possibly, a damper) in closed-loop.

Passive solutions generally offer a good bandwidth (which is a
critical property for shock absorption) and an excellent energy
efficiency. On the other hand, most of the time, they show
a very limited tuning range of both equilibrium position and
closed-loop stiffness which, moreover, seldom can be modified
in real-time.

Among the classical linear actuators, one of the most
common is the electro-mechanical actuator (EMA) which is
essentially an electric rotary motor of any technology which
movement is transformed into a translation by means of a
mechanical device such as a roller screw. Those actuators have
many advantages but their very high inertia (due to the me-
chanical transformation of the movement) and resulting limited
reversibility (the motor rotor will not necessarily turn when an
external force is applied even if the latter is not generating any
torque) often prevent their use when a compliant behavior is
required. The main other electric linear actuators technology
is the linear motor (which is similar to a rotary electric motor
with the rotor and stator circular magnetic field components
laid out in a straight line). The fact that those actuators have no
mechanical transformation of the movement gives them very
high dynamic performances and makes them fully reversible,
thus making them perfect when an application requires to
switch from a stiff to a compliant behavior. The main issue
is that those actuators show absolutely no elastic behavior in
open-loop. Therefore, their use as VSAs stricly relies on the
control algorithm which tends to be energy-consuming and
not very efficient for shock absorptions. Moreover they are
still very expensive and therefore are generally not suited for
industrial cost effective applications.

Fluid power actuators, which can be either hydraulic or
pneumatic depending on the required force range, are signifi-
cantly less expensive than the linear electrical motors while
also having a significantly lower inertia than EMAs. This
makes them good candidates for linear position control with
adequate tuning of the closed-loop response. Moreover, unlike
electric motors, they display a natural elastic behavior due to
the fluid compressibility which can be used to achieve smooth
shock absorption. Still, their strongly non-linear behavior (in
the mathematical sense of the term this time) has so far
prevented the synthesis of control algorithms allowing an
user friendly tuning of the actuator response to an external
disturbance.

In this study, the problem of adjusting the response to an
external force disturbance in position control is studied for
electro-pneumatic cylinders. These systems are recognized as
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cheap, clean and safe with a high power-to-weight ratio and
dynamic response.

The use of servovalves allows to precisely control the mass
flow rate of gas entering or exiting the cylinder’s chamber and
therefore makes smooth displacements of the piston possible.

Based on this architecture, the first control schemes [2], [3]
were mostly based upon the linearization of the model around
a given steady state. Subsequently, many non-linear position
control strategies have been proposed: feedback linearization
[4], sliding mode [5], [6], backstepping [7] and backstepping
with friction compensation [8], [9]. Recently, some strategies
described as stiffness control have been proposed [10], [11].
Yet, they only allow the control of the pneumatic stiffness of
the actuator, which must not be mistaken for the closed-loop
stiffness, and therefore propose a limited use of pneumatic
actuators as VSAs.

A preliminary study [12] has introduced a control algorithm
designed using an alternative state model of the cylinder and
the backstepping theory. In this previous work, simulation
results have shown that the closed-loop stiffness and damping
can be successfully tuned. In this paper, an extension is
proposed: 1)the control law is enhanced to avoid any closed-
loop stiffness bias that might be caused by a pneumatic force
steady-state error, 2)the concepts of pneumatic stiffness and
closed-loop stiffness are clearly defined and their interactions
are studied rigorously to clarify the misconceptions frequently
encountered in the literature, and 3)experimental results are
provided using an innovative test bench and a protocol which
actually demonstrate the importance of the closed-loop tuning.

II. ELECTRO-PNEUMATIC ACTUATOR OVERVIEW

The actuator (see Fig. 1 and Table I) used in this study is a
compact ASCO Numatics double acting symmetric pneumatic
cylinder. Each of its chambers is supplied by an independent
servovalve (Festo MPYE 5 1/8 HF). In order to optimize the
cylinder dynamics, a specific modification has been performed
to directly connect each chamber to its servovalve thus greatly
reducing pressure losses and possible leaks. A LVDT position
sensor (MEAS DC-EC) has been added to measure the piston
displacement and two miniature sensors are integrated to
monitor the pressures in the cylinder chambers.

TABLE I
CYLINDER MAIN CHARACTERISTICS

Quantity Value
Total stroke 50 mm
Piston diameter 100 mm
Rod diameter 28 mm
Piston effective section 7238 mm2

Maximum force at 7 bar 4343 N

The servovalves are supplied with air at 7 absolute bar
through a pressure regulator and a 40 Liter buffer tank.

III. MODEL FOR CONTROL SYNTHESIS

A. Model of the pressure dynamics
In order to accurately describe the thermodynamical behav-

ior of the cylinder, a model based on the fluid mass and energy

Fig. 1. Integration of the servovalves and pressure sensors in the cylinder
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Fig. 2. Technological system under consideration

conservation laws and taking into account heat exchanges by
convection is commonly used in the literature [13]. The latter
is based on the following assumptions: 1)homogeneous tem-
perature and pressure distributions in the chambers, 2)absence
of leakage, 3)air is an ideal gas and 4)air kinetic and potential
energies are negligible compared to internal energy. It leads to
a high order model suitable for simulation purposes but which
requires the temperatures measurement to be used as a control
model. Thus, a simpler yet fairly accurate representation is
generally chosen for control synthesis. The classical way to
simplify the model is to adopt a polytropic law and consider
the relative temperature variations in both chambers to be
small and therefore negligible. This leads to the following
reduced order model [14]:

dpP
dt

=
krT

VP
(qmP −

S

rT
pP v)

dpN
dt

=
krT

VN
(qmN +

S

rT
pNv)

(1)

with T the supply temperature, r the specific ideal gas
constant of air, qmP and qmN the mass flow rates defined
as positive entering the chambers P and N respectively, VP
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and VN the respective volumes of the P and N chambers, S
the piston effective surface and k the polytropic coefficient
chosen experimentally. The chambers volumes are computed
as follows:  VP (y) = V0 + Sy

VN (y) = V0 − Sy
(2)

with y the piston position (defined as zero in central position)
and V0 the cylinder half volume. The latter includes the
cylinder dead volume which ensures that V0 > S|ymax| (where
ymax stands for the cylinder’s half stroke as defined in Fig.
2) and therefore that VP and VN are positive.

B. Mechanical model

The pneumatic force created by the cylinder can be com-
puted as:

Fpneu = S(pP − pN ) (3)

Thus, the mechanical behavior of the system can be described
as: 

dv

dt
=

1

M
[Fpneu − bv − Fdry(v)]

dy

dt
= v

(4)

with M the moving mass, b the cylinder and load viscous
friction coefficient and Fdry(v) a function of the velocity rep-
resenting the dry friction phenomena. Any external force Fext

applied on the piston is regarded as an unknown disturbance
to be rejected by the control therefore it is not considered in
the model for control synthesis.

The dry friction is often modeled by the well-known Tustin
model [15]. In this paper, since the control law is meant to be
tested in real-time, a simpler approximation is chosen:

Fdry =

Fs
v

vL
if |v| ≤ vL,

Fs if |v| > vL
(5)

where Fs is the dry friction absolute value and vL is the
velocity limit which separates the progressive friction phase
from the constant friction phase.

C. Servovalve inverse model

In the previously proposed model (1), the system’s two
inputs are the servovalves mass flow rates qmP and qmN .
Considering the supply and exhaust pressures to be constant,
the mass flow rate depends on both the control voltage and
the pressure of the chamber supplied. Since the actual output
of the control law has to be the servovalves control voltages,
an inverse model of the servovalves is required.

The steady state flow behavior of the chosen servovalve
described in Section II has been thoroughly characterized for
many chamber pressure - control voltage couples at a supply
pressure of 7 bar. Partial results can be seen in Fig. 3. They
show a strongly non-linear behavior: mass flow rate saturations
for extreme control voltages and a very important dead zone
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Fig. 3. Partial results of the servovalve experimental characterization

around the central control voltage which is characteristic of a
large overlap at the servovalve neutral position.

The servovalve dynamics are neglected since they are sup-
posed to be very fast compared to the pressure dynamics in
the cylinder. The three-dimensional experimental table (which
includes over 150 entries) is therefore used to directly derive
the control voltage. A simple weighted mean of the surround-
ing values (see Fig. 4) gives a good approximation between
the measured values. This experimental inverse model allows
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Fig. 4. Computation of the servovalve control voltage Ud to generate a desired
mass flow rate qmd in a chamber at measured pressure p using the surrounding
values of the experimental table

the synthesis of control laws taking the mass flow rates as
inputs of the system.

IV. THE A-T TRANSFORMATION

In the previous section, qmP and qmN have been defined
as the system inputs. Each one acts on the respective chamber
pressure derivative dpP /dt or dpN/dt. Choosing the classical
state vector x = [y v Fpneu Kpneu]′, the state equations
are the following:

dy

dt
= v

dv

dt
=
−bv − Fdry(v) + S(pP − pN )

M

dpP
dt

=
krT

VP
(qmP −

S

rT
pP v)

dpN
dt

=
krT

VN
(qmN +

S

rT
pNv)

(6)
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This model, even if it has been widely used to design efficient
control strategies in the past decades, shows to flaws:
• it is not in a strict feedback form, which is not ideal for

recursive control strategies such as backstepping,
• since pressure control is not the final objective, the inputs
qmP and qmN do not control critical ouputs.

For these reasons, merely to simplify the analysis and the
control strategies design of the electropneumatic actuators, an
alternative choice of inputs, which actually control the critical
outputs, is defined. Therefore two virtual mass flow rates qmA

and qmT are introduced. They can be derived from the actual
mass flow rates by means of this very simple transformation:[

qmA

qmT

]
= Λ(y)

[
qmP

qmN

]
, (7)

with the following transformation matrix:

Λ(y) = V0


1

VP (y)
− 1

VN (y)

1

VP (y)

1

VN (y)

 . (8)

det (Λ(y)) =
2V0

VP (y)VN (y)
6= 0 ∀y (9)

According to (9) the matrix is invertible for any position of
the piston.

As previously stated (4), the pneumatic force generated by
the cylinder depends on the pressure difference ∆p which can
be computed as:

∆p = pP − pN . (10)

Its derivative can be computed combining equations (1) and
(7):

d∆p

dt
= −kSv

(
pP
VP

+
pN
VN

)
+
Tkr

V0
qmA. (11)

On the other hand, the average pressure in the cylinder pT has
no impact on the pneumatic force, it can be computed as:

pT =
pP + pN

2
. (12)

Its derivative can be computed combining equations (1) and
(7):

dpT
dt

=
kSv

2

(
pN
VN
− pP
VP

)
+
Tkr

2V0
qmT . (13)

According to equations (11) and (13), qmA only acts on the
pressure difference ∆p. Therefore, this virtual input is the
active mass flow rate which controls the cylinder pneumatic
force. On the other hand, qmT can only induce a symmetrical
pressurization, without modifying the pneumatic force and
therefore corresponds to the pressurization mass flow rate. This
way, two virtual inputs are defined, they actually control two
independent behaviors of the electro-pneumatic cylinder: the
force generation and the symmetrical pressurization.

This A-T transformation is similar to the d-q Park Trans-
form [16] used in three-phase electric motors control (which
involves the calculation of the two current components which
respectively generate the flux and the torque).

V. ALTERNATIVE STATE VECTOR

The use of two independent servovalves gives the system
two degrees of freedom. Therefore, in addition to the position,
MIMO control strategies generally [5] propose to choose one
of the chambers pressures as a second output. Using the
previously proposed transformation (see Section IV), it is now
easy to choose an alternative additional output. In this paper,
the pneumatic stiffness (Kpneu) is controlled instead of a
chamber pressure. This choice is made because its value is far
more meaningful and can be controlled for a specific purpose.

Thus, the first step of control synthesis is the choice of the
following state vector: x = [y v Fpneu Kpneu]′ where
[10]:

Kpneu =

(
pP

VP (y)
+

pN
VN (y)

)
kS2. (14)

Therefore, combining the new state vector with (3), (4), (7),
(8), (11), (13) and (14), the model for control synthesis
becomes:

dy

dt
= v

dv

dt
=
−bv − Fdry(v) + Fpneu

M

dFpneu

dt
= −Kpneuv +B1qmA

dKpneu

dt
=
A1Kpneuyv −A2Fpneuv −B2yqmA +B3qmT

VNVP
(15)

where:
A1 = 2S2(k + 1), A2 = S2k(k + 1),

B1 = S
Tkr

V0
, B2 =

S3k2Tr

V0
, B3 = S2k2Tr.

The proposed state equations show a strict feedback form
which is particularly adapted for control synthesis, especially
when using the backstepping recursive method. Moreover, the
derivative of the pneumatic force thus rewritten, clearly shows
the two physical phenomena resulting in force generation:
• −Kpneuv the pneumatic stiffness which tends to oppose

any movement of the piston,
• B1qmA the active mass flow rate which can be used to

control the piston pneumatic force.
It has to be noted that the pneumatic stiffness dynamics

depends on both qmA and qmT . Still, as it will be shown
in Section VI, it has no consequences on the complexity of
control synthesis.

VI. BACKSTEPPING CONTROL SYNTHESIS

Since the system has two degrees of freedom, it can be
controlled to simultaneously track two independent trajecto-
ries. The first one will be the position, defined by the desired
jerk jd and its integrals : the desired acceleration, velocity and
position : ad, vd and yd. The second one will be the pneumatic
stiffness trajectory which is defined by the desired pneumatic
stiffness derivative: dKd

pneu/dt.
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A. Control law synthesis - position trajectory tracking

First, the position error is introduced:

z1 = y − yd. (16)

Its derivative can be computed as: ż1 = v− vd. In accordance
with the backstepping methodology [17], v is a virtual input
and has to be chosen to cancel and stabilize the error z1:

v = vd − C1z1 (17)

with C1 a positive constant. To assess the global stability of the
subsystem, the following Lyapunov function: V1 = z21/2 ≥ 0
is chosen. Its derivative can be computed as:

V̇1 = −C1z
2
1 ≤ 0. (18)

Its negativity ensures the stability of the subsystem. In (18),
the “≤” sign is used for the sake of clarity, it has to be noted
that V̇1 is actually negative except for the desired equilibrium
defined by z1 = 0 for which it is canceled. The same applies to
the Lyapunov function derivatives (V̇2, V̇3 and V̇4) introduced
later).

The next error variable z2 is defined as:

z2 = v − vd + C1z1. (19)

It leads to:

ż1 = z2 − C1z1 (20)

and:

ż2 =
Fpneu − bv − Fdry(v)

M
− ad + C1z2 − C2

1z1. (21)

A new Lyapunov candidate function V2 = V1 + z22/2 ≥ 0 and
the following pneumatic effort control are defined:

F d
pneu = M(ad − z2(C1 + C2) + z1(C2

1 − 1))

+bv + Fdry(v)
(22)

with C2 a positive constant. If Fpneu = F d
pneu is ensured,

then the error derivative can be computed as ż2 = −z1−C2z2
which eventually leads to V̇2 = −C1z

2
1−C2z

2
2 . The negativity

of this derivative ensures the subsystem’s global stability. The
next error variable z3 is then introduced:

z3 = Fpneu − F d
pneu. (23)

It leads to:

ż2 =
z3
M
− z1 − C2z2 (24)

and:

ż3 = B1qmA −Kpneuv −Mjd

−b(Fpneu − bv − Fdry(v))

M

+M(C3
1 − 2C1 − C2)z1 + (C1 + C2)z3

+M(1− C2
1 − C2

2 − C1C2)z2.

(25)

For practical reasons, it is considered that dFdry/dt = 0
which is not valid for very small velocities. To avoid this
theoretical issue, it is often proposed to model the dry friction
phenomenon using the continuous arctangent function [7].
It is a computationally-expensive solution which does not
demonstrate any practical advantage and has therefore not been
used in this work.

In order to cancel any pneumatic force steady state error
which might be introduced by an external force, the pneumatic
force integral error is also defined:

z3i =

∫
z3 dt. (26)

A third Lyapunov function can then be defined as:

V3 = V2 +
z23
2

+Ki
z3

2
i

2
. (27)

With Ki a positive constant. If the following active mass flow
rate control is chosen:

qmA = f0 + f1z1 + f2z2 + f3z3 + f4z3i (28)

where:

f0 =
M2jd +MKpneuv − vb2 − bFdry + Fpneub

MB1
,

f1 = −M(C3
1 − 2C1 − C2)

B1
,

f2 =
M2(C2

1 + C1C2 + C2
2 − 1)− 1

MB1
, (29)

f3 = −C1 + C2 + C3

B1
,

f4 = −Ki

B1

with C3 a positive constant, then V̇3 = −C1z
2
1 − C2z

2
2 −

C3z
2
3 ≤ 0. According to the Lasalle Yoshizawa theorem [18],

the integral error z3i will then be bounded and the three errors
z1, z2 and z3 will converge to zero. The position, velocity and
pneumatic force errors will therefore asymptoticly converge to
zero.

In this first part of the control synthesis, the virtual mass
flow-rate qmA which ensures that the cylinder will follow the
desired position trajectory has been computed. At this point,
no choice has been made regarding the qmT control.

B. Pneumatic stiffness trajectory tracking
A new error variable z4 can be defined as: z4 = Kpneu −

Kd
pneu. Its derivative can be computed as follows:

ż4 =
A1Kpneuvy −A2.Fpneuv − yB2qmA +B3qmT

VNVP

−
dKd

pneu

dt
. (30)

A last Lyapunov function is defined as: V4 = V3 + z24/2 ≥
0 and the following pressurization mass flow rate control is
chosen:

qmT =
1

B3

[
A2Fpneuv + VNVP

(dKd
pneu

dt
− C4z4

)
− A1Kpneuvy +B2yqmA

]
(31)
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with C4 a positive constant. It leads to: V̇4 = −C1.z
2
1−C2.z

2
2−

C3.z
2
3 − C4.z

2
4 ≤ 0 which means that the cylinder pneumatic

stiffness will track the trajectory defined by dKd
pneu/dt and

its integral Kd
pneu.

The pressurization mass flow rate qmT depends on the value
of qmA but since the latter has already been computed in the
position tracking control law, qmT can be derived explicitly.

Once the two virtual mass flow rates qmA and qmT are
computed, the actual mass flow rate controls can be calculated
using the inverse A-T transformation defined in Section IV:[

qmP

qmN

]
= Λ−1(y)

[
qmA

qmT

]
. (32)

The whole control law (Fig. 5) requires the measurement of
both pressures pP and pN (used to compute Fpneu and Kpneu)
as well as the piston position y and velocity v.

VII. CLOSED-LOOP BEHAVIOR TUNING STRATEGY

The tuning of a non-linear control strategy is always a com-
plex task since the control parameters seldom show an obvious
physical meaning. It is usually done by trial and error which is
time consuming, complex and inaccurate, often preventing the
algorithm from being used in industrial applications. In this
section is proposed a simple yet very efficient way to choose
the proposed nonlinear control law parameters by defining the
cylinder behavior using linear concepts.

A. Pneumatic stiffness and closed-loop stiffness

In this paper two different concepts referred to as ”stiffness”
are studied. The first one is the pneumatic stiffness Kpneu

defined in (14). As previously stated, it depends on the piston
position and the pressures in both chambers. It represents
the cylinder natural tendency to counteract an external force
applied on the piston. When position control is imposed to
the electro-pneumatic system, the pneumatic stiffness can
be considered as the system’s ”open-loop stiffness”, which
influence is compensated by the control law as shown in (28)
and (29). The ”open-loop” term can be misleading since the
pneumatic stiffness is also a controlled state variable but it
underlines the fact that, in the absence of a position control
loop, it is the only stiffness phenomenon resisting the piston
displacement.

On the other hand, when the piston position is controlled,
the stiffness which is actually imposed by the actuator is the
”closed-loop stiffness” Kcl. Unline Kpneu, it is not an intrinsic
physical phenomenon but a parameter of the position control
law and therefore is the actual expected behavior of the system
when submitted to an external force.

The closed-loop stiffness is defined as the actuating system
response from a displacement from its desired position:

Kcl = − dF
dz1

(33)

where F stands for the total force generated by the elec-
tropneumatic actuator (that is the pneumatic force minus
the friction losses) and z1 stands for the previously defined
position error.

B. Tuning of the closed-loop stiffness

In order to do define a tuning strategy, the pneumatic force
error z3 defined in equation (23) is assumed to be successfully
canceled by the active mass flow rate qmA computed in
equations (28) and (29). This is obviously an approximation
and it is done for tuning purposes only. Thus, the following
hypothesis is adopted: Fpneu = F d

pneu. Therefore F the sum of
the forces applied on the load by the actuator can be computed
as:

F = F d
pneu − bv − Fdry(v)

= M(ad − z2(C1 + C2) + z1(C2
1 − 1)). (34)

Therefore, according to (33) and (34), the closed-loop
stiffness can be computed as:

Kcl = −M
d
(
ad − z2(C1 + C2) + z1(C2

1 − 1)
)

dz1
(35)

and, since z2 = v − vd + C1z1, dad/dz1 = 0 and d(v −
vd)/dz1 = 0:

Kcl = −M
d
(
−C1z1(C1 + C2) + z1(C2

1 − 1)
)

dz1
= M(C1C2 + 1). (36)

C. Definition of the closed-loop damping

Likewise, the closed-loop damping can be defined as the
actuating system response to a velocity error:

Bcl = −dF
dv̄

(37)

with v̄ = v − vd, the velocity error. From Eq.(34) it comes:

Bcl = −M
d
(
ad − z2(C1 + C2) + z1(C2

1 − 1)
)

dv̄
. (38)

Since z2 = v̄ + C1z1, dz2/dv̄ = 1 which leads to:

Bcl = M(C1 + C2). (39)

D. Computation of the control law parameters

In order to ensure that the actuation system will respect the
closed-loop stiffness Kcl and closed-loop damping Bcl, the
corresponding C1 and C2 parameters have to be computed
accordingly. From (36) the following can be derived:

C2 =
Kcl −M
C1M

. (40)

The global stability of the system requires C1 > 0 and C2 > 0.
This provides a first condition: Kcl > M . From (39) and (40),
the following equation can be derived:

MC2
1 −BclC1 +Kcl −M = 0 (41)

As the solutions of this second order equation have to be
real and positive, a second condition can be defined: Bcl ≥
2
√
M(Kcl −M).
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Finally, the control parameters can be computed and there
is only one practical solution as C1 and C2 values are
interchangeable:

C1 =
Bcl +

√
B2

cl − 4M(Kcl −M)

2M

C2 =
Bcl −

√
B2

cl − 4M(Kcl −M)

2M

. (42)

The two conditions: Bcl ≥ 2
√
M(Kcl −M)

Kcl > M
(43)

ensure the global stability of the system.

E. Closed-loop regulation behavior

According to (22), (36) and (39), the pneumatic force
control provided by the backstepping based algorithm can be
expressed as follows:

F d
pneu = −Kclz1 −Bclv̄ +Mad + bv + Fdry(v). (44)

If the previously proposed approximation Fpneu = F d
pneu is

made, the closed loop behavior of the cylinder in regulation
when submitted to an unknown external force Fext can be
described as:

M
dv

dt
= F = F d

pneu − bv − Fdry(v)− Fext. (45)

Hence, according to (44):

M
dv

dt
= Mad −Kclz1 −Bclv̄ − Fext. (46)

And:

Mā = −Kclz1 −Bclv̄ − Fext (47)

where ā = v̇ − ad. Finally, since v̄ = ż1 and ā = ˙̄v:

Mz̈1 = −Kclz1 −Bclż1 − Fext. (48)

It has to be noted that this study neglects the error z3 defined
by (23) and therefore has absolutely no value as a stability
proof but merely provides information about the algorithm
tuning. In accordance with the approximation (45), the piston
response to an external disturbance in the Laplace domain can
be expressed as follows:

Hreg(s) =
z1(s)

Fext(s)
= − 1

Ms2 +Bcls+Kcl
. (49)

This transfer function corresponds to a classical spring-mass
system with friction. The static gain G, natural frequency ωn

and damping ratio ξ of the second order transfer function are
then computed:

G = − 1

Kcl
, ωn =

√
Kcl

M
and ξ =

Bcl

2
√
KclM

. (50)

Which leads to the following tuning rules:
• the condition for a non-oscillatory response of the piston

to an external force is: Bcl ≥ 2
√
KclM

• the steady-state error can be computed as ∆y =
−Fext/Kcl therefore increasing the system closed-loop
stiffness will reduce the static error when the system is
submitted to an external disturbance force

• the damping ratio is proportional to Bcl. This implies that,
in the non-oscillatory response case, the convergence time
will be increased by a high closed-loop damping. In other
words, it expresses the control ability to slow down the
piston without altering the steady-state position.
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settings
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Fig. 5. Principle of the control strategy

F. Remaining control parameters

In order to better understand the C3, Ki and C4 constants
influence over the system response, the following derivatives
have to be computed:

dqmA

dC3
= − z3

B1

dqmA

dKi
= −

∫
z3 dt

B1

dqmT

dC4
= −z4

VNVP
B3

(51)

(51) shows that C3, Ki and C4 respectively set the feedback
gain of the pneumatic force error, the pneumatic force integral
error and the pneumatic stiffness error. Increasing these values
can enhance the pneumatic force and stiffness responses up to
a certain point but will also increase the servovalves work
and, possibly, the gas consumption. A trade-off between the
response quality and the energy consumption and actuators ag-
ing has to be defined depending on the expected performances.

It has to be noted that, since the tuning strategy proposed
in Section VII is based on the assumption that the pneumatic
force error is negligible, a good pneumatic force precision
is required and therefore reasonably high values of the pa-
rameters C3 and Ki have to be set. The pneumatic stiffness
precision is generally less critical and therefore the value of
C4 can be chosen smaller.

VIII. ABOUT STIFFNESSES

A common misconception regarding electro-pneumatic sys-
tems performances is that they have a low stiffness. This
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is true in an open-loop configuration, since only the pneu-
matic stiffness opposes the piston movement. However, when
controlled to track a position trajectory, an electro-pneumatic
cylinder closed-loop stiffness can be chosen at any given value,
smaller or larger than the open-loop stiffness. Nevertheless, the
simplicity of the tuning strategy can be misleading and it is
important to keep in mind that there are physical limitations
to this closed-loop tuning:
• the pneumatic force is limited by the supply pressure and

the piston surface. When submitted to an external force
which exceeds the maximum pneumatic force, the actual
closed-loop stiffness will inevitably collapse,

• the pneumatic force dynamics is limited by the servo-
valves maximum mass flow rate (which depends on the
supply pressure and the servovalve maximum flow area).
If mass flow rate saturation occurs, the electro-pneumatic
system cannot control the pneumatic force fast enough to
meet the closed-loop tuning,

• finally the servovalves dynamics, which are neglected
in the control synthesis model, will also impact the
closed-loop tuning: when a large displacement of the
servovalve’s spool is needed for a large variation of
the mass flow rate, the non-modeled response time will
decrease the tuning precision.

Therefore a thorough sizing task has to be conducted regarding
the cylinder and servovalves characteristics for a given set
of technical specifications (moving mass, maximum external
force, required closed-loop stiffness...) in order to avoid satura-
tions, reduce servovalves response delays and therefore ensure
the good precision of the closed-loop tuning.

Finally, even if the pneumatic stiffness influence over the
piston displacement is compensated by the position control
law, it can be interesting, when possible, to specify a pneu-
matic stiffness trajectory consistent with the chosen closed-
loop stiffness. The closer the pneumatic stiffness will be to
the closed-loop stiffness, the less the servovalve will have
to act, reducing the risk of saturations mentioned before and
enhancing the tuning precision. Virtually, if the closed-loop
stiffness were to be chosen exactly equal to the pneumatic
stiffness, the pneumatic cylinder would naturally display the
desired closed-loop stiffness without requiring any action from
the servovalves. This is an important remark for it underlines
the hybrid nature of this VSA technology which is both passive
and active (see Section I).

IX. TEST BENCH OVERVIEW

In order to assess the efficiency of the proposed control
strategy and all its future applications, a whole new test
bench has been developed. Classical linear test bench designs
generally include a variable load which inertia [19] or stiffness
[20] can be tuned to evaluate the control robustness towards
parameters uncertainties. The most common limitation of those
solutions lies in the lack of external disturbances generation.
[21] proposes to use a second antagonistic pneumatic actuator
but the latter is not really suited for swift step force gener-
ation. Among the actuators candidates, electric solutions are
preferred to hydraulic ones because, in one hand, their range

of efforts are more compatible with a pneumatic actuator and,
in the other hand, they are easier to supply and control. EMA
can be an attractive solution because they are inexpensive and
can generally offer a high continuous effort but only a linear
motor can deliver the very high dynamic needed to generate
disturbances as swift steps or high frequency forces.

Therefore, the chosen actuator is a linear motor ironcore
TB30N model manufactured by Tecmotion. Its main charac-
teristics are summarized in table II. The TB30N is driven by a
CDD34017 inverter provided by Lust which carries out force
control.

TABLE II
TB30N LINEAR MOTOR CHARACTERISTICS

Quantity Value
Maximum continuous force 1900 N
Peak force 4500 N
Maximum speed 2.5 m/s
Electric time constant 8 ms

Fig. 6. TB30N linear motor

A cRIO-9022 real time controller from National Instruments
is used for sensors and actuators interfacing and the rapid
prototyping of the control algorithms. The pressure dynamics
in the cylinder are relatively slow, with a response time of
roughly 100 ms and the servovalve MPYE can be considered
as about 10 times faster. Therefore, choosing a sampling
frequency of 500 Hz is fast enough compared to the actuators
dynamics.

Fig. 7. View of the complete test bench
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X. EXPERIMENTAL RESULTS

In order to assess the validity of the proposed tuning
strategy, various tests have been conducted using the previ-
ously presented test bench. Unless otherwise specified, the
pneumatic stiffness trajectory is chosen constant and Kd

pneu =
3× 105 N/m. The electro-pneumatic cylinder drives a 125 kg
mass. After each test, the experimental closed-loop stiffness
is derived using the steady state error ∆y:

Kclm =
Fext

∆y
=

Fext

|y − yd|
(52)

and the closed-loop stiffness relative error is defined as:

∆Kcl =
Kcl −Kclm

Kcl
. (53)

Since the main objective of the control strategy is not to
minimize the position error but to specify a closed-loop be-
havior, the ∆Kcl is the actual criterion to assess the algorithm
efficiency.

A. Response to force steps for a varying closed-loop stiffness

In this first test, the piston is controlled to stay still in central
position. Swift external force steps of 500 N are applied on
the piston by the linear motor and the closed-loop tuning Kcl

is changed gradually in real time from 1 × 105 N/m up to
15 × 105 N/m. Bcl is kept minimal under the (43) criterion.
The resulting piston displacement can be seen on Fig. 8 and
Table III. The relative error of the closed-loop stiffness stays
below 10%.
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Fig. 8. Position response of the piston to external force steps for a varying
closed-loop stiffness tuning [test 1]

TABLE III
RESULTS OF TEST 1: Fext = 500 N, VARIABLE Kcl

Kcl [N/m] 1× 105 5× 105 10× 105 15× 105

∆y [mm] 4.701 0.989 0.519 0.353

Kclm [N/m] 1.06× 105 5.06× 105 9.63× 105 14.16× 105

∆Kcl [%] -6.36 -1.11 3.66 5.57

B. Response to varying force steps

The second test is similar except that the closed-loop
stiffness is chosen constant at Kcl = 5 × 105 N/m while the
external force varies from 500 N up to 1500 N (see Fig.9).
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Fig. 9. Position response of the piston to force steps varying from 500 N to
1500 N for Kcl = 5× 105 N/m [test 2]

TABLE IV
RESULTS OF TEST 2: Kcl = 5× 105 N/M, VARIABLE Fext

Fext [N] 500 1000 1500

Kclm [N/m] 5.03× 105 5.12× 105 5.29× 105

∆Kcl [%] -0.60 -2.46 -5.86
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Fig. 10. Pneumatic force error z3 when submitted to force steps varying from
500 N to 1500 N for Kcl = 5× 105 N/m [test 2]

Table IV shows that the closed-loop stiffness is correctly
tuned for any value of the disturbance even if precision slightly
decreases with the external force magnitude.

Fig. 10 shows z3, defined by (23), the pneumatic force error.
The transient error is limited since its value never exceeds
20% of the external force applied. Moreover, as a result of
the integral feedback defined in (26) there is no static error.
Therefore, the assumption z3 = 0 made in section VII-B to
define the tuning strategy is reasonable. This explains the good
tuning precision summarized in table IV.
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C. Varying closed-loop damping

In the third test, the closed-loop stiffness is constant at 105

N/m while the closed-loop damping varies from 6.8 × 103

N/m/s up to 2.4 × 104 N/m/s. For the sake of readability,
results have been superimposed.
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Fig. 11. Position response of the piston to external force steps for three
different closed-loop damping tunings [test 3]

Fig.11 clearly demonstrates that the steady state error is
unchanged by the closed-loop damping variation and that the
latter can be used to set the dynamics of the piston response
when submitted to an external force.

D. Response to force steps for a varying pneumatic stiffness

In this test, the closed-loop stiffness and damping are
constants (Kcl = 3.5× 105 N/m and Bcl = 1.5× 104 N/m/s).
The pneumatic stiffness varies gradually over the test from
1.5×105 N/m up to 3.5×105 N/m. Non represented external
force steps of 500 N are applied on the piston every five
seconds. Figures 12 shows the pneumatic stiffness trajectory
tracking as well as the piston displacement resulting from the
successive external force disturbances. In figure 13, the active
mass flow rates qmA provided by the servovalves at each
external force rising edge (at instants t = {2.5, 12.5, 22.5}
s) are compared. Results are summarized in table V.
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The results give the following informations:
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Fig. 13. Active mass flow rates provided by the servovalves at each rising
edge of the external force for three different values of the pneumatic stiffness
[test 4]

TABLE V
RESULTS OF TEST 4: Kcl = 3.5× 105 N/M, Fext = 500 N

Kpneu [N/m] 1.5× 105 3× 105 4.5× 105

Kclm [N/m] 3.35× 105 3.45× 105 3.52× 105

∆Kcl [%] 4.3 1.4 -0.6

|qmA| max [g/s] 2.94 1.97 1.51

• the pneumatic stiffness successfully tracks the trajectory
(Fig. 12). Variations due to piston displacements are very
small,

• the closed-loop behavior does not depend on the pneu-
matic stiffness, therefore the latter is successfully com-
pensated by the control law and the closed-loop stiffness
tuning is respected regardless of the pneumatic stiffness,

• however, setting the pneumatic stiffness close to the
closed-loop stiffness enhances the latter’s precision,

• the active mass flow rate provided by the servovalves
is significantly reduced (Fig. 13) when the pneumatic
stiffness is set closer to the desired closed-loop stiffness.
This confirms the previously stated hypothesis that the
servovalves action is reduced when the open loop stiffness
is close to the closed-loop stiffness which will result in
energy consumption reduction.

E. Closed-loop stiffness and trajectory tracking

In the fifth test, a 3 Hz sinusoidal position trajectory is
imposed to the actuator. The closed-loop stiffness is set at a
value of 5 × 105 N/m and a 1000 N force is applied on the
piston.

It can be seen on Fig.14 that the position trajectory is
precisely tracked when no disturbance is applied. When the
piston is submitted to an external force of 1000 N a permanent
error or 2 mm appears (see Fig.15) which is consistent with
the tuning. Therefore, the closed-loop stiffness tuning is also
precisely respected when the piston is in movement.

F. Range and precision of the closed-loop stiffness

Finally, the first test (see Section X-A) has been conducted
for over 40 values of the desired closed-loop stiffness Kcl
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a sinusoidal trajectory [test 5]
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Fig. 15. Position error while tracking a sinusoidal trajectory [test 5]

varying from 3 × 104 N/m to 3 × 106 N/m with the closed-
loop damping kept to its minimal value.
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Fig. 16. Stiffness tuning range and precision.

Results show that the closed-loop stiffness can be set with a
relative error below 10% between minimal and maximal values
spaced by a factor of 100 (see Fig. 16). Such a range cannot
be achieved using solely the pneumatic stiffness (maximal and
minimal values of the pneumatic stiffness when the piston is

in central position are provided for comparison) and this result
clearly underlines the contribution of the proposed algorithm.

XI. CONCLUSION

In this study, using two virtual inputs qmA and qmT derived
from the physical inputs qmP and qmN and the piston position
y using the A-T transformation, an alternative state model
is obtained. This makes possible the design of a control law
which allows the precise tuning of the closed-loop behavior
of an electro-pneumatic cylinder has been presented. Exper-
imental results have demonstrated the excellent precision of
the closed-loop stiffness and the very wide range of tunings
achievable by the system thus controlled. The closed-loop
damping tuning is less precise mainly because, as a dynamic
phenomenon, its performances are more deteriorated by the
uncertainties such as the servovalve non modeled response
time. Still a qualitative tuning can be achieved over a rea-
sonable range.

Those results demonstrate that electro-pneumatic cylinders
can be an excellent choice when realtime tuning of the closed-
loop stiffness is needed, and therefore are good candidates
in robotic or medical applications. Moreover, it has been
shown that electro-pneumatic cylinders combine advantages
from both active and passive VSAs: if the closed-loop and
pneumatic stiffness are set to the same value, then the system
acts as a passive compliant actuator and energy consumption
is widely reduced. On the other hand, since the pneumatic
stiffness range is limited, the closed-loop stiffness can be
chosen far greater or smaller. In this case, the servovalves
will ensure that the system respects the specified closed-loop
behavior.

Future works will involve the development of SISO control
laws, using a single 5/2 servovalve for even more cost effective
applications requiring tuning of the closed-loop stiffness. The
actual robustness of the system towards bounded external
forces could also be studied. A specific system-oriented study
has to be conducted to better understand the influence of the
servovalves and cylinder sizing over the performances to be
expected in terms of closed-loop behavior. Finally, a similar
approach could be applied to electro-hydraulic actuators in
order to design VSAs able to withstand much larger external
forces.
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