
HAL Id: hal-01873346
https://hal.science/hal-01873346v1

Submitted on 14 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Credit Valuation Adjustment solving
coupled PIDEs in the Bates model

Ludovic Goudenège, Andrea Molent, Antonino Zanette

To cite this version:
Ludovic Goudenège, Andrea Molent, Antonino Zanette. Computing Credit Valuation Adjustment
solving coupled PIDEs in the Bates model. Computational Management Science, 2020, 17 (2),
�10.1007/s10287-020-00365-6�. �hal-01873346�

https://hal.science/hal-01873346v1
https://hal.archives-ouvertes.fr


Computing Credit Valuation Adjustment solving coupled PIDEs

in the Bates model

Ludovic Goudenège∗

Andrea Molent†

Antonino Zanette‡

Abstract

Credit value adjustment (CVA) is the charge applied by financial institutions to the counterparty to
cover the risk of losses on a counterpart default event. In this paper we estimate such a premium under the
Bates stochastic model (Bates [4]), which considers an underlying affected by both stochastic volatility and
random jumps. We propose an efficient method which improves the finite-difference Monte Carlo (FDMC)
approach introduced by de Graaf et al. [11]. In particular, the method we propose consists in replacing the
Monte Carlo step of the FDMC approach with a finite difference step and the whole method relies on the
efficient solution of two coupled partial integro-differential equations (PIDE) which is done by employing the
Hybrid Tree-Finite Difference method developed by Briani et al. [6, 7, 8]. Moreover, the direct application
of the hybrid techniques in the original FDMC approach is also considered for comparison purposes. Several
numerical tests prove the effectiveness and the reliability of the proposed approach when both European and
American options are considered.
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1 Introduction

Financial institutions suffer several risks, one of them is the counterparty credit risk (CCR). This risk arises
from the possibility that the counterparty of a financial contract may default. This risk was often overlooked,
but in the last decades, after the financial crisis of 2007 and the Lehman Brothers failure in 2008, it gained
more and more interest by practitioners and academics. In particular, according to the Basel III framework
of 2010, financial institutions must charge a premium to their counterparty according to its credit reliability
in order to compensate for a possible counterparty default. Also IFRS 13 in 2013 requires the fair value of
financial products to be measured based on counterparty credit risk. For these reasons, financial institutions
charge to the counterparty a premium called Credit Valuation Adjustment (CVA), which is the difference
between the risky value and the current risk-free value of derivatives contract. Estimating the good value of
the CVA can be a demanding effort due to its complicated definition and to its dependence by the underlying
stochastic model. As no specific method is prescribed in the accounting literature, various approaches are
used in practice by derivatives dealers and by end users to estimate the effect of credit risk on the fair
value of financial derivatives. The common approach is to price the CVA through the so called expected
exposure, which is the mean exposure distribution at a future date. Usually, this exposure is calculated by
means of Monte Carlo approaches which are computationally expensive. In particular, nested Monte Carlo
simulations or least squares techniques are employed by Joshi and Kwon [20]. These techniques have been
improved through the use of stochastic grid bundling method by Jain and Oosterlee [19] and by Karlson et
al. [21]. An interesting approach to compute the CVA - when the Heston model is assumed - is the so called
finite-difference Monte Carlo (FDMC) method, proposed by de Graaf et al. [11]. Such an approach combines
the finite-difference method and the Monte Carlo method to solve a partial differential equation (PDE) and
to estimate the mean exposure respectively. Feng [12] adapted the FDMC approach to deal with the case
of an underlying evolving according to the Bates model: in this particular case, the PDE to be solved is
replaced by a partial integral differential equation (PIDE), which implies an additional computational effort.
Other recently introduced alternative approaches consist in employing the fast Fourier transform (Borovykh
et al. [5]) or marked branching diffusions (Henry-Labordère [17]).

In this paper we focus on the computation of the CVA when the Bates model is considered and we propose
an efficient method which improves the results of the FDMC method. Specifically, the Bates model considers
an underlying affected by both stochastic volatility and random jumps: the dynamics of the underlying asset
price is driven by both a Heston stochastic volatility [18] and a compound Poisson jump process of the type
originally introduced by Merton [22]. Such a model was introduced by Bates [4] in the foreign exchange
option market in order to tackle the well-known phenomenon of the volatility smile behavior. In the case
of plain vanilla European options, Fourier inversion methods, employed by Carr and Madan [9], lead to
closed-form formulas to compute the price under the Bates model. Two innovative and efficient approaches
to price derivatives when the Bates model is considered are proposed by Briani et al. [6], the so called Hybrid
Tree-Finite Difference method and Hybrid MC method.

Our main result consists in developing an efficient numerical method to estimate the CVA. In particular,
the method we propose consists in computing the CVA value as the solution of two coupled PIDE – one for
the risk free price and one for the risk adjusted price – which are solved by means of the Hybrid Tree-Finite
Difference method. That is, we replace the Monte Carlo step in the FDMC method with the computation
of the solution of a PIDE and this improves clearly the computational efficiency.

Moreover, the direct application of the hybrid techniques in the original FDMC approach is considered for
comparison purposes. Specifically, we apply the two hybrid methods developed by Briani et al. to perform
both the finite difference step and the Monte Carlo step of the FDMC approach.

Several numerical experiments show that the proposed method is efficient and reliable as it provides
accurate approximations for the CVA value with a low computational cost.

The reminder of the paper is organized as follows. Section 2 introduces the Bates stochastic model and
the partial integro-differential equation that allows one to compute option prices. Section 3 presents the
CVA definition and some useful properties used in the following. Section 4 outlines the main features of the
hybrid methods and how to employ them in option pricing. Section 5 describes the numerical methods for
computing the CVA. Section 6 presents and discusses the results of the numerical simulations. Section 7
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concludes.

2 The Model

In the Bates model the volatility is assumed to follow the CIR process (Cox et al. [10]) while the underlying
asset price process contains a further noise from a jump process. In particular, the model for the stock price
and its volatility is given by the following relations:

dSt

St−
= (r − η)dt+

√

Vt dZ
S
t + dHt,

dVt = κ(θ − Vt)dt+ σ
√
Vt dZ

V
t ,

(2.1)

where η denotes the continuous dividend rate, S0, V0 are positive values, ZS, ZV are correlated Brownian
motions such that

〈

dZs
t , dZ

V
t

〉

= ρdt and H is a compound Poisson process with intensity λ and i.i.d. jumps
{Jk}k, that is

Ht =

Kt
∑

k=1

Jk, (2.2)

K denoting a Poisson process with intensity λ. As in the model of Merton [22], we assume that the jumps
are i.i.d. log-normal random variables, described by

log (1 + J) ∼ N

(

α− β2

2
, β2

)

, (2.3)

with α and β real parameters.
We consider an option with maturity T > 0, payoff function ψ (S) and we denote with V (t, S, V ) its fair

price at time t, if St = S and Vt = V . Then, the price of the derivative V is then given by

V (t, S, V ) = E

[

e−r(T−t)ψ (ST ) |S0 = S, V0 = V
]

. (2.4)

Using a martingale approach for an European option, it is possible to show that V (t, S, V ) satisfies the
following partial integro-differential Equation (PIDE) (Salmi et al [25]):

∂V (t, S, V )

∂t
+
1

2
V S2 ∂

2V (t, S, V )

∂S2
+ρσV S

∂2V (t, S, V )

∂S∂V
+
1

2
σ2V

∂2V (t, S, V )

∂V 2
+(r − q − λ (eγ − 1))

∂V (t, S, V )

∂S

+ κ (θ − V )
∂V (t, S, V )

∂V
− (r + λ)V (t, S, V ) + λ

∫ ∞

0

V (t, xS, V ) pJ (x) dx = 0, (2.5)

with the terminal condition is
V (T, S, V ) = ψ (S) , (2.6)

where pJ (x) is the log-normal probability density function of the jump variable J .
We define the following operators:

LCV =
1

2
V S2∂

2V
∂S2

+ ρσV S
∂2V
∂S∂V

+
1

2
σ2V

∂2V
∂V 2

+ (r − q − λ (eγ − 1))
∂V
∂S

+ κ (θ − V )
∂V
∂V

− (r + λ)V ,
(2.7)

and

LJV = λ

∫ ∞

0

V (t, xS, V ) pJ (x) dx. (2.8)

Therefore, by using (2.7) and (2.8), the PIDE (2.5) can be rewritten in the more compact form as follows:

∂V (t, S, V )

∂t
+ LCV (t, S, V ) + LJV (t, S, V ) = 0. (2.9)

3



3 The CVA

Let us define the exposure (or financial exposure) E (t) towards a counterparty at time t as the positive side
of a contract (or portfolio) value V (t, St, Vt), that is

E (t) = max [V (t, St, Vt) , 0] . (3.1)

This amount represents the maximum loss if the counterparty defaults at t: an economic loss would occur
if the transactions with the counterparty has a positive economic value at the time of default (see the Basel
Committee [3]).

Let us define the present Expected Exposure (EE) at a future time t < T as

EE (t) = E [E (t) |F0] (3.2)

where F0 is the filtration at time t = 0. In particular, in the case of a long position in a Call or Put option,
the price is always positive and thus the EE is equal to the future option price.

Let τC denote the counterparty’s default time: such a time is a random variable which is supposed to be
independent from the stochastic processes ZS , ZV and H . Moreover, we describe its cumulative distribution
function as follows:

PD (t) = 1− exp

(

−
∫ t

0

δ (s) ds

)

. (3.3)

Here, δ (t), the so called hazard rate, is a non-negative function such that
∫ +∞
0 δ (s) ds = +∞ (Promislow

[23]). If the counterparty has not defaulted yet, then δ (t) dt is the probability that it would default between
t and t+ dt. The possibility of counterparty default reduces the value of the option as in case of default the
holder does not receive the whole value of the option. In particular, the holder can recover only a percentage
of the contract value, which is called the recovery rate R. The CVA is defined as the difference between the
risk free price and the risk adjusted price. More precisely, as stated by Gregory [15], the CVA is given by:

CVA = (1−R)

∫ T

0

D (0, s)EE (s) dPD (s) , (3.4)

where D (0, t) is the risk-free discount factor. This mean that the CVA is the expected value of the possible
losses due to counterparty default. We stress out that definition requires the exposure and the counterparties
default probability to be independent and the discount factor to be also independent of the exposure. Using
equations (3.2) and (3.4), we obtain the following relation:

CVA = E

[

∫ T

0

D (0, s) (1−R)E (s) dPD (s) |F0

]

. (3.5)

According to (3.5), the CVA is the price (mean value of the future cash flows) of a financial derivative which
pays (1−R)max [V (τC , SτC , VτC ) , 0] at time τC . Therefore, we can consider the CVA as a derivative itself
and we denote its financial value at time t with C (t, St, Vt), that is

C (t, St, Vt) = E

[

∫ T

t

D (0, s) (1−R)E (s) dPDs|Ft

]

,

having CV A = C (0, S0, V0). It is possible to show that C (t, St, Vt) solves the following PIDE (see the
Appendix for more details):

∂C (t, S, V )

∂t
+ LCC (t, S, V ) + LJC (t, S, V ) + (1−R)max [V (t, St, Vt) , 0]

∂PD

∂t
(t) = 0, (3.6)

with the terminal condition
C (T, S, V ) = 0. (3.7)

We stress out that equation (3.6) depends on the value V (t, St, Vt) which has to be computed previously
by solving equation (2.9).
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4 Hybrid methods in the Bates model

The Hybrid Tree Finite Difference (HTFD) and the Hybrid Tree Monte Carlo (HTMC) methods are two
innovative and efficient approaches to price derivatives when the Bates model is considered. In this Section
we present the main ideas that underlie these two methods: the interested reader can find more details about
the numerical procedures in Briani et al. [6].

4.1 The HTFD method

The HTFD method is a backward induction algorithm that works following a finite difference PIDE method
in the direction of the share process and following a tree method in the direction of the other random
sources, that is volatility in the case of Bates model. Specifically, the method is based on the following steps.
First of all, a binomial tree for the CIR volatility process V is considered according to Apolloni et al. [2].
Then, a transformation which keeps the diffusion processes S and V uncorrelated is applied. Finally, a finite
difference approach in the S-direction is developed.

In particular, consider a large integer value N , a time horizon [0, T ] and define h = T/N . For n =
0, 1, . . . , N , define

V h
n = {vn,k}k=0,1,...,n (4.1)

with

vn,k =
(

√

V0 +
σ

2
(2k − n)

√
h
)2

1√V0+
σ

2
(2k−n)

√
h>0. (4.2)

We define the multiple jumps

khd (n, k) = max {k∗ : 0 ≤ k∗ ≤ j and vn,k + µV (vn,k)h ≥ vn+1,k∗} ,
khu (n, k) = min {k∗ : k + 1 ≤ k∗ ≤ n+ 1 and vn,k + µV (vn,k)h ≤ vn+1,k∗}

in which µV denotes the drift coefficient of V , that is µV (v) = κ (θ − v). Starting from the node (n, k),
the discrete process can reach the up-node

(

n+ 1, khu (n, k)
)

or the down-jump node
(

n+ 1, khd (n, k)
)

with
transition probability given by

up-jump: phkh
u
(n,k) = 0 ∨

µV (vn,k)h+ vn,k − vn+1,kh

d
(n,k)

vn+1,kh
u
(n,k) − vn+1,kh

d
(n,k)

∧ 1, (4.3)

down-jump : phkh

d
(n,k) = 1− phkh

u
(n,k). (4.4)

Multiple jumps and jump probabilities are set in order to match the first local moment of the tree and of the
process V up to order one with respect to h. As a consequence, as h approaches to 0, the weak convergence on
the path space is guaranteed. Moreover, in order to obtain the convergence, the Feller condition (Albrecher
et al. [1]) is not required.

Let us consider the diffusion pair (Y, V ), where Y is a stochastic process defined by

Yt = log (St)−
ρ

σ
Vt. (4.5)

Clearly the couple (S, V ) can be retraced by (Y, V ) by inverting relation (4.5). We set ρ̄ =
√

1− ρ2 and we
consider (W,Z) as a standard Brownian motion in R

2. Then, the dynamics of the couple (Y, V ) is given by

dYt =

(

r − η − 1

2
Vt −

ρ

σ
κ (θ − Vt)

)

dt+ ρ̄
√

VtdZt + dNt, (4.6)

dVt = κ (θ − Vt) dt+ σ
√

VtdWt, (4.7)
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with Y0 = logS0 − ρ
σV0. Here, Nt is the compound Poisson process written through the Poisson process K,

with intensity λ, and the i.i.d. jumps {log (1 + Jk)}, that is

Nt =

Kt
∑

k=1

log (1 + Jk) . (4.8)

We set
µY (v) = r − η − 1

2
v − ρ

σ
κ (θ − v) (4.9)

and
µV (v) = κ (θ − v) . (4.10)

Let V̄ h =
(

V̄ h
n

)

n=0,...,N
denote the tree process approximating V and set V h

t = V̄ h
⌊t/h⌋, t ∈ [0, T ], the

associated piecewise constant and cÃ dlÃ g approximation path. In order to approximate Y , Briani et al.
construct a Markov chain from the finite difference method. Starting from the Euler scheme Y h

0 = Y0 and
for t ∈ (nh, (n+ 1)h], n = 0, . . . , N , it is possible to set

Y h
t = Y h

nh + µY

(

V h
nh

)

(t− nh) + ρ̄
√

V h
nh (Zt − Znh) + (Nt −Nnh) , (4.11)

Z being independent of the noise driving V̄ h. Now, let W (t, Y, V ) = V
(

t, exp
(

Y + ρ
σV

)

, V
)

the function
which gives the price of the financial derivative at time t in terms of the couple (Y, V ) . Then,

E
(

W
(

(n+ 1)h, Y(n+1)h, V(n+1)h

)

|Ynh = y, Vnh = v
)

≈ E

(

W
(

(n+ 1)h, Y h
(n+1)h, V

h
(n+1)h

)

|Ynh = y, Vnh = v
)

(4.12)

= E

(

uh
(

nh, y; v, V h
(n+1)h

)

|V h
nh = v

)

(4.13)

where
uh (nh, y; v, z) = E

(

W
(

(n+ 1)h, Y h
(n+1)h, z

)

|Y h
nh = y, V h

nh = v
)

(4.14)

and
uh (nh, y; v, z) = uh (s, y; v, z) |s=nh. (4.15)

The key point of the HTFD method is that the function (s, y) 7→ uh (s, y; v, z) solves the following PIDE in
the time interval nh < s < (n+ 1)h:

∂uh

∂s
+ µY (v)

∂uh

∂y
+

1

2
ρ̄2v

∂2uh

∂y2
+

∫ +∞

−∞

[

uh (s, y + x; v, z)− uh (s, y; v, z)
]

pJ (x) dx = 0, (4.16)

for y ∈ R, and with terminal condition given by

uh ((n+ 1)h, y; v, z) = W ((n+ 1)h, y, v) . (4.17)

In order to numerically solve the PIDE (4.16) by using a finite difference scheme, we first localize the
variables and the integral term to bound the computational domains. For this purpose, we use the estimates
for the localization domain and the truncation of large jumps given by Voltchkova and Tankov [26]. Then,
the derivatives of the solution are replaced by finite differences and the integral terms are approximated
using the trapezoidal rule. Finally, the problem is solved by using an explicit-implicit scheme.

We observe that the above algorithm is referred to a European option, can easily be adapted to consider
an American option. Specifically, we approximate the American option with a Bermudan option with exercise
dates given by the set {nh}n=0,...,N and replacing equation (4.17) with the following one:

uh ((n+ 1)h, y; v, z) = max
[

W ((n+ 1)h, y, v) , ψ
(

exp
(

y +
ρ

σ
v
))]

(4.18)

We stress out that the computation of uh as the solution of (4.16) is a one dimensional problem with
constant coefficients, thus it can be solved in a very efficient way, with a low computational cost.
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4.2 The HTMC method

The HTMC method is a Monte Carlo algorithm which is based on the approximations (4.3) and (4.11).
In particular, the HTMC method consists in simulating a continuous process in space (the component Y )
starting from a discrete process in space (the 1-dimensional tree for V ). In particular, we set Ŷ h

0 = Y0 for
t ∈ [nh, (n+ 1)h] with n = 0, 1, . . . , N − 1. Then, we compute Ŷ h

n+1 recursively by the following relation:

Ŷ h
n+1 = Ŷ h

n + µY

(

V̂ h
n

)

h+ ρ̂

√

hV̂ h
n ∆n+1 +

(

N(n+1)h −Nnh

)

(4.19)

where ∆1, . . . ,∆N are i.i.d. standard normal random variables which are independent of the noise driving
the Markov chain V̂ and

(

N(n+1)h −Nnh

)

is the compound Poisson increment. Roughly speaking, one let
the pair (Y, V ) evolve on the tree and simulate the process Y at time nh by using relation (4.19).

5 Numerical method for computing the CVA

In this section we present the proposed approach to compute the CVA, namely the Coupled-Hybrid Tree
Finite Differences (C-HTFD), which is based on the resolution of two coupled PIDE. Moreover, we start
presenting the Hybrid Tree Finite Difference-Hybrid Monte Carlo (HTFD-HTMC) method which is based on
the direct application of the hybrid techniques in the original FDMC (we consider this method for comparison
purposes mainly). The two approaches are both based on the application of the hybrid algorithms of Briani
et al. [6], presented in Section 4.

5.1 The HTFD-HTMC approach

This method is based on the direct application of the hybrid techniques to the Finite Difference Monte
Carlo (FDMC) method, which was first developed by de Graaf et al. [11] for the Heston model and then
adapted for the Bates model by Feng [12]. First of all, an estimation of the value function V (t, S, V ) is
computed through a grid of values by solving equation (2.5) by employing the Alternating Direction Implicit
(ADI) method and specifically the scheme proposed by Haentjens and In’t Hout [16]. Then a Monte Carlo
simulation is employed to estimate the expectation in (3.4) and thus estimate the CVA.

In the HTFD-HTMC approach we employ the HTFD method to solve (2.5) and the HTMC method to es-
timate (3.4). Specifically, let h = T/N as in Subsection 4.1. First of all, the HTFD method is used to compute
the risk free price {V (nh, Snh, Vnh)}n=0,...,N at discrete times {0, h, . . . , Nh}. Then, we estimate the expected

exposure (3.2) via a set of NMC Monte Carlo simulations
{(

Sj
nh, V

j
nh

)

, n = 0, . . . , N and j = 1, . . . , NMC

}

generated via the HTMC method, that is

EE (nh) ≈ 1

NMC

NMC
∑

j=1

max
[

V
(

nh, Sj
nh, V

j
nh

)]

. (5.1)

Finally, we compute the CVA by approximating the integral in (3.4) using the uniform partition {0, h, . . . , Nh}
of [0, T ], the estimated value {EE (nh) , n = 0, . . . , N} and the trapezoidal rule.

5.2 The C-HTFD approach

First of all, an estimation of the value function V (t, S, V ) is computed through a grid of values by solving
equation (2.5) by means of the HTFD method. Then, the CVA is computed as the solution of the PIDE
(3.6), which is done again by employing the HTFD method. We stress that C-HTFD method and the
HTFD-HTMC method share the first step, but in the C-HTFD method the Monte Carlo step is replaced
with a second finite difference like step.
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6 Numerical Results

In this section we propose the results of some numerical experiments, which aim to compare the goodness
of the proposed methods. In particular, we compare the standard FDMC method employed by Feng [12],
the HTFD-HTMC approach and the C-HTFD approach. We employ the numerical methods according to
4 configurations (A, B, C, D), each of them with an increasing number of steps, determined in order to
achieve approximately these run times1 : (A) 0.25 s, (B) 1 s, (C) 4 s, (D) 16 s. The employed mesh and
configuration parameters are reported in Table 1. Specifically, for the FDMC method with the sequence
(time steps - points for S - points for V - MC simulations) and for the hybrid methods with the sequence
(time steps - points for Y - MC simulations). Moreover, we reported the 95% confidence intervals for the
FDMC method and for the HTFD-HTMC. Furthermore, we employ the FDMC method with a huge number
of steps and paths

(

250; 500; 200; 106
)

as a benchmark (BM ).
We consider the following parameters for the Bates model: S0 = 80, 100, 120, K = 100 , T = 1, r = 0.03,

η = 0.00, V0 = 0.01 κ = 2, θ = 0.01, σ = 0.2, λ = 0.1, α = 0.1, β2 = 0.1 and ρ = 0.5. According to the
default parameters, we consider δ (t) = δ = 0.03 and R = 0.4. We compute the CVA for a European and an
American a Put option with strike equal to K = 100.

Results are available in Tables 2 and 3, which show that all the implemented methods give similar results.
Values calculated via HTFD-HTMC and values calculated via FDMC have similar accuracy. We emphasize
that, despite the similarity in numerical results of these two methods, we prefer the HTFD-HTMC method
because of its simplicity of implementation.

The values returned by C-HTFD are the most accurate since they are very close to the benchmark for
the whole parameter configurations.

7 Conclusions

In this paper we have proposed a numerical method to compute the CVA of European and American options
when the underlying is assumed to evolve according to the Bates model. This method is based on the the
resolution of two coupled PIDE which is done by employing the Hybrid Tree-Finite Difference algorithm
developed by Briani et al.. Specifically, the C-HTFD approach consist in replacing the Monte Carlo step of
the FDMC method with the resolution of the PIDE followed by the CVA cost, which is done by employing
the Hybrid technique for the Bates model.

Numerical results show that our method is very stable and robust. In particular, numerical tests reveals
that the values returned by C-HTFD method are very accurate, much more than the results provided by
other methods which involve a Monte Carlo step, since the use of a PIDE approach in place of a Monte
Carlo one dramatically improves the computational efficiency. Thus, the C-HTFD is efficient and reliable
and the use of the two coupled PIDE represents a relevant improvement with respect to the standard pricing
techniques of the CVA when the Bates model is considered.

1We performed the numerical tests using a personal computer with the following features. CPU: Intel(R) Core(TM) i5-7200
2.50 GHz; RAM: 8GB, DDR4
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FDMC HTFD-HTMC C-HTFD

A 50; 80; 15; 1500 50; 100; 1500 50; 100
B 75; 110; 30; 2000 75; 150; 2000 75; 150
C 100; 200; 50; 3300 100; 250; 3300 100; 250
D 125; 300; 100; 6000 125; 350; 6000 125; 350

Table 1: Configuration parameters for the numerical methods.

FDMC HTFD-HTMC C-HTFD BM

S0 = 80

A 0.320071± 0.005172 0.327462± 0.006098 0.323732

0.323724± 0.000200
B 0.322874± 0.004469 0.327165± 0.005107 0.323713
C 0.323805± 0.003435 0.326023± 0.003993 0.323707
D 0.324926± 0.002660 0.324871± 0.002911 0.323703

S0 = 100

A 0.058209± 0.003071 0.063808± 0.003809 0.060724

0.060359± 0.000125
B 0.059096± 0.002635 0.062193± 0.003005 0.060613
C 0.059838± 0.002178 0.061673± 0.002385 0.060507
D 0.060978± 0.001664 0.060749± 0.001678 0.060467

S0 = 120

A 0.005658± 0.001697 0.007251± 0.001976 0.005633

0.005589± 0.000059
B 0.005406± 0.001289 0.006296± 0.001461 0.005610
C 0.005334± 0.000954 0.006299± 0.001328 0.005592
D 0.005660± 0.000758 0.005616± 0.000852 0.005584

Table 2: CVA for European Put options.

FDMC HTFD-HTMC C-HTFD BM

S0 = 80

A 0.336835± 0.005078 0.342798± 0.006316 0.338987

0.339054± 0.000208
B 0.337859± 0.004630 0.342703± 0.005295 0.339084
C 0.338970± 0.003560 0.341533± 0.004139 0.339134
D 0.340182± 0.002755 0.340498± 0.003019 0.339165

S0 = 100

A 0.059803± 0.003168 0.065669± 0.003937 0.062466

0.062145± 0.000130
B 0.060742± 0.002723 0.063979± 0.003103 0.062364
C 0.061522± 0.002248 0.063446± 0.002458 0.062260
D 0.062717± 0.001718 0.062501± 0.001732 0.062221

S0 = 120

A 0.005798± 0.001745 0.005449± 0.002043 0.005782

0.005740± 0.000061
B 0.005537± 0.001327 0.006466± 0.001509 0.005760
C 0.005473± 0.000983 0.006467± 0.001368 0.005742
D 0.005812± 0.000784 0.005763± 0.000877 0.005735

Table 3: CVA for American Put options.
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Appendix A Proof of PIDE (3.6)

This appendix provides a derivation of the PIDE (3.6) followed by the the CVA price. First of all, we
present the proof for the simple case of an underlying evolving according to the Black-Scholes model. Then
we consider the Bates model.

Black-Scholes model

Let S denote the underlying, which is assumed to evolve according to

dSt

St
= (r − η)dt+ σ dWt, (A.1)

where η denotes the continuous dividend rate, S0 is a positive value and Wt is a Brownian motion. We
assume that counterparty credit risk is diversifiable across a large number of counterparties. In the case that
this assumption is not justified, then the risk-neutral value of the contract can be adjusted using an actuarial
premium principle (Gaillardetz and Lakhmiri [13]). Moreover, the fraction of the original counterparties of
the contract who have defaulted before time t is given by

PD (t) = 1− exp

(

−
∫ t

0

δ (s) ds

)

. (A.2)

Let us consider a financial product which pays (1−R)E (t) if the counterparty defaults at time t and 0
otherwise. Then the value of such a product at time 0 - the discounted value of future cash-flows - is equal
to the CVA. Therefore, we can consider the CVA as a derivative itself and we denote its financial value at
time t with C (t, St, Vt), that is

C (t, St, Vt) = E

[

∫ T

t

D (0, s) (1−R)E (s) dPDs|Ft

]

, (A.3)

having CV A = C (0, S0, V0).
Suppose that the writer of a CVA derivative forms a self-financing portfolio portfolio Π which, in addition

to being short to the CVA, is long x units of the index S, i.e.

Π = −C (t, S, V ) + xS. (A.4)

Then, by Itô’s lemma,

dΠ = −
[

∂C
∂t

+
σ2S2

2

∂2C
∂S2

+ µS
∂C
∂S

]

dt− σS
∂C
∂S

dW + xµSdt+ xσSdW − dPD (t)

dt
(1−R)E (t) dt (A.5)

where the last term reflects the cash-flows from the fraction of the original counterparties who default between
t and t+ dt. Setting x = ∂C

∂t in equation (A.5) gives

dΠ = −
[

∂C
∂t

+
σ2S2

2

∂2C
∂S2

]

dt− dPD (t)

dt
(1−R)E (t) dt. (A.6)

Since the portfolio is now (locally) riskless, it must earn the risk-free interest rate r. Setting dΠ = rΠdt
results in

−
[

∂C
∂t

+
σ2S2

2

∂2C
∂S2

]

dt− dPD (t)

dt
(1−R)E (t) dt = r

[

−C +
∂C
∂t
S

]

dt. (A.7)

Therefore, we get
∂C
∂t

+
σ2S2

2

∂2C
∂S2

+ rS
∂C
∂S

− rC + (1−R)E (t)
dPD (t)

dt
= 0. (A.8)
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Bates model

The proof of PIDE (3.6) in the case of the Bates model may be done by employing the same approach
followed in the previous Sub Section for the Black-Scholes model. Alternatively, we can obtain the PIDE
(3.6) by a straightforward application of the Feynman-Kac formula for Lévy processes (Rong [24], Glau [14]),
which can be applied since the CVA is defined as the expected value of a time integral of function depending
on a Lévy process.
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