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ABSTRACT. The basic idea of this paper is to introduce dynamic gains in the classic
sliding modes differentiators to ameliorate their performance mainly according to noise
reduction on the estimated signals. New schemes of 1st and 2nd-order sliding modes
differentiators are proposed which satisfy some convergence properties. The originality
of this paper is to apply the proposed algorithms to both estimating the derivatives of
mono-dimensional and two-dimensional noisy signals. Their effectiveness is illustrated
via simulation tests where these algorithms are used as an edge detector into image
application. A comparative study with conventional approaches is then performed.
Keywords: Differentiator design, Dynamic gains, Edge detection, Higher order sliding
modes, Image application, Comparative study

1. Introduction. The major problem of noisy differentiation signal is the amplification
of the noises on the signal estimation. This problem becomes more important in practice
where the measurement noises are not obvious to model. Then it is so hard to discern
between the noise and the basic signal. Thus, the practical differentiation consists of a
trade-off between exact differentiation and robustness with respect to noises.

In the literature, two major approaches are basically proposed to estimate the noisy
signal derivatives. For the first one, the problem of noisy derivative estimation is addressed
by an observation and a filtering problem. In this case, the knowledge of the system and/or
noise models is necessary. For example, in the stochastic case, the Kalman filter [2] can
be used to estimate a derivative of some noisy signal. However, the computing of the
gain-filter requires the resolution of an algebraic Ricatti equation. In [1], the authors
estimate the derivative of signal using a high gain observer. The main drawback of this
last one is its sensitivity to measurement noises due to its parameter setting. For the
nonlinear case, we can cite: backstepping observer [3], sliding mode observers [4].

Unfortunately, in many cases the lack of information about the system dynamics and
unknown features about the noise, makes the design of differentiator unavoidable. Rather
than the model approach, the differentiator approach can be then considered. The tra-
ditional method is the finite difference method such as the Euler backward difference
method. This one is simple to implement in real time, but in the presence of noise, it
presents bad noise suppression capabilities. To avoid this problem, a low-pass filter can be
used to attenuate the noise but with introducing an inevitable phase delay. Other more
attractive methods exist in the literature. One of them is based on the truncated Taylor
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series of the signal to differentiate [6]. Despite of good filtering results, the algebraic
algorithms are sensitive to the truncation order, to the size of the sliding window estima-
tion and the setting of its parameters. Alternative methods based on the sliding mode
technique can be employed. In [7], the author proposes an arbitrary-order differentiator
with finite-time convergence. One of the most popular is super-twisting (ST) differen-
tiator [7]. The advantages of such differentiators are the easiness of its implementation
and their finite-time robust differentiation of bounded noisy signals. However, the major
problem of such differentiator concerns the tuning of its gains to match convergence and
good accuracy. In fact, the algorithm parameters depend on the Lipschitz constant of
the derivative signal. In real time, this constant is usually not exactly known beforehand.
Thus, other new forms of 1st-order sliding modes differentiator (ST) have been developed
to avoid the drawback of the classic one, such in [12,13]. Other new forms of the ST
differentiator were successfully applied in [5,14]. This work is an extension of that shown
in [5] with a modification in the convergence proof of the proposed algorithms.

In this work, we are looking for a differentiator design with basing on the higher order
sliding modes. Our contributions are summarized as follows: (i) new scheme of the ST
algorithm is proposed different from those presented in the literature; (ii) new scheme of
2nd-order differentiator is based on three-order sliding modes. As far as we know, the
proposed sliding modes algorithms will yield to the first image processing application,
especially for edge detection. In fact, the defined differentiators can be used to com-
pute respectively the gradient and/or the Laplacian of image in order to obtain the edge.
Despite the most commonly using of the differential edge detection schemes [8], these
detectors suffer from their sensitivity to noise. Furthermore, for such scheme, the sizes of
the kernel and coefficients filter are fixed and cannot be adapted to a given image. The
noise derivative can mask the real maxima that indicate edges. To overcome this draw-
back, other methods are developed in the literature, such as Canny filter [9]. Interesting
works can be cited for the edge detector context as [12,13].

This paper is organized as follows. In the second section, a problem statement is
exposed and the new schemes of sliding modes differentiators are presented. Section 3
shows some simulation results to compare these new schemes with the classic one, in the
mono-dimensional (1D) context. Section 4 is dedicated to implementing the proposed
schemes for edge detection. A comparative study will be then presented with classic edge
detectors. Finally, Section 5 concludes this paper.

2. Problem Statement.

2.1. Problem statement. As well as when applied to designing controller, the sliding
modes technique shows good results when used for robust differentiation [7]. It is also
the case for the ST algorithm [11]. To design a sliding modes differentiator, let the input
signal f(t) to be differentiated, be a function defined on [0, +00) and be measurable in
Lebesgue’s sense. This signal is considered as the sum of the two following terms:

ft) = folt) +£(1) (1)
where fy(¢) is an unknown base signal for which the (n + 1)th derivative has a known
Lipschitz constant C' > 0, and £(¢) is a bounded Lebesgue-measurable noise with unknown
features, defined by: [£(t)| < e, with £ sufficiently small (¢ << 1).

An infinite number of differentiator schemes is proposed in [7] and aims at the cal-
culation in real time of fy(t), fo(?),. .., fé") (t). These schemes are defined in (2), where
Aiy @ € {0,...,n} are positive gains depending on the Lipschitz constant C' of fénﬂ)(t).
The outputs of the differentiator are defined by z; = v;_; which are the estimation of
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f@(), i € {1,...,n}. From (2), the ST algorithm (n = 1) and the 2nd-order differen-
tiator (n = 2) can be easily defined. Thus, the initial value 25(0) = £(0), 2;(0) = v;_1(0)
with i € {1,...,n} are chosen according to desired time of convergence. The parameters
A; can be chosen as:

A = Ot (2)

From (2), the choice of the coefficient set is such that Aoy < Ajg < -+ < Ayg. So, the
choice of these gains is conditioned by the knowledge of the constant C'. Then with the
same tuning gains, a simple modification of the spectral content of the input signal or
of its magnitude can greatly affect the estimation of the derivative. Generally, the gain
values are found by guessing with computer simulations.

( 20 = Vo
vo = —Xo|2o — flmHisign(zo — f) + 21
21 =1

vy = =iz — v0|n743ign(z1 — ) + 29

Rp—1 = Up—1

1
Up—1 = _)\nfl |Zn71 - 'Un72|2 stgn (anl - 'Un72) + 2

L Zn = —Ausign (zn — vp_1) = —A\pSign (Zp—1 — Up_2)

From the theoretical sliding mode, the first term of all the equations in (3) must be
equal to zero. However, it is impossible in practice to cancel these terms due to different
present, sources of inaccuracy. Indeed, the presence of the “sign” function in these terms
leads also to oscillations at high frequencies. This chattering effect can deteriorate the
precision of the outputs differentiator. In the presence of noises, the noise amplification
on the estimated signals becomes then even larger. So, it is not easy to set the gains to
reach a good compromise between accuracy and robustness to noise.

2.2. Proposed solution. To overcome the exposed problem, we propose to add dynamic
laws to compute online the parameters of the sliding mode differentiators.

e New schema of 1st-order differentiator. The proposed 1st-order differentiator is defined
by the following system:

Zp = Vo

~ J
vo = —Xo |20 — f|2 sign (20 — f) — Ko (20 — f) + =1 (1)
21:1}1

v = —5\15@" (20 — f)
The sliding surfaces are given by:

{O'OZZU—f

or=z—f
Using the variables defined in (5), the system (4) can be rewritten as follows:

~ 1
{ G0 = — o |00]? sign (o¢) — Kooy

&1 = —\isign (o9)
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Theorem 2.1. For Ky > 0 and with the sliding surfaces defined by (5), all trajectories
of algorithm (4) converge at a finite time to the equilibrium point o = o1 = 0, with the
dynamic gains A\;, 1 € {0,1} defined by:
Ao = (ol sign (%)) Ao, 0(0) > 0 and Ao = 0, Vi = 0 -
)\1 = |)\0|, 5\1(0) Z 0 and 5\1 - 0, Vt =0
See Appendix A for the proof of the previous theorem.

e New schema of 2nd-order differentiator. For the 2nd-order differentiator, three gains
(Mo, A1, A2) must be adjusted in real time. Let us define now the scheme as:

f

Z.O = Vg
vo = —Aoso|3 sign(so) — Koso + 21
S Z.l = U1 (8)

. ot
v = —Msi|zsign(si) — Ay [ sign(s))dt — Kis
0

\

K, and K are positive gains and sg, s; are the sliding surfaces given by:

{pznd )

S1 = %1 — o
The dynamic gains \;, i € {0,1,2} are defined by:

A = (|)\0|% sign(so)) 50, Ao(0) > 0 and Ao > 0, V£ = 0
i = (|)\0|%sign(sl)> s1, A1(0) > 0 and \, = 0, V¢ = 0 (10)

\\

. t
Ao = s1 [ sign(si)dt
0

\

Theorem 2.2. For Ky, K; > 0 and with the dynamic gains \;, i € {0,1,2} defined by
(10), the system trajectories (8) converge locally and asymptotically towards the equilib-
rium point sg = s; = 0 under the following assumption: There are positive constants A}
and A}, a priori unknown, defined by:

f= —)\*|sg|%sign( ) + 2

(11)

T
f=-N |81|2szgn — \; [ sign(si)d
0
The proof of the previous theorem is in Appendix B.

3. Simulation Results for 1D Derivative Estimation. To prove the effectiveness
of the proposed schemes compared to classic one, with respect to noise, we perform
simulation test which consists of adding to the input signal f(¢) a white Gaussian noise
with zero mean and standard deviation equal to 0.03.

From Figures 1 and 2, we can notice that the estimate of the 1st-derivative has less noise
amplification compared to the estimate of the 2nd-derivative. Then, it is clear that the
proposed algorithms have a reduced level of noise compared to the classic versions. This is
essentially due to the additional linear component in the output equations. For example,
from Figures 1 and 2, the proposed version leads to a noise magnitude 7 times smaller than
what is obtained with the classical version. We can conclude that the main advantage of
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FIGURE 1. Estimation of the first derivative
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FIGURE 2. Estimation of the second derivative

the proposed schemas is mainly the noise reduction compared to conventional one. This
advantage may be interesting in practice where the presence of noise is unavoidable.

Remarks about the setting of the convergence gains are as follows. (i) For no noisy
case: the values of the gains K;, i € {0,1} have only effect on the convergence time of
the algorithms. In fact, if the convergence gains values are high, the convergence time of
the algorithms becomes quick. (ii) For noisy case: there is some compromise between the
reduction of the noise amplification on the estimated signals and the convergence time of
the differentiators. If very high gain values are taken, the convergence time becomes fast
but the noise amplification becomes significant. It is necessary to have low initial values
of the dynamic gains to reduce as much as possible the influence of the discontinuous
components.
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For readability of the figures, we use the following abbreviation: super twisting: ST,
2nd-order differentiator: 20D, new schema of 1st-order differentiator: N1OD, new schema
of 2nd-order differentiator: N20D.

4. Simulation Results for 2D Derivative Estimation. In this paper, only the grey-
scale digital images are considered. Let the function g(z,y) be defined in (R x R) — R*
where g(z,y) gives the intensity at position (z,y). Since the digital image is represented
as a set, of discrete pixels, the conventional methods of edge detection perform a 2D spatial
gradient computing on an image using a pair of convolution masks.

4.1. Implementation of the proposed algorithm in 2D domain. Unlike the con-
volution methods, the proposed algorithms take as input one pixel at a time. To put the
proposed schemes in discrete form, the Euler integration step is applied at each constant
sampling interval which is equal to T, = 1072 second. Then, the discretization schemes of
the two proposed differentiators (4) and (8) are given respectively by (12) and (14). So,
for the 1st-order differentiator, the discrete form is defined as follows:

. 1
20k = 20(k—1) T Te[ — Xotk=1) |2006=1) — fi—1)|® sign (zoe—1) — fi-1))
—Ko (zo6—1) — fe—1)) + Z1(k71)] (12)

21k = Z1(k—1) — Tej\l(kfl)Sign (ZO(kfl) - f(kq))
And the equations of dynamic gains take the following discrete forms:

)\Ok = )\0 y+ T (Zo(k 1) fkq) ‘Zo(k 1) — fr- 1‘ sign (Zok ) — fro 1) (13)
)\lk—)\l )+ Te ‘ZOk 1) fkfl‘
For the 2nd-order differentiator, we have:

( e 2

2ok = Zok—1) + Te | — Aogk=1y |200k—1) = Fee=1)|® sign (zo006-1) — fie—-1))

—Ko (zo6—1) — fe—1)) + Z1(k71)]
% - | (14)

Rk = Z1(k=1) — T. )\1(1;—1)529” (Sl(k—l))
N kTe -Te . .
—)\2(1%1) Z ? (szgn (Slk) + sign (81(1%1))) - K181(k71)
\ k=1

(Zokfzo(kfl))

With s = 216-1) — . The equations of dynamic gains become discrete as

Te
follows:
5\01: = 5\o(lc—1) + T, (Zo k—1) ) ‘ — fi- 1‘ sign (Zo k—1) — fr- 1)
Aip = )\1(k 1)+ Tes1(k-1) |51(k— 1)‘1 stgn (Sl(k_l)) (15)
. . ke T, | .
Aok = A1y + Te | D2 3 (sign (sik) + sign (s1-1))) s106-1)
k=1

The different steps used to estimate the gradient along the rows on the image by the
proposed algorithm are given by Figure 3. The first step is to initialize the first pixel
intensity value of the matrix g. Then the algorithm starts with a zero estimation error.
Afterward, a prediction of the intensity of the next pixel is made by applying the proposed
differentiator to approximating the gradient of the corresponding pixel. Then, new value
of the error will be considered. All these steps are repeated for each row and column
of this matrix. For the 2nd-order algorithm, the computation of the gradient and the
Laplacian can be estimated at the same time and they are approximated by the same way
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Prediction of the light intensity
of the next pixel

L
L |
[Update newvalueofthe]_ _________ E

o _X(i+L)-X(i))
il i=i+]

estimation error

FIGURE 3. Steps to compute the gradient with N1OD along the matrix rows

as the gradient steps. In the case of image, the prediction seems unnecessary because all
information can be retrieved directly from the input matrix. However, the idea here is
to show the effectiveness of such algorithm for an image in order to extend the work to a
frames sequence.

4.2. Simulation results. In this section, the proposed schemes are used as an edge
detector to compare them with other methods such as the gradient mask, the Prewitt
mask and the well-known Canny filter. This last one is widely used as edge detector which
has some variable ¢ to regulate the degree of noise smoothing. The Laplacian operator is
used for the second order estimation. To search for the zero crossings of the image, second
derivative is calculated with convolving the image with the Laplacian operator. For these
all methods, the absolute magnitude of the gradient at each point is approximated by:
G| = |Vy(z,y)| = /(G2 + G2), where G, = 9,(2,y) and G, = 0,(z,y) are respectively
the vertical and the horizontal gradient of the initial frame.

Methods based on differential operators consist in the use of differentiation to highlight
the points with rapid variations of intensity. Thereafter, a step of thresholding must
be performed. In order to eliminate insignificant points and to produce the final edge
map, we use in our simulation tests, the global thresholding histogram. Note that, in our
case, no post-processing will be performed on the simulation results. The goal here is to
compare all methods with the same thresholding algorithm.

4.3. Simulation tests without noise. The simulation tests have been carried out using
MATLAB image processing Toolbox.

In the first time, a standard gray scale image “Lena” (Figure 4(a)) of size (256 x 256)
is selected for simulation study. Firstly, the image is processed without noise. With the
N1OD, the vertical and the horizontal gradient (see Figures 4(b) and 4(c)) are estimated
with K; = 500.

The initial values of gains are set to zero. Then, the gradient magnitude is normalized;
see Figure 5(a). After thresholding, Figure 5(b) shows the obtained edge. The N20D
is used to estimate the Laplacian relative to the initial image, see Figure 6. In reality,
it is very hard to determine the difference between each edge detector, and the obtained



388 L. SIDHOM, M. SMAOUI, X. BRUN AND E. BIDEAUX

(a) Initial gray image: im- (b) G, of image 1 (c) Gy of image 1
age 1

FIGURE 4. Horizontal G, and vertical G, gradient of image 1: with N10OD

(a) Normalized magni- (b) Normalized magni-
tude of image 1 tude of image 1

F1GURE 5. Edge of image 1: with N10OD

(a) Normalized Laplacian (b) Normalized Laplacian
of image 1 after thresholding

FI1GURE 6. Edge of image 1: with N20OD

results are relatively the same (see Figure 7). In fact, the absence of the reference edge
reveals some difficulties to compare the quality of the results.

4.4. Simulation tests with noise. For a given simulation test, a synthetic image (see
Figure 8) is used where its edge is exactly known so it is used as a reference for the
comparison study. Corrupted image with noise allows us to test the resistance of an edge
detector operator to noise. The noise can be described by an additive noise model on
the recorded image i(m,n). Consequently, this test image will be corrupted with three
different kinds of noise: Gaussian noise which has a zero-mean and is described by its
standard deviation o,, Salt & Pepper noise which is defined by its density d and Speckle
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(a) Gradient operator (b)

FiGurE 7. Edge detection by Gradient mask, Prewitt mask and Canny filter

(a) Initial image: test im- (b) Exact edge of the test
age image

FiGURE 8. Test image

noise which is a multiplicative noise as the equation .J = i + ngi, where n, is uniformly
distributed random noise with zero-mean and a variance o,,;.

To assess the quality of the obtained edge from the exploited detectors, two kinds of
criteria are chosen in our case: qualitative criteria such as complexity of the method,
settings parameter and quantitative criteria such as the parameters mean magnitude
error (MME), mean edge error (MEE) and the computation time. The MME indicates
the average difference of the pixels between the exact magnitude and the estimated one.
The MEE represents the error between the exact edge (Figure 8(b)) and the obtained
one.

Tests with Gaussian white noise. Upon the simulation tests, the MME and the
MEE values are evaluated, for each kind of noise, and are summarized in Tables 1, 2
and 3. The results of edge detection are shown in Figures 10, 12 and 14. It has been
observed that the N1OD works well both with the Gaussian, the salt & pepper as well as
speckle noise corrupted test image. Especially for the salt & pepper noise, the proposed

TABLE 1. Comparative table of errors: Gaussian white noise

Method MME | MEE
Gradient mask | 0.0574 | 0.0038
Prewitt mask 0.0709 | 0.0128

Canny filter 0.0579 | 0.0049
N10OD (K; = 400) | 0.0468 | 0.0024
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TABLE 2. Comparative table of errors: salt & pepper noise

Method MME | MEE
Gradient mask 0.031 |0.0135
Prewitt mask 0.0339 | 0.0144

Canny filter 0.0124 | 0.0177
N1OD (K; = 400) | 0.0028 | 0.0033

TABLE 3. Comparative table of errors: speckle noise

Method MME | MEFE
Gradient mask | 0.0288 | 0.0019
Prewitt mask 0.0465 | 0.0157

Canny filter 0.0112 | 0.000471
N1OD (K; = 400) | 0.0235 | 0.000261

FIGURE 9. Test image corrupted by Gaussian white noise with o, = 0.01

(a) Gradient mask (b) Prewitt mask (¢) Canny filter (d) N1OD (K; = 400)

FiGure 10. Edge detection of the corrupted image by the Gaussian white noise

algorithm does not amplify the noise in the resulted frame which is not the case for the
other methods.

Tests with Salt & Pepper noise. The performance of the gradient mask is better in
the presence of speckle noise than the other noises. Indeed, the gradient mask represents
a high pass filter so it has not a smoothing action which can explain the amplification
of the noise (Figure 12(a)). However, the Prewitt and the Canny filter can estimate the
gradient of the input matrix with smoothing it, (Figures 12(b) and 12(c)). Prewitt mask
presents the worst result with the salt & pepper noise compared to other edges detectors
because it does the averaging of neighbouring pixels. Since the salt & pepper noise pixel
values are often different from the surrounding values, they tend to distort the computed
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FiGURE 11. Test image corrupted by salt & pepper noise with density d = 0.01

(a) Gradient mask (b) Prewitt mask (c) Canny filter (d) N1OD (K, = 400)

FiGURE 12. Edge detection of the test image corrupted by salt & pepper noise

FI1GURE 13. Test image corrupted by speckle noise with o,; = 0.01

average pixel. The performance of the Canny filter depends heavily on the adjustable
parameter 9.

Tests with speckle noise. For Tables 1, 2 and 3, it has been noticed that for the
Gaussian noise, the Canny filter presented the lowest value of the MEE. It is important
to note that the obtained results can be improved by changing the thresholding method
already used. Then the MEE depends strongly on the chosen of the threshold, and then
it is more appropriate to consider the second indicator MME. From the MME values,
N1OD performance is better for images corrupted with salt & pepper of noise compared
to Gaussian or speckle noise.

Table 4 summarizes the elapsed time of the presented methods for different sizes of
the frame. From these results, the proposed algorithms take more times to compute the
gradient or Laplacian compared to other methods. This is due to the used computation
method which is done pixel by pixel.

In Figure 15, the impact of the salt & pepper noise on the image “Lena” is often
described of the true frame and the recorded one for each method. Figures 15(e) and
15(f) show the importance of the chosen of convergence gain of N1OD on the rate of
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)

(a) Gradient mask (b) Prewitt mask c¢) Canny filter ) N10OD (K = 400)

FiGurE 14. Edge detection of the corrupted image by speckle noise

TABLE 4. Elapsed time (s) for different sizes of image

Method (50 % 50) | (125 % 125) | (256 * 256)

Gradient mask 0.00057 0.0017 0.0098
Prewitt mask 0.0011 0.0023 0.0040
Canny filter 0.0043 0.0064 0.0150
N10OD 0.0410 0.2556 1.0863
Laplacian operator | 0.009 0.0138 0.0166

N20D 0.0624 0.3930 1.6825

(a) Image 1 corrupted (b) Gradient mask (c) Prewitt mask
by salt

(d) Canny filter () N1OD (K; = 650) (f) N10OD (K, = 350)

FIGURE 15. Edge detection of the corrupted “Lena” image by the salt &
pepper noise

amplification noise in the resulted image. Indeed, increasing the value of the gain K, the
amplification noise decreases.

In Table 5, some criteria for comparing the studied methods are presented. Despite
good results provided by the proposed algorithms, it is essential to propose a solution to
reduce their computation time in their discrete forms used for an image application.
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TABLE 5. Criteria for comparing the studied edge detectors

. . . Number of
Method Localization Tnsenszt.zmty .C’omp lexity .Of C’omp uting adjustment
to noise | implementation time

parameters
Gradient mask + - ++ ++ No parameters
Prewitt mask + + ++ ++ No parameters

Canny filter ++ ++ + + 1
N1OD/N20D ++ ++ + - 1/2

5. Conclusions. New higher order sliding modes differentiators are proposed and are
well performed in order to extract the frame edge. Different simulation tests are presented
in the 1D and 2D domains, where the efficacy of the proposed schemes is confirmed with
comparing to the classic methods. In 1D domain and with noisy tests, a remarkable
reduction of noise amplification is provided. In 2D domain, such algorithms work quite
well for digital images corrupted with Gaussian noise, salt & pepper noise and the speckle
noise. The results of this study are quite promising especially for video applications where
the movement of a pixel can be estimated throughout the sequence. Other perspective
to this work is the proposal of some solution to accelerate the computation time of the
proposed algorithms.
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Appendix A: Proof of Theorem 2.1. Let us define a quadratic Lyapunov function as
follows:

V(o) =¢"P¢ (16)
with o = (09, 01)". At t = 0, let us note: o(t = 0) = oinir = (00(0),01(0))". The vector

L.
& is chosen such that: £ = ( |oo| 2 sign (o9) ) where P € R®?) is a symmetric matrix
o1

25 + 2
P:( 1t 2) (17)
%

5 1

given by:

where ®; = \o + K |00|% is a positive quantity since Mo > 0 and K, = 0. The matrix P is
a positive definite matrix, since its eigenvalues 5\1,2 are positive. Indeed, the characteristic
equation of P is given by Equation (17) and with A > 0, we can deduce that the
eigenvalues of P are a positive real.

2 ARSI
A — 1+2A1+7 A+2A1+T:0 (18)

Note that the defined Lyapunov function is continuous everywhere but not differen-
tiable at o9 = 0. Here, V(o) is continuously differentiable, except on the set S =
{ (09,01) € R(Q*Q)‘ oo = 0}, the Lyapunov theorem can only be applied to the points where
V(o) is differentiable. Then, a non-smooth version of Lyapunov’s theory is needed. Note
that V(o) however positive definite and is bounded:

Amin{ PHIENS <V < Anax{ PHE]I3 (19)

where [|£]| is the Euclidean norm of &: [|€]|2 = ||+ 0%. Amin{P}, Amax{ P} are respectively
the minimum and maximum eigenvalues of the matrix P. The derivative of the vector &
can be expressed as follows:

& 1
. 1 — 5 1

§=loo| 2 22 ) €= ool F A(o)¢ (20)

- 0

The time derivative of V' along the system trajectories is then given by:
V=loo| 2" (AT(0)P + PA(0)) € = — |oo| 2 £7Q(0)¢ (21)
where () is:
D 2+ D2 —B,

Q= (e 22)

To conclude on the non-negativity of V, the matrix Q has to be positively definite.
From its characteristic equation (Equation (23)), we can deduce that the eigenvalues are
positive and consequently that Q is positively definite:

_ ~ P2\ _ o
)\2—<1+2)\1+70>)\+2)\1:0 (23)
v

min{P} .
Using Equations (17) and (23), we have:

From (23), we can write: [|£]|s <

1
2

N

v

1 1
0] < [loo] +07]* < ——
)‘r2mn{P}

(24)
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Therefore, we obtain:

V < _ r2nln{ } 25
< T Amin{ Q} €13 (25)
Using the right inequality of the expressmn (17), (25) becomes:
. P P
Vv S mln{ })\mm{Q} —(SV%, where § = mln{ })\mm{Q} (26)
max{P} max{P}
Let us consider now the general case of a differential equation of the following form:
X(t) = =6x2(t), x(0)=x0>0 (27)

The solution of this equation is given by:

/ldt /tédt = x(t) = (Xé - gt>2 (28)

From (28), x(t) is equal to zero at a time ¢t* given by: t* = =2. Then, it follows that

lvh—‘

. . . . . . 2V2 (g'”” )
V(o(t)) and o(t) converge to zero in a finite time 7' given by: T = it

Appendix B: Proof of Theorem 2.2. Let 0y = sy = 29 — f. With this change of
coordinate, the two first equations of system (8) can be written as follows:

G0 = —Xo |ao|% sign (09) — Koop + 01 (29)
where o7 = z; — f. Since Ao > 0 and K, > 0, from (29) we have:
01 —é'[) zszgn (O'U) 5\0|0'0|§ +K0|0'0| (30)
and we can conclude that: sign (o1 — o) = sign (09).
Subtracting f on both sides of the second equation in (8), we obtain:
. ~ 2 . .
- f == —)\0 |O'0|3 sign (O'U) — K()O'() + 21— f (31)
Substituting f by its expression (11) in (31), we have:
d’o = —5\0 |O'0|§ SZgTL (0'0) - K()O'g (32)

with Ay = Ao — Mg, which is an error between the dynamic value of the gain and a prior:
one. _ )

Considering now o; = z; — f, we obtain s; = 07 — dy. By subtracting f from both sides
of the last equation in (8) and taking account of this change of variable, we have:

t

N 1l . . N . .
01 = =M\ |01 — 602 sign (o1 — dg) — K1 (01 — Fg) — A2 / sign (o1 — &9) dt (33)
0
Let us define a Lyapunov function as:

2
1, 1 e I,
Vv (00,01, )\i) = 508+ 5 (=60 + 3 ;0 32, ie{0,1,2} (34)

The equilibrium point is defined by Xg’;\ = (0,0,0).
The derivative of this Lyapunov function is given by:

V:O'UO"()—F (0'1 —é'g) (0'1 —6’0) +5\05\0+5\15\1 +5\25\2 (35)
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Then Uod'o + 5\05\0 = —K()O'g and (0'1 — 0'0) é’l + 5\15\1 + 5\25\2 = —K1 (0'1 - é’g)Z. SO, we
have, _

V = —Kyo2 — K (01 — 69)° = (01 — 69) 8 (36)
We have

Dy ) L 2 ) 2~ 1.,
— (01 — 69) o = — (01 — G9) {—)\0 loo|® sign (0¢) — Kodg — g)\o log| ™3 00] (37)

By introducing the dynamic gain A, (see system (10)) in (37), the following equality is
satisfied:

D . 7 2+ 1D+ 2
— (01 — 60) 6o = — |o1 — G| | = |oo|® + K¢ |oo] + = A3 |o0]® + = XKy |o0]? (38)
3 3

Consequently, Equation (38) can be rewritten as follows:

: ) 2 S 1

V=- KOO'S - K1 (0'1 - 0'0)2 - 5 |O'1 — O'0| )\g |O'0|9

. Z 5~ 2 2

—|O’1—O’0| —|O'0|9+§)\0K0|0'0|9+K0 |O'0|

To show that V is negative, it is sufficient to prove that:

7 b~ 2
T = |:— |O'0|Z’ + g)\oKo |O'0|9 —f—Kg |O'0|:| Z 0 (39)

Therefore, let us assume that,

5\0‘ < S\OM where S\OM is a positive constant satisfying the

following inequality: Doar < %Ko |00|%.
In order to obtain the condition defined by (38), one must choose Ky such that:

~ 3 1 3 5
Ky [)\0 + oKy |00|3] > EXE (40)

It is obvious that it is always possible to find some value of K, (namely a high-value)
satisfying both inequalities (39) and (40).



