
HAL Id: hal-01873320
https://hal.science/hal-01873320v1

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The index of G-transversally elliptic families in
cohomology

Alexandre Baldare

To cite this version:
Alexandre Baldare. The index of G-transversally elliptic families in cohomology. Journal of Noncom-
mutative Geometry, 2020, 14 (3), pp.1171-1207. �10.4171/JNCG/390�. �hal-01873320�

https://hal.science/hal-01873320v1
https://hal.archives-ouvertes.fr


The index of G-transversally elliptic families in cohomology
Alexandre Baldare∗1

1IMAG, Univ Montpellier, CNRS, Montpellier, France

July 16, 2018

Abstract

We define the Chern character of the index class of a G-invariant family of G-transversally
elliptic operators, see [6]. Next we study the Berline-Vergne formula for families in the elliptic
and transversally elliptic case.

Keywords: Index, transversally elliptic operators, equivariant cohomology, fibration.
MSC2010 classification: 19K56, 19L47, 19L10, 19M05, 55N25.

Contents

1 Introduction 2

2 Some preliminary results 4
2.1 Equivariant cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Equivariant cohomology with generalised coefficients . . . . . . . . . . . . . . . . . 6
2.3 Chern character of a morphism[24] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The index class of a family of G-transversally elliptic operators . . . . . . . . . . . . 9
2.5 Index theorem for H-equivariant elliptic families [5] . . . . . . . . . . . . . . . . . . 11

3 The Chern character of the index class 11
3.1 The Chern character in bivariant local cyclic homology . . . . . . . . . . . . . . . . 11
3.2 Distributional index with value in H(B) . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Berline-Vergne formula for equivariant families 14
4.1 Review of the Bismut localization formula . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Delocalized index formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 An application: The homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . . 18

∗alexandre.baldare@umontpellier.fr

1

mailto:alexandre.baldare@umontpellier.fr


5 Berline-Vergne formula for a G-transversally elliptic family 21
5.1 Vertical deformation of the Chern character . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Berline-Vergne formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1 Introduction
Let M be a compact manifold. Let G be a compact group acting on M . Assume for simplicity

that G is topologicaly cyclic and generated by an element g ∈ G. Let i : M g ↪→ M denote
the inclusion of the fixed point submanifold of g. In [2], Atiyah and Segal gave a Lefschetz
fixed point formula for the index of a G-invariant elliptic operator on M using localization in
equivariant K-theory. Denote by R(G)g the localization of the ring R(G) at the prime ideal
Ig = {χ ∈ R(G), χ(g) = 0}. Atiyah and Segal obtained

IndM
G (σ) =

(
IndMg ⊗ idR(G)g

)(
i∗σ

λ−1(N g ⊗ C)

)
,

where λ−1(N g ⊗ C) = ∑(−1)i ∧i(N g ⊗ C) and σ ∈ KG(T ∗M). In [3], Atiyah and Singer ob-
tained, using the Lefschetz fixed point formula, a cohomological version of the Lefschetz fixed
point formula. More precisely, Atiyah and Singer obtained the following formula

IndM
G (σ)(g) = (−1)ng

ˆ
T ∗Mg

Ch(i∗σ(g))
Ch(λ−1(N g ⊗ C)(g)) ∧ Â(T ∗M g)2,

where Ch means the Chern character tensored by the identity of C and Â(T ∗M g) is the Â-genus
of M g.
In [10], Berline and Vergne gave a delocalized formula for the index of a G-invariant elliptic
operator in equivariant cohomology. To obtain this new formula, Berline and Vergne showed a lo-
calization formula in equivariant cohomology and then used this localization formula to delocalized
the cohomological Lefschetz formula. More precisely, Berline and Vergne obtained the following
formula

IndM
G (σ)(seX) =

ˆ
TMs

Chs(σ,X) ∧ Â2(T VM s, X)
Ds(Ns, X) ,

where s ∈ G, X is an element of the Lie algebra g(s) of the centralizer G(s) of s and Chs(σ,X),
Â2(T VM s, X) and Ds(Ns, X) are equivariant cohomology classes (see section 2.1 and [8, 10, 9] for
more details). Then in [9], Berline and Vergne gave an index theorem in equivariant cohomology
for G-invariant elliptic operators.

For G-transversally elliptic operators, Atiyah and Singer defined in [1] an index class which
is now an invariant slowly increasing distribution on G. Similar to the case of elliptic operators,
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Berline and Vergne showed a corresponding index theorem for G-transversally elliptic operators,
see [11]. In [25], Paradan and Vergne gave a new approach of the cohomological index theorem for
G-transversally elliptic operators using the Chern character of [24] but with generalized coefficients
on the Lie algebra g of G.

In the present article, we investigate the cohomological form of the index of families of G-
transversally elliptic operators. Let p : M → B be a G-equivariant compact fibration. Assume
that G acts trivially on B. In [6], an index class for G-invariant families of G-transversally elliptic
operators was defined in the Kasparov bivariant K-theory group KK(C∗G,C(B)) and using results
from [18] it was then shown that the Kasparov product of this index class with an elliptic operator
on the base B is given by the index class of a G-transversally elliptic operator on M . Using this
fact and the well defined bivariant Chern character in local cyclic homology [26], we introduce
the Chern character of our index class and we show, as expected, that it belongs to the space of
G-invariant slowly increasing distribution on G with values in the de Rham cohomology of B.
Once this Chern character is defined, we investigate the Berline-Vergne formula in this context.
As in the case of a single operator, we start by the simpler case of G-invariant families of elliptic
operators. In this case, we deduce a Berline-Vergne formula using the Lefschetz formula for families,
see [7]. Our formula is also valid when G acts non trivially on B. More precisely, if s ∈ G and σ
is a G-invariant elliptic symbol along the fibers then we obtain the following theorem:
Theorem 1.1. Let s ∈ G and X ∈ g(s). Denote by Ns the normal bundle of M s in M . The
following equality is true in the cohomology H(Bs, dX) :

Chs
(
IndM|B

H (σ), X
)

=
ˆ
TVMs|Bs

Chs(σ,X) ∧ Â2(T VM s, X)
Ds(Ns ∩ T VM,X) .

where Bs the fixed point submanifold in the base B and T VM s is the vertical tangent bundle to the
fixed point submanifold M s.

For families of G-transversally elliptic operators, we had to assume that the action of G on B
is trivial and we used the Paradan-Vergne approach of equivariant cohomology with generalized
coefficient. In this case we obtain the following theorem:
Theorem 1.2. Let σ be a G-transversally elliptic symbol along the fibers of a compact G-equivariant
fibration p : M → B with B oriented and G-trivial. Denote by Ns the normal vector bundle to M s

in M .

1. There is a unique generalized function with values in the cohomology of B denoted IndG,M |Bcoh :
KG(T VGM)→ C−∞(G,H(B))G satisfying the following local relations:

IndG,M |Bcoh ([σ])‖s(Y ) = (2iπ)− dim(Ms|B)

ˆ
TVMs|B

Chs(Ar∗ωs(σ), Y ) ∧ Â2(T VM s, Y )
Ds(N s, Y ) ,

∀s ∈ G, ∀Y ∈ g(s) small enough so that the equivariant classes Â2(T VM s, Y ) and D(N s, Y )
are defined.
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2. Furthermore, we have the following index formula:

IndG,M |Bcoh ([σ]) = Ch(IndM|B([σ])) ∈ C−∞(G,H(B))G.

Here Ch is the Chern character, defined using bivariant local cyclic homology from [26].

Let us describe the contents of the present paper. The second section is devoted to some
preliminary results. We recall the definition of the equivariant cohomology which will be used
later on, then we review the definition of the index class of a family of G-transversally elliptic
operators from [6], and we finish by a overview of the Atiyah-Singer index theorem for equivariant
families [5]. In the third section, we define the Chern character of the index class of a G-invariant
family of G-transversally elliptic operators, an invariant distribution with values in the de Rham
cohomology of the base B. In the fourth and fifth sections, we prove the Berline-Vergne formulae
for families of elliptic and G-transversally elliptic operators.
Acknowledgements This work is part of my PhD thesis under the supervision of M.-T. Be-
nameur. I would like to thank my advisor for very helpful discussions, comments and corrections.
I also thank W. Liu and P.-E. Paradan for several conversations during the preparation of this
work. I am also indebted to M. Hilsum, P. Piazza, M. Puschnigg and G. Skandalis for reading the
phD version of this work.

2 Some preliminary results
Let G be a compact group. Let p : M → B be a G-equivariant (locally trivial) fibration of compact
manifolds, with typical fiber F , a compact manifold. We denote by Mb = p−1(b) the fiber over
b ∈ B, by T VM = ker p∗ the vertical subbundle of TM , and by T VM∗ its dual bundle. We choose
a G-invariant riemannian metric on M and hence will identify T VM∗ with a subbundle of T ∗M
when needed. Let π : E = E+ ⊕ E− → M be a Z2-graded vector bundle on M which is assumed
to be G-equivariant with fixed G-invariant hermitian structure. Denote by Pm(M,E+, E−) the
space of (classical) continuous families of pseudodifferential operators on M as defined in [5]. A
family P is G-equivariant if g · P = g ◦ P ◦ g−1 = P , for any g ∈ G. As usual, C∞,0(M,E) will be
the space of continuous fiberwise smooth sections of E over M , see [5].

2.1 Equivariant cohomology
Here we recall the definition of equivariant cohomologies and equivariant forms which will be used
in the sequel, see [8, 9, 10]. Let L be a compact Lie group and l its Lie algebra. Assume that L
acts on a manifold W (we say that W is a L-manifold). Let X ∈ l. Denote by X∗W the vector field
generated by X on W that is X∗W (w) = d

dt |t=0
e−tX · w. Let d be the de Rham differential and let

ι(Y ) denote the contraction by a vector field Y . Let A(W ) be the space of differential form on
W . Denote by A(W )X the subspace of A(W ) given by the forms α such that L (X)α = 0. Let
dX denote the operator d− ι(X∗W ) on A(W ).
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Definition 2.1. The dX-cohomologyH(W,dX) ofW is the cohomology of the complex (A(W )X , dX).

Let A∞L (l,W ) denote the algebra
(
C∞(l)⊗A(W )

)L
of L-invariant smooth functions with values

in A(W ). Let dl be the operator on A∞L (l,W ) given by

(dlα)(X) = d(α(X))− ι(X∗W )(α(X)).

We have (d2
l α)(X) = −L (X)α(X) so d2

l is zero on A∞L (l,W ) because any element of A∞L (l,W ) is
L-invariant.

Definition 2.2. The equivariant cohomologyH∞L (l,W ) with smooth coefficients is the cohomology
of the complex (A∞L (l,W ), dl).

Let E be a vector bundle onW . Let A∞L (W,E) =
(
C∞(l)⊗A(W,E)

)L
, where A(W,E) denote

the differential form on W , with values in E. Let A be a L-invariant super-connection on E. The
operator Al defined by

(Alα)(X) = (A− ι(X∗W ))(α(X)), ∀α ∈ A(W,E) and X ∈ l,

is called the equivariant super-connection. The equivariant curvature Fl is given by Fl(X) =
(A − ι(X))2 + L E(X). Denote by µ(X) = L (X) − [ι(X),A] the moment of X ∈ l with respect
to the super-connection A. Then we have Fl(X) = F + µ(X), where F is the curvature of A.
Let us recall some equivariant forms. Denote byW s the submanifold of fixed points {w ∈ W |s·w =
w}. Denote by L(s) the subgroup of L of those elements that commute with s. We denote by l(s)
the Lie algebra of L(s), it consists of the elements X ∈ l such that s ·X = X.

Definition 2.3. Let s ∈ L. On the submanifold W s of fixed points of s, the action of s on E|W s

preserves the fibers. The s-equivariant Chern character of an L-invariant super-connection A is
defined by:

Chs(A, X) = Str
(
sE · e−Fl(X)|Ws

)
∈ A∞L(s)(l(s),W s),

where Fl is the equivariant curvature of A and X ∈ l.

Definition 2.4. Let V → W be a real L-equivariant vector bundle on W . Assume that V → W is
equipped with a L-invariant connection ∇ with equivariant curvature R(X), then the equivariant
Â-genus Â(V) is defined by

Â(V)(X) = det1/2
(

R(X)
eR(X)/2 − e−R(X)/2

)
,

which makes sense for X in a small enough neighborhood of 0 ∈ l.

Definition 2.5. Let s ∈ L. Denote by N the normal bundle to W s in W and RN(X), X ∈ l(s),
the equivariant curvature of N with respect to a L(s)-invariant connection. The element

Ds(N,X) = det
(
1− sNexp(RN(X))

)
, X ∈ l(s)

is a L(s)-equivariant closed form on W s.
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Definition 2.6. Let E → W be an Euclidean oriented vector bundle with orientation o. Denote
by F (X) the equivariant curvature associated to a L-invariant metric connection. The equivariant
Euler class is defined by

Eulo(E)(X) = (−2π)rg(E)/2det1/2
o (F (X)),

where det1/2
o means the Pfaffian given by the orientation of E.

Remark 2.7. The forms Chs(A), Â(V), Ds(N) and Eulo(E) are all equivariantly closed. The
classes of Â(V) and Ds(N) do not depend on the connection. The class of Eulo(E) only depends
on the chosen orientation o of E.

2.2 Equivariant cohomology with generalised coefficients
We recall some cohomological constructions [20]. Let L be a compact Lie group with Lie algebra l.
LetW be a L-manifold. Let us recall the definition of the equivariant cohomology with generalised
coefficients [16], see also [20]. Let C−∞(l,A(W )) be the space of generalised functions on l with
values in A(W ). By definition, this is the space of continuous linear maps from the space D(l) of
C∞ densities with compact support on l to A(W ), where D(l) and A(W ) are equipped with the
C∞ topologies. So if α ∈ C−∞(l,A(W )) and if φ ∈ D(l) then 〈α, φ〉 is a differential form on W
denoted by

´
l
α(X)φ(X)dX. A C∞ density with compact support on l is also called a test density,

and a C∞ function with compact support on l is called a test function. Denote by Ei a basis of l
and Ei its dual basis. Let d be the operator on C−∞(l,A(W )) defined by

〈dα, φ〉 = d〈α, φ〉, pour φ ∈ D(l).

Let ι be the operator defined by

〈ια, φ〉 =
∑
i

ι((Ei)∗W )〈α,Eiφ〉,

where (Ei)∗W means as usual the vector field generated by Ei ∈ l on W and where Eiφ means the
tensor product Ei ⊗ φ. Let then dl be the operator on C−∞(l,A(W )) defined by

dlα = dα− ια.

The operator dl coincides with the equivariant differential on C∞(l,A(W )) ⊂ C−∞(l,A(W )). The
group L naturally acts on C−∞(l,A(W )) by 〈g · α, φ〉 = g · 〈α, g−1 · φ〉. The action of L commutes
with the operators d and ι. The space of generalized functions on l with values in A(W ) which
are L-equivariant is denoted by

A−∞L (l,A(W )) = C−∞(l,A(W ))L.

The operator dl preserves A−∞L (l,W ) and satisfies d2
l = 0. Similarly, if we replace A(W ) by Ac(W )

the space of compactly supported forms then we can define A−∞c,L (l,W ) = C−∞(l,Ac(W ))L.
We also need to consider L-equivariant generalized forms which are defined on an open neighbour-
hood of the origin in l. If O is an L-invariant open subset of l, we denote by A−∞L (O,W ) and
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A−∞c,L (O,W ) the spaces obtained similarly.
Let U be a L-invariant open set in W . The space of forms with generalized coefficients and with
support in U is denoted by A−∞U (O,W ). This is the space of differential forms with generalized
coefficients such that there is a L-invariant closed subspace Cα ⊂ U such that

´
α(X)φ(X)dX is

supported in Cα for any test density φ.
Notation 2.7.1. The cohomology of the complex (A−∞L (l,W ), dl) is denoted by H−∞L (l,W ).
The cohomology of the complex (A−∞c,L (l,W ), dl) is denoted by H−∞c,L (l,W ).
The cohomology of the complex (A−∞L (O,W ), dl) is denoted by H−∞L (O,W ).
The cohomology of the complex (A−∞c,L (O,W ), dl) is denoted by H−∞c,L (O,W ).
The cohomology of the complex (A−∞U (O,W ), dl) is denoted by H−∞U (O,W ).

There is a natural map
H∞(l,W )→ H−∞(l,W )

induced by the inclusion A∞L (l,A(W )) ↪→ A−∞L (l,A(W )). If p : M → B is a oriented L-equivariant
fibration, then integration along the fibers

´
M |B defines a map from A−∞c,L (l,M) to A−∞c,L (l, B):

〈
ˆ
M |B

α, φ〉 :=
ˆ
M |B
〈α, φ〉, ∀φ ∈ D(l),

and induces a well defined map: ˆ
M |B

: H−∞c,L (l,M)→ H−∞c,L (l, B).

Finally note that if α ∈ H∞c,L(l,M), and β ∈ H−∞c,L (l, B) then α ∧ p∗β ∈ H−∞c,L (l,M) andˆ
M |B

α ∧ pβ = (
ˆ
M |B

α) ∧ β.

For details on restrictions of invariant generalized functions see for instance [15, 25].

2.3 Chern character of a morphism[24]
Let L be a compact Lie group and denote again by l its Lie algebra. Let W be a L-manifold. Let
λ be a real L-invariant 1-form on W . For any w ∈ W , we have λ(w) ∈ T ∗wW .
Definition 2.8. The 1-form λ defines an equivariant map

fλ : W → l∗ given by < fλ(w), X >=< λ(w), X∗W (w) > .

Denote by Cλ the L-invariant closed subspace of W given by:

Cλ = {fλ = 0}.

Let σ : E+ → E− be a L-equivariant morphism on W , and denote by Cλ,σ the invariant closed
subspace given by

Cλ,σ = Cλ ∩ supp(σ) and vσ =
(

0 σ∗

σ 0

)
.

Let A be a L-invariant super-connection on E. We will use the following notations (see [24]):
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1. Aσ,λ(t) = A + it(vσ + λ), t ∈ R;

2. F (σ, λ,A, t)(X) = −t2v2
σ − it < fλ, X > +µA(X) + it[A, vσ] + A2 + itdλ, which is the

equivariant curvature of Aσ,λ(t);

3. ηs(σ, λ,A, t)(X) = −Str
(
i(vσ + λ)sEeF (σ,λ,A,t)(X)

|W s

)
= −eitdgλ(X)Str

(
i(vσ + λ)sEeF (σ,A,t)(X)

|W s

)
,

which is the transgression form associated to the Chern character of Aσ,λ(t) ;

4. βs(σ, λ,A) =
´∞

0 ηs(σ, λ,A, t)dt, which is a form with generalized coefficients since the con-
vergence of

´ T
0 ηs(σ, λ,A, t)dt when T goes to infinity makes sense as a distribution.

For the following theorem see [24] and also Section 3.3 of [25].

Theorem 2.9. [24, Theorem 3.19] • For any L(s)-invariant open neighborhood U of Cs,λ,σ =
Cλ,σ ∩W s, let χ ∈ C∞(W s)L(s) be a L(s)-invariant function which is equal to 1 in a neighborhood
of Cs,λ,σ and with support contained in U .

1. Then cs(σ, λ,A, χ) = χChs(A) + dχβs(σ, λ,A) is an equivariant closed differential form with
generalized coefficients supported in U . Furthermore, we have

cseX (σ, λ,A, χ)(Y ) = cs(σ, λ,A, χ)(X + Y )|W s∩WX ,

for any X ∈ l(s) and Y ∈ l(s) ∩ l(X).

2. The cohomology class cU(σ, λ, s) ∈ H−∞U (l(s),W s) of cs(σ, λ,A, χ) does not depend on the
choices of the super-connection A, χ and the hermitian structures on E±.

3. Moreover, the inverse family cU(σ, λ) when U runs over the neighborhood of Cs,λ,σ defines a
class

Chsup(σ, λ, s) ∈ H−∞Cs,λ,σ(l(s),W s),

whereH−∞Cs,λ,σ(l(s),W s) is the projective limit of the projective system (H−∞U (l(s),W s))Cs,λ,σ⊂U .

• The image Chsup(σ, λ, s) in H−∞supp(σ)∩W s(l(s),W s) is equal to Chsup(σ, s).
• Let F be a L-invariant subspace of W s. For τ ∈ [0, 1], Let στ : E+ → E− be a differential family
of L-equivariant smooth morphisms and let λτ be a L-invariant differential family of 1-forms such
that Cs,λτ ,στ ⊂ F ∀τ ∈ [0, 1]. Then all the classes Chsup(στ , λτ , s) coincide in H−∞F (l(s),W s).

Definition 2.10. If Cs,λ,σ is a compact subspace of W s, then we can define:

Chc(σ, λ, s) ∈ H−∞c (l(s),W s)

as the image of Chsup(σ, λ, s) ∈ H−∞Cs,λ,σ(l(s),W s) in H−∞c (l(s),W s). A representative of Chc(σ, λ, s)
is then given by any equivariant form cs(σ, λ,A, ψ) as before, with ψ compactly supported. See
again [24].

Remark 2.11. If σ is a L-equivariant elliptic symbol then we get Chc(σ, s) ∈ H∞c (l(s),W s).
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Lemma 2.12. [10] Assume that L(s) acts trivially on a manifold W . We have the following
isomorphism:

K(W )⊗R(L(s))→KL(s)(W )
[σ]⊗ V 7→[σ ⊗ idV ],

H(W )⊗ C∞(l(s))L(s) →H∞L(s)(l(s), Y )
[ω]⊗ ϕ 7→[X 7→ ωϕ(X)]

We denote by χ the character morphism which associates to a representation its character. The
following diagram is commutative:

KL(s)(W ) Chs //

��

H∞L(s)(l(s),W )

K(W )⊗R(L(s))
Ch⊗χ(se•)

// H(W )⊗ C∞(l(s))L(s).

OO

Proof. We use the previous notations. Let σ : E+ → E− be an elliptic morphism, let ∇E be a
graded connection on E = E+⊕E− and ∇V = d⊗ idV be the trivial connexion on Y ×V . Denote
by ∇ the product connection on E ⊗ V . Then the associated equivariant curvature to σ ⊗ idV is
F (σ⊗ idV ,∇, t)(X) = F (σ⊗ idV ,∇, t) + µ∇(X) on Y is equal to F (σ,∇E, t)⊗ 1 + 1⊗X because
µ∇(X) = 1⊗X since X∗W = 0. So we get Chs(∇)(X) = Ch(∇E)χ(seX) and ηs(σ⊗ idV ,∇, t)(X) =
η(σ,∇E, t)χ(seX). And then if ψ is a smooth invariant function on Y , we obtain

cs(σ ⊗ idV ,∇, ψ) = ψCh(∇E)⊗ χ(se•) + dψβ(σ,∇E)⊗ χ(se•) = c(σ,∇E, ψ)⊗ χ(se•).

2.4 The index class of a family of G-transversally elliptic operators
Here we recall the definition of the index class of a family of G-transversally elliptic operators [6].
Denote by TGM = {α ∈ T ∗M |α(X∗M) = 0,∀X ∈ g}. Let T VGM denote the space T VM ∩ TGM .
Recall that a family P = (Pb)b∈B of G-transversally elliptic pseudodifferential operators is a family
of pseudodifferential operators such that its principal symbol σ(P ) is invertible on T VGM\M . We fix
from now on aG-invariant continuous family of Borel measures (µb) which are in the Lebesgue class,
constructed using a partition of unity of B. So, for any f ∈ C(M), the map b 7→

´
Mb
f(m)dµb(m)

is continuous, and each measure µb is fully supported in the fiber Mb. Since E is equipped with a
hermitian structure, the C(B)-modules C∞,0(M,E±) of continuous fiberwise smooth sections over
M , are naturally equipped with the structure of pre-Hilbert right G-equivariant C(B)-modules
with the inner product given by:

〈s, s′〉(b) =
ˆ
Mb

〈s(m), s′(m)〉E±mdµb(m), for s, s′ ∈ C∞,0(M,E±).
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We denote by E± the completion of C∞,0(M,E±). So, E = E+ ⊕ E− is our G-equivariant Z2-
graded Hilbert module on C(B). We denote by C∗G the C∗-algebra associated with G. Let
π : C∗G→ LC(B)(E) be the ∗-representation given by

π(ϕ)s =
ˆ
G

ϕ(g)(g · s)dg, ∀ϕ ∈ L1(G) and s ∈ C∞,0(M,E).

If P0 : C∞,0(M,E+) → C∞,0(M,E−) is a family of pseudodifferential operators of order 0, we

denote by P the family
(

0 P ∗0
P0 0

)
.

LetH be a compact Lie group. Assume thatH acts onM and that E and P are alsoH-equivariant.

Definition 2.13. [6] The index class IndM|B(P ) of a G×H-invariant family P̃ of G-transversally
elliptic operators is defined by:

IndM|B
H (P0) = [E , π, P ] ∈ KKH(C∗G,C(B)).

If H is the trivial group then we simply denote by IndM|B(P ) the index class which leaves in
KK(C∗G,C(B)).

Let us recall the definition of K-multiplicity of an irreductible unitary representation of G.
Denote by Ĝ the space of isomorphism classes of unitary irreducible representations of G.

Definition 2.14. [6] The K-multiplicity mP (V ) of a irreducible unitary G-representation V in the
index class IndM|B(P0) is the image of the class [(EGV , PG

V )] ∈ KK(C, C(B)) under the isomorphism
KK(C, C(B)) ∼= K(B). So mP (V ) is the class of a virtual vector bundle over B, an element of the
topological K-theory group K(B). The class [(EGV , PG

V )] coincides (as expected) with the Kasparov
product

[V ] ⊗
C∗G

IndM|B(P0) ∈ KK(C, C(B)),

As we have KK(C∗G,C(B)) ∼= Hom(R(G),K(B)) (see for instance [27]), we get:

Proposition 2.15. The index class of a G-invariant family P of G-transversally elliptic operators
is totally determined by its multiplicities and we have:

IndM|B(P ) =
∑
V ∈Ĝ

mP (V )χV .

Proof. We simply apply the Universal Coefficient Theorem in bivariant K-theory [27]. Indeed, the
C∗-algebra of G belongs to the bootstrap category, see for example [22]. Moreover, R(G) is a free
module which is isomorphic to ⊕

V ∈Ĝ
Z.
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2.5 Index theorem for H-equivariant elliptic families [5]
Let H be a compact group. Let P0 be a H-equivariant continuous family of pseudodifferential
operators of order 0 which is elliptic along the fibers. Recall that a family P is elliptic along the
fibers if its principal symbol σP given on each fiber by σPb is invertible on T VM∗ \M .

Definition 2.16. [5] The H-equivariant analytical index IndM|B
H (P0) of P0 is defined as the image

in KH(B) of the index class [E , P ] ∈ KKH(C, C(B)). It is the formal difference of the continuous
fields of Hilbert spaces

(
ker((P0)b)

)
b∈B

and
(

ker((P ∗0 )b)
)
b∈B

.

Here E and P are constructed as in the previous section. Denote by π the projection T VM →
M . The map p ◦ π is KH-oriented so it defines an element p! ∈ KKH(C0(T VM), C(B)) [14].

Definition 2.17. [5] Let P0 be aH-equivariant elliptic family of operators onM parametrized by a
compact manifoldB. The topological index is defined by IndM|B

H,t (P0) = [σ(P )]⊗C0(TVM)p! ∈ KH(B).

Let us recall the index theorem for families [5].

Theorem 2.18. [5] The analytical index IndM|B
H and the topological index IndM|B

H,t coincide.

Remark 2.19. Our notation for the index class of a G × H-family of G-transversally elliptic
operators is consistent with the equivariant case because if G is the trivial group then the family
is H-equivariant and elliptic and then its index IndM|B

H (P ) lives in KKH(C, C(B)).

3 The Chern character of the index class
We want to obtain cohomological formulas for the index of a G-invariant family of G-transversally
elliptic operators. We will use the bivariant local cyclic homology [26].

3.1 The Chern character in bivariant local cyclic homology
Recall the following theorem from [22].

Theorem 3.1 (Universal Coefficient Theorem). [22] Let A and B be separable C∗-algebras satis-
fying the universal coefficient theorem in KK-theory. Then there is a natural isomorphism

HL(A,B) ' Hom(K∗(A)⊗Z C,K∗(B)⊗Z C) ' Hom(HL(C∗G),HL(C(B))

of graded vector spaces.

As the C∗-algebra C∗G of a compact Lie group G is in the bootstrap category [22], we can
apply the universal coefficients theorem in bivariant local cyclic homology. So we obtain:

Proposition 3.2. The bivariant local cyclic homology HL(C∗G,C(B)) of the couple (C∗G,C(B))
is isomorphic to Hom(HL(C∗G),HL(C(B)).
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Proposition 3.3. The Chern character in bivariant local cyclic homology of the index class
IndM|B(P ) of a G-invariant family P of G-transversally elliptic operators is given by:

Ch(IndM|B(P0)) =
∑
V ∈Ĝ

Ch(mP (V ))χV ,

where Ch(mp(V )) ∈ H(B) is the usual Chern character of mP (V ) ∈ K(B) (here we have used the
isomorphism HL(C(B)) ' H(B)) from [26].

Proof. By Proposition 3.2, we know that HL(C∗G,C(B)) ' Hom(HL(C∗G),HL(C(B)). So we
deduce that Ch(IndM|B(P )) is totally determined by its values on the irreductible representations.
We know that the Chern character in bivariant local cyclic homology is a natural transformation
[26]. Thus we have

Ch(IndM|B(P )) ◦ Ch(V ) = Ch([V ]⊗C∗G IndM|B(P )) = Ch(mP (V )).

3.2 Distributional index with value in H(B)
Following [1], we want to obtain a distributional Chern character. More precisely, if ϕ ∈ C∞(G)
we want to know if the series ∑

V ∈Ĝ
Ch(mP (V )) < χV , ϕ >L2(G) is convergent. Here the series has

values in H(B) while in [1] the series has values in C. We show that the Chern character of the
index class converges as a distribution on C∞(G) with value in the finite dimensional cohomology
of B.

Theorem 3.4. [6] The pairing of the index class of a G-invariant family of pseudodifferential
operator P of order 0 which is G-transversally elliptic along the fibers, with an element of the
K-homology group KK(C(B),C) is given by the index class of a G-invariant pseudodifferential
operator which is G-transversally elliptic on the ambiant manifold M .

Corollary 3.5. If α is an element of the K-homology of B then

1. the class [E , π, P ] ⊗C(B) α ∈ KK(C∗G,C) ' Hom(R(G),C) is given by the distributionnal
index of Atiyah [1], i.e. the multiplicities of IndM|B(P )⊗C(B) α are summable in the sens of
distributions on G;

2. denote by m([V ] ⊗C∗G IndM|B(P ) ⊗C(B) α) the integer associated to the multiplicity of V
[V ]⊗C∗G IndM|B(P )⊗C(B) α in IndM|B(P )⊗C(B) α. For any ϕ ∈ C∞(G), the series

∑
V ∈Ĝ

m
(
[V ]⊗C∗G IndM|B(P )⊗C(B) α

)
< χV , ϕ >L2(G),

is convergente in C.
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Proof. Indeed, by the Theorem 3.4 IndM|B(P ) ⊗C(B) α is represented by the index class of a G-
transversally elliptic pseudodifferential operator on M . By [1], we know that the distributional
index of a G-transversally elliptic operator Q is tempered on G and is totally determined by its
multiplicities, that is to say IndM(Q) =

∑
V ∈Ĝ

mQ(V )χV is well defined as a distribution on G.

We now deduce from the previous discussion that the Chern character of the index class of a
G-invariant family of G-transversally elliptic pseudodifferential operators is a distribution on G
with value in the cohomology of the base B. For this purpose, the bivariant multiplicative Chern
character is used [26]. Then we show that the formal sum

∑
V ∈Ĝ

Ch(mP (V ))χV converges in the

distributional sense with value in the finite dimensional vector space H(B).

Theorem 3.6. Assume that B is oriented. Then the Chern character, in bivariant local cyclic
cohomology, of the index class of a G-invariant family of pseudodifferential operators which is G-
transversally elliptic along the fibers is a distribution with value in the even de Rham cohomology
of B. We have more precisely,

Ch(IndM|B(P )) =
∑
V ∈Ĝ

Ch(mP (V ))χV ∈ C−∞(G,H2∗(B))G.

Proof. In order to show that Ch(IndM|B(P )) = ∑
V ∈Ĝ

Ch(mP (V ))χV converges in the sense of

distributions in C−∞(G,H2∗(B)), we will show that for any closed de Rham current C on B,
the pairing of C with the Chern character 〈Ch(IndM|B(P )), C〉 is a distribution on G. Let
C ∈ H∗(B) be a de Rham current on B. As the Chern character is an isomorphism after
tensoring by C, we get that there exist λ1, . . . , λn ∈ C and α1, . . . , αn elements of K∗(B) such
that C =

n∑
i=1

λiCh(αi). Then we have 〈Ch(IndM|B(P )), C〉 =
n∑
i=0

λi〈Ch(IndM|B(P )),Ch(αi)〉.
Therefore it is sufficient to check that this pairing is a distribution for each element of the
type Ch(α), with α ∈ K∗(B). Now if α ∈ K∗(B) then we have 〈Ch(IndM|B(P )),Ch(α)〉 =
Ch([IndM|B(P )] ⊗C(B) α) by multiplicativity of the Chern character in bivariant local cyclic ho-
mology. On the one hand, if α ∈ K1(B) then [IndM|B(P )] ⊗C(B) α ∈ KK1(C∗G,C) = 0 and so
< Ch(IndM|B(P )),Ch(α) >= Ch([IndM|B(P )] ⊗C(B) α) = 0. On the other hand, if α ∈ K0(B)
then we know that by Corollary 3.5 that [IndM|B(P )] ⊗C(B) α = Ch([IndM|B(P )] ⊗C(B) α) is a
distribution on G. The Chern character is hence a distribution with values is the even de Rham
cohomology because using the universal coefficient theorem in bivariant local cyclic homology, we
have Ch(E, π, P ) ∈ HL(C∗G,C(B)) ' Hom(R(G)⊗C,K0(B)⊗C) ' Hom(R(G)⊗C, H2∗(B)).

Remark 3.7. If B = {?}, we get the standard result (see [23]) that the Chern-Connes char-
acter of the index class of a G-invariant pseudodifferential operator which is G-transversally el-
liptic coincides with the distribution of Atiyah view as a trace on C∞(G)G. Moreover, we have
Hom

(
HP0(C∞(G)),HP0(C∞(B))

)
= C−∞(G,H2∗(B))G.
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4 Berline-Vergne formula for equivariant families
In this section, we show a formula of the delocalized index in equivariant cohomology for H-
invariant elliptic families. In a first paragraph, we begin by recall the Bismut localization formula
[12] which is a generalization of the Berline-Vergne localization formula [10], [8].

4.1 Review of the Bismut localization formula
Assume that M and B are connected and oriented. Let H be a compact Lie group and h its Lie
algebra. Let X ∈ h. Denote respectively by XM and XB the vector fields generated respectively
by X on M and B. Let BX = {b ∈ B/XB(b) = 0} and MX = {m ∈ M/XM(m) = 0} be the
submanifolds of zeros of XM and XB. Since p is H-equivariant we have p∗XM = XB. We know
that the fibration p : M → B restricts in a fibration pX : MX → BX , see for example [12].

Choose a H-invariant metric < ·, · > on M , i.e.

∀Y1, Y2 ∈ C∞(M,TM) < h · Y1, h · Y2 >=< Y1, Y2 >, ∀h ∈ H.

Let THorM be the orthogonal bundle of T VM . Denote by NX
M the normal bundle of MX in M

and by NX
B the normal bundle of BX in B. We can lift NX

B by p∗ into a subbundle of THorM on
M . We note it p∗NX

B .

Theorem 4.1. [12]With the previous notation, we have:

1. The vertical normal bundle NX
M ∩T VM of MX coincides with the normal bundle N (p−1(b)∩

MX , p−1(b)) of p−1(b) ∩MX in p−1(b).

2. The normal vertical bundle NX
M∩T VM ofMX coincide with the normal bundle N (MX , p−1(BX))

of MX in p−1(BX).

3. Moreover, we have NX
M = NX

M ∩ T VM ⊕NX
B .

Lemma 4.2. [19] Let T be a torus. Let V be a T -manifold. Denote by V T the set of fixed points
of V under the action of T . Then the normal bundle N of V T in V is oriented by a complex
structure. In this case, we can define the equivariant Euler class Eul(N) of the normal bundle N .

Theorem 4.3 (Bismut localization formula, 1986 [12]).
Denote by j : BX ↪→ B, i : MX ↪→ M , Eul(NX

M ∩ T VM,X) the equivariant Euler form of
NX
M ∩ T VM and

´
M |B the integration along the fibers [13]. Let α ∈ A(M) be a differential form

which is (d+ ι(X))-closed. Then the following equality holds in H(BX):

j∗
ˆ
M |B

α =
ˆ
MX |BX

i∗α

Eul(NX
M ∩ T VM,X) .
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4.2 Delocalized index formulas
Let again H be a compact Lie group and h its Lie algebra. Let p : M → B be a H-equivariant
fibration of compact manifolds. Assume that B is oriented. Assume that H is a topologically
cyclic group generated by a single element h. We can always reduce to this case by using Remark
4.9 below. Denote by i : T VMH ↪→ T VM and j : BH ↪→ B the inclusions of the fixed point
submanifolds. We have the following theorem from [7].

Theorem 4.4. [7] The following equality is satisfied in H(BH ,C) :

Ch
(
j∗IndM|B

H (σ(h))
)

Ch(λ−1NB(h)) =
ˆ
TVMH |BH

Ch
(
i∗σ(h)

)
Ch
(
λ−1(N ∩ T VM ⊗ C⊕ p∗NB)(h)

) ∧ Â2(T VMH).

Let s ∈ H and X ∈ h(s) small enough so that the flow etX of XM and eX act in the same way
for t close to 0. Let h = seX . By [10], we know then that (M s)X = Mh.

Lemma 4.5. Let s ∈ H and X ∈ h(s), we denote by h the element seX . Assume X small enough
so that (M s)X = Mh. We have the inclusions Mh � �

ih,s //M s � � is //M and we denote by ih the
inclusion of Mh in M . We denote by Nh the normal bundle of Mh in M , N s

h the normal bundle
of Mh in M s and Ns the normal bundle of M s in M . Then we have:

1. Ch
(
λ−1(Nh∩T VM ⊗ C)(seX)

)
=Ch

(
λ−1(N s

h∩T VM ⊗ C), X
)
i∗h,sChs

(
λ−1(Ns∩T VM ⊗ C), X

)
,

(1a)
2. Ch

(
λ−1(N s

h ∩ T VM ⊗ C), X
)

= Eul(N s
h ∩ T VM ⊗ C, X) ∧ Â(N s

h ∩ T VM,X)−2, (1b)

3. Chs
(
λ−1(Ns ∩ T VM ⊗ C), X

)
= Ds(Ns ∩ T VM,X). (1c)

Proof. 1. The element seX acts trivially on Mh. On the one hand, we have the following
identifications:

- TM|Ms = TM s ⊕Ns,

- TM|Mh = TMh ⊕Nh = (TM s)|Mh ⊕ (Ns)|Mh = TMh ⊕N s
h ⊕ (Ns)|Mh ,

so Nh ∩ T VM = N s
h ∩ T VM ⊕ (Ns)|Mh ∩ T VM. We know that Λ(E ⊕ E ′) ∼= ΛE ⊗ ΛE ′ and hence

Ch
(
λ−1(Nh∩T VM⊗C)(seX)

)
= Ch

(
λ−1(N s

h∩T VM⊗C)(seX)
)
∧Ch

(
i∗hλ−1(Ns∩T VM⊗C)(seX)

)
.

On the other hand, the vector bundle N s
h is a vector subbundle of TM s on which s acts trivially.

So the action on N s
h is trivial. We deduce that the action of s on λ−1(N s

h ∩ T VM ⊗ C) is trivial
and we have:

ChseX
(
λ−1N

s
h ∩ T VM ⊗ C

)
= Ch

(
λ−1N

s
h ∩ T VM ⊗ C(seX)

)
= Ch

(
λ−1N

s
h ∩ T VM ⊗ C, X

)
.

Moreover, using Theorem 2.9, we have:

Ch
(
i∗hλ−1(Ns∩T VM⊗C)(seX)

)
= ChseX

(
λ−1(Ns∩T VM⊗C)

)
(0) = i∗h,sChs

(
λ−1(Ns∩T VM⊗C), X

)
.
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2. Denote by R0(X) an equivariant curvature on N s
h ∩ T VM associated to a H-invariant metric

connection. We have eR0/2 − e−R0/2

R0
= e−R0/2 e

R0 − 1
R0

and det
(
e−R0/2

)
= 1 since R0 is antisym-

metric. It follows that Â(N s
h ∩ T VM,X)−2 = det

(
−(1− eR0(X))

R0(X)

)
, so we get the result since

Eul(N s
h ∩ T VM ⊗ C, X) = Eul(N s

h ∩ T VM,X)2 = det
(
−R0(X)

)
.

3. Denote by R(X) an equivariant curvature on N s∩T VM and R(X)⊗C the equivariant curvature
associated on N s ∩ T VM ⊗ C. For any linear map A on Rn, if we denote by Λi(A) the induced
map on ΛiRn then we have:

∑
(−1)iTr

(
Λi
(
A
))

= det
(
1− A

)
. (2)

The result follows from (2) applied to seR(X)⊗C.

Lemma 4.6. In the cohomology with complex coefficients of BH , the folowing equality is satisfied
at the point h = eX :

Ch
(
λ−1(N ∩ T VM ⊗ C⊕ p∗NB)(eX)

)
= Ch

(
λ−1(N ∩ T VM ⊗ C), X

)
∧ p∗Ch(λ−1N

B, X). (3)

Proof. The proof stems from Lemma 2.12 and the multiplicativity of the equivariant Chern char-
acter.

Theorem 4.7. For X ∈ h small enough, the following equality is satisfied in the cohomology
H(B, dX) :

Ch
(
IndM|B

H (σ), X
)

=
ˆ
TVM |B

Ch(σ,X) ∧ Â2(T VM,X).

Proof. By Theorem 4.4, we have the following equality in the cohomology of BH :

Ch
(
j∗IndM|B

H (σ(eX))
)

Ch(λ−1NB(eX)) =
ˆ
TVMH |BH

Ch
(
i∗σ(eX)

)
Ch
(
λ−1(N ∩ T VM ⊗ C⊕ p∗NB)(eX)

) ∧ Â2(T VMH). (4)

We have Ch
(
j∗IndM|B

H (σ(eX))
)

= Ch
(
j∗IndM|B

H (σ), X
)
since the action is trivial on BH . So using

Lemma 4.5 and Lemma 4.6, we get:

Ch
(
j∗IndM|B

H (σ), X
)

Ch(λ−1NB, X) =
ˆ
TVMH |BH

Ch(i∗σ,X) ∧ Â2(N ∩ T VM,X)
Eul(N ∩ T VM ⊗ C, X) ∧ p∗Ch(λ−1NB, X) ∧ Â

2(T VMH).

Moreover, we have Â2(N ∩ T VM,X) ∧ Â2(T VMH) = i∗Â2(T VM,X), so:

j∗Ch
(
IndM|B

H (σ), X
)

Ch(λ−1NB, X) = Ch(λ−1N
B, X)−1 ∧

ˆ
TVMH |BH

i∗
(
Ch(σ,X) ∧ Â2(T VM,X)

)
Eul(N ∩ T VM ⊗ C, X) .
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Moreover, for X ∈ h small enough, the zeros of the vector field generated by X and the fixed
points of eX coincide so T VMH = T VMX and BH = BX . Since Ch(σ,X) has compact support,
we can apply the Bismut localization formula (Theorem 4.3), to get:

ˆ
TVMX |BX

i∗
(
Ch(σ,X) ∧ Â2(T VMH , X)

)
Eul(N ∩ T VM ⊗ C, X) = j∗

ˆ
TVM |B

Ch(σ,X) ∧ Â2(T VM,X).

Now, simplifying the invertible element Ch(λ−1N
B, X) and using Proposition 2.1 of [10] which says

that the restriction j∗ : H(B, dX)→ H(BX ,C) is an isomorphism, we get the desired result.

We now give a similar formula for the equivariant Chern character of the index of an elliptic
family in the neighborhood of a point s ∈ H different from the identity.

Theorem 4.8. Let s ∈ H and X ∈ h(s), we denote by h the element seX . We suppose X small
enough, such that (M s)X = Mh. Denote by Ns the normal bundle of M s in M . The following
equality is true in the cohomology H(Bs, dX) :

Chs
(
IndM|B

H (σ), X
)

=
ˆ
TVMs|Bs

Chs(σ,X) ∧ Â2(T VM s, X)
Ds(Ns ∩ T VM,X) .

Proof. We have the inclusions Mh � �
ih,s //M s � � is //M , we denote by ih the inclusion of Mh in M .

Similarly, we have the inclutions Bh � �
jh,s // Bs � � js // B , we denote by jh the inclusion of Bh in B.

We denote by Nh the normal bundle ofMh inM , N s
h the normal bundle ofMh inM s. By Theorem

4.4 for h, on Bh, we get:

Ch
(
j∗hIndM|B

H (σ(h))
)

Ch(λ−1NB(h)) =
ˆ
TVMh|Bh

Ch
(
i∗hσ(h)

)
Ch
(
λ−1(Ng ∩ T VM ⊗ C⊕ p∗NB)(h)

) ∧ Â2(T VMH).

By Theorem 2.9, we have the following equalities Ch
(
j∗hIndM|B

H (σ(h))
)

= j∗h,sChs
(
(IndM|B

H )(σ), X
)

and Ch
(
i∗hσ(h)

)
= i∗h,sChs(σ,X). Using Lemma 4.6, applying (1b) and the fact that T VMh⊕N s

h =
i∗h,sT

VM s, we get:

j∗h,sChs
(
IndM|B

H (σ), X
)

=
ˆ
TVMh|Bh

i∗h,s
(
Chs(σ,X) ∧ Â2(T VM s, X) ∧Ds(Ns ∩ T VM,X)−1

)
Eul(N s

h ∩ T VM ⊗ C, X) .

Now, for X ∈ h(s) small enough, we have Mh = (M s)X and T VMh = (T VM s)X , so:

j∗h,sChs
(
IndM|B

H (σ), X
)

=
ˆ

(TVMs)X |(Bs)X

i∗h,s
(
Chs(σ,X) ∧ Â2(T VM s, X) ∧Ds(Ns ∩ T VM,X)−1

)
Eul(N s

h ∩ T VM ⊗ C, X) ,

by Theorem 4.3, it follows that:

j∗h,sChs
(
IndM|B

H (σ), X
)

= j∗h,s

ˆ
TVMs|Bs

Chs(σ,X) ∧ Â2(T VM s, X) ∧Ds(Ns ∩ T VM,X)−1.
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Moreover, the restriction j∗h,s : H(Bs, dX)→ H(Bh) is an isomorphism, so we conclude:

Chs
(
IndM|B

H (σ), X
)

=
ˆ
TVMs|Bs

Chs(σ,X) ∧ Â2(T VM s, X)
Ds(Ns ∩ T VM,X) .

Remark 4.9. [2] To remove the hypothesis that H is a topologically cyclic group generated by a
single element, it is enough to replace H by the closure of the group generated by the element h.
Indeed, if we denote by ϕ : H̃ = < h > ↪→ H the inclusion of the closure of the group generated
by h in H then the following diagram is commutative:

KH(T VM) ϕ∗ //

IndM|B
H
��

KH̃(T VM)
IndM|B

H̃
��

KH(B)
ϕ∗

// KH̃(B).

Remark 4.10. If the action of H is trivial on B then we obtain equalities in the de Rham
cohomology H(B) of B with complex coefficient.

4.3 An application: The homogeneous case
The purpose of this section is to explain the link between the Berline-Vergne delocalization formula
for a G×H-invariant elliptic operator and the formula along the fibers presented in the previous
section. We begin by recalling a construction from [4].
Let G and H be two compact Lie groups. Let P → B be a H-equivariant G-principal bundle.
Let F be a G × H-manifold. We define a H-equivariant fibration p : M → B, with fiber F and
structural group G, by setting M = P ×G F . Let A : C∞(F,E+) → C∞(F,E−) be an elliptic
pseudodifferential G×H-invariant operator of order 1. By [4], we know that the index IndG×H(A)
of the operator A is an element of R(G×H). Recall ([4], (4.3) page 504) the map

µP : R(G×H)→ KH(B)

induced by the map which associates to a G×H-representation V the vector bundle over B given
by P ×G V . We denote respectively p1 and p2 the first and second projections of P ×F . Following
[4] (page 527), we define a H-invariant operator Ã on M , elliptic along the fibers. The operator A
lifts to an operator Ã1 on P ×F . Since Ã1 is G×H-invariant, it induces an operator Ã on M . We
restrict Ã1 to the constant sections along the fibers of P × F → M . Since P is locally a product,
the restriction ÃV of Ã to the open sets p−1(V ) is just the lift of A, so ÃV ∈ P

1(p−1(V )) and
therefore Ã ∈ P1(M). The symbol σ(Ã) satisfies σ(η,ξ)(Ã) = σξ(A) so is elliptic along the fibers of
p. Moreover, we have the following proposition:

Proposition 4.11 ([4], page 529). The index of Ã is given by:

IndM|B
H (Ã) = [P ×G kerA]− [P ×G coker A] ∈ KH(B)

= µP (IndFG×H(A)).
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Let s ∈ H. We denote again by h the Lie algebra of H and by h(s) the Lie algebra of the
centralizer H(s) of s in H.

Corollary 4.12. Let X ∈ h(s). We have the following equality in H(Bs, dX):

Chs(IndM|B
H (Ã), X) = Chs(µP (IndFG×H(A)), X).

In the following, CW will equally denote the Chern-Weil homomorphism C∞(g × h)G×H →
H∞H (h, B) and the Chern-Weil isomorphism H∞G×H(g ⊕ h, P ) → H∞H (h, B). We denote by θ the
H-invariant 1-form connection on P and Θ its curvature. We denote by Θ(X) = Θ − ι(X)θ
its equivariant curvature. The Chern-Weyl isomorphism is given by CW (α)(X) = α(X,Θ(X)),
∀α ∈ H∞G×H(g⊕ h, P ) and X ∈ h. For more details, see [17] (see also [21]). We have:

Proposition 4.13. The following diagram is commutative:

R(H(s)×G) µP //

Chs=χ− (se−)
��

KH(s)(Bs)

Chs
��

C∞(h(s)× h)H(s)×G
CW

//H∞H(s)(h(s), Bs)

Applying this proposition and the Berline-Vergne formula [10], we get:

Corollary 4.14. Let X ∈ h(s) small enough. We have the following equality in H(Bs, dX):

Chs(IndM|B
H (Ã), X) =

ˆ
TF s

Chs(σ(A), X,Θ(X)) ∧ Â2(TF s, X,Θ(X))
D(N (F s, F ), X,Θ(X)) .

Proof. By Corollary 4.12, we know that

Chs(IndM|B
H (Ã), X) = Chs(µP (IndFG×H(A)), X).

By Proposition 4.13, it follows that:

Chs(IndM|B
H (Ã), X) = CW

(
IndFG×H(A)

)
(X).

So we get the result by applying the Berline-Vergne formula [10] to IndFG×H(A).

Let s ∈ H. We have T VM = P ×G TF and T VM s = P s ×G TF s because the action of H
commutes with the action of G. Denote by N (F s, F ) the normal bundle of F s in F . The vertical
part of the normal bundleM s = P s×GF s inM is given by N (M s,M)∩T VM = P s×GN (F s, F ).
Denote by p1 : P s × F s → P s and p2 : P s × F s → F s the projections. The 1-form p∗1θ is a
connection on P × F → P ×G F which restrict to a connection on P s × F s → P s ×G F s. We
denote by CWP s×F s the Chern-Weyl isomorphism associated to the bundle P s×Hs → P s×G F s.
We have:
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Proposition 4.15. We have the following equalities:

1. Â(P s ×G TF s, X) = p∗2Â(TF s, X, p∗1Θ(X));

2. D(N (M s,M) ∩ T VM,X) = p∗2D(N (F s, F ), X, p∗1Θ(X));

3. Chs(σ(Ã), X) = p∗2Chs(σ(A), X, p∗1Θ(X)).

Proof. We only give the details of the proof of the first equality. Assertions 2 and 3 can be shown
in the same way.
We have:

Â(P s ×G TF s, X) = CWP s×F s
(
Â(P s × TF s,−,−)

)
(X).

As P s × TF s is the pullback by p2 of TF s, we obtain:

Â(P s ×G TF s, X) = CWP s×F s
(
p∗2Â(TF s,−,−)

)
(X).

So we get the result by applying the Chern-Weyl isomorphism with the equivariant curvature
p∗1Θ(X).

We will verify that the formula of index for families coincides with the formula obtained in
Corollary 4.14 by a direct calculation.

Corollary 4.16. Let X ∈ h(s) small enough. We have the following equality in H(Bs, dX):

Chs(IndM|B
H (Ã), X) =

ˆ
TF s

Chs(σ(A), X,Θ(X)) ∧ Â2(TF s, X,Θ(X))
D(N (F s, F ), X,Θ(X)) .

Proof. We start by applying Theorem 4.8 to compute the Chern character of IndM|B
H (Ã). We have:

Chs(IndM|B
H (Ã), X) =

ˆ
P s×GTF s|Bs

Chs(σ(Ã), X) ∧ Â2(P s ×G TF s, X)
D(P s ×G N (F s, F ), X) .

By Proposition 4.15, we get:

Chs(IndM|B
H (Ã), X) =

ˆ
P s×GTF s|Bs

p∗2Chs(σ(A), X, p∗1Θ(X)) ∧ p∗2Â2(TF s, X, p∗1Θ(X))
p∗2D(N (F s, F ), X, p∗1Θ(X)) .

Denoting by q : P s × TF s → P s ×G TF s the projection, it follows that:

Chs(IndM|B
H (Ã), X) =

ˆ
P s×TF s|Bs

q∗
(
p∗2Chs(σ(A), X, p∗1Θ(X)) ∧ p∗2Â2(TF s, X, p∗1Θ(X))

p∗2D(N (F s, F ), X, p∗1Θ(X))

)

=
ˆ
TF s

Chs(σ(A), X,Θ(X)) ∧ Â2(TF s, X,Θ(X))
D(N (F s, F ), X,Θ(X)) .

20



5 Berline-Vergne formula for a G-transversally elliptic fam-
ily

This section is an application of the cohomological formula of section 3. We use the Berline-Vergne
formula [11] and more precisely the Paradan-Vergne approach from [25] to show a similar result
for families. We assume in this section that G acts trivially on B.

5.1 Vertical deformation of the Chern character
The Liouville 1-form on T ∗M allows to define by restriction a "vertical Liouville 1-form". More
precisely, let us fix a riemannian metric 〈·, ·〉 on M . Then we can write TM = T VM

⊕
p∗TB.

Let π : T ∗M → M be the projection, let j : T ∗M → T VM∗ be the dual map to the inclusion
i : T VM ↪→ TM and let φ : T ∗M → TM be the isomorphism given by the metric on M and let
φ|TVM : T VM∗ → T VM be the induced isomorphism. Denote by r = φ−1 ◦ i ◦φ|TVM and k = r ◦ j.
The Liouville 1-form ω on T ∗M is the 1-form defined by 〈ω(ξ), ζ〉 = 〈ξ, Tπ(ζ)〉, where ξ ∈ T ∗M ,
ζ ∈ Tξ(T ∗M) and π : T ∗M → M is the projection. As before let G be a compact Lie group and
p : M → B a G-equivariant fibration of compact manifolds. Assume B oriented.

Lemma 5.1. Let ω be the Liouville 1-form on T ∗M . The 1-form k∗ω is G-invariant and the
subspace Ck∗ω of T ∗M is equal to Cω = T ∗GM .

Proof. The 1-form k∗ω is G-invariant because k is G-equivariant. Let ξ ∈ T ∗M and v ∈ Tξ(T ∗M).
We have:

〈(k∗ω)ξ, v〉 = 〈ωk(ξ), Tξk(v)〉 = 〈k(ξ), Tk(ξ)π ◦ Tξk(v)〉.
Furthermore, we have the equality π ◦ k = π so we get:

〈k∗ω, v〉 = 〈k(ξ), Tπ(v)〉.

Now if v = X∗T ∗M(ξ) is given by an element X ∈ g then Tπ(v) = X∗M(π(ξ)) is a vertical vector,
that is Tπ(v) ∈ T Vπ(ξ)M so 〈k∗ω, v〉 = 〈ω,X∗T ∗M(ξ)〉 since the horizontal part of ξ vanish on the
vertical vectors. So we get that Ck∗ω is equal to Cω.

Corollary 5.2. The Chern character in H−∞G (g, T ∗M) defined using the Liouville 1-form ω is
equal to the Chern character defined using the vertical Liouville 1-form k∗ω.

Proof. By Theorem 3.19 of [24] (see also Theorem 2.9), we know that if στ : E+ → E− is a family
of smooth G-invariant morphisms and λτ a family of G-invariant 1-forms such that Cλτ ,στ ⊂ F , for
τ ∈ [0, 1] and F a closed subspace of T ∗M , then all the classes Chsup(στ , λτ ) coincide inH−∞F (g, N).
We take for στ the constant family of morphisms and for λτ the family of 1-forms τω+ (1− τ)k∗ω.
Note that the family λτ is G-equivariant. We have for v ∈ Tξ(T ∗M):

〈λτ , v〉 = τ〈ξ, Tπ(v)〉+ (1− τ)〈k(ξ), Tπ(v)〉

so if v is given by an element X ∈ g then 〈λτ , v〉 = 0 if ξ ∈ T ∗GM . We get that Cλτ = Cω = Ck∗ω
which completes the proof.
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Lemma 5.3. Let ω be the Liouville 1-form on T ∗M . The 1-form r∗ω is G-invariant and the
subspace Cr∗ω of T VM∗ is equal to T VGM∗.

Remark 5.4. The 1-form r∗ω is the restriction of ω to T VM∗ that we see as a submanifold of
T ∗M using the metric.

Proof. The 1-form r∗ω is G-invariant because r is G-equivariant. Let ξ ∈ T VM∗. Let v ∈
Tξ(T VM∗). We have:

〈r∗ω, v〉 = 〈ωr(ξ), Tk(v)〉 = 〈r(ξ), Tπ ◦ Tr(v)〉 = 〈ξ, Tπ(v)〉.

because r is the inclusion of T VM∗ in T ∗M and π ◦r is the projection π restricted to T VM∗. From
this we deduce that the map fr∗ω : T VM∗ → g∗ is zero if ξ ∈ T VGM∗.

5.2 Berline-Vergne formula
We begin by recalling the cohomological formula from [25] for a G-transversally elliptic operator.
We will deduce from this formula, with the help of a Kasparov product, the formula for a family
of G-transversally elliptic operators. We denote by ωs the Liouville 1-form on T ∗M s and we use
the notation of the previous section.

Theorem 5.5 ([25], Theorem 3.18). Let σ be a symbol of G-transversally elliptic operator on
a compact G-manifold M . Denote for any s ∈ G, by N s the normal vector bundle to M s in
M . There is a unique G-invariant generalized function on G denoted IndG,Mcoh ([σ]), such that the
following local relations are satisfied:

IndG,Mcoh ([σ])‖s(Y ) = (2iπ)− dimMs

ˆ
T ∗Ms

Chs(Aωs(σ), Y ) ∧ Â2(TM s, Y )
Ds(N s, Y ) ,

∀s ∈ G and ∀Y ∈ g(s) small enough so that the equivariant classes Â2(TM s, Y ) and D(N s, Y )
are defined. Moreover, the generalized function IndG,Mcoh ([σ]) only depends on the class of σ in
KG(T ∗GM).

Furthermore, we have the following theorem which makes the link with the analytical index
IndG,Ma of Atiyah [1]:

Theorem 5.6 ([25], Theorem 4.1). The previous formulas define a map

IndG,Mcoh : KG(T ∗GM)→ C−∞(G)G

and we have:
IndG,Ma = IndG,Mcoh .
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Lemma 5.7. Denote by j : T ∗M → T VM∗ the projection, r : T VM∗ ↪→ T ∗M the inclusion
induced by the metric and p : M → B the projection. Let σ ∈ KG(T VGM∗) and σ′ ∈ K(T ∗B). We
have the following equality in H−∞G (g, T ∗M s):

Chs(Aωs(σ ⊗ p∗σ′), Y ) = j∗Chs(Ar∗ωs(σ), Y ) ∧ p∗Ch(σ′).

Denote by E the super-bundle corresponding to σ and E ′ the super-bundle corresponding to σ′.
In this lemma, Aωs means the restriction of a super-connection Aω on E ⊗ p∗E ′, Ar∗ωs means the
restriction of Ar∗ω(σ) = A+ i(vσ + r∗ω), where A is a super-connection on E and A(σ′) = A′+ ivσ′
where A′ is a super-connection on E ′.

Proof. By Corollary 5.2, we have the equality:

Chs(Aωs(σ ⊗ p∗σ′), Y ) = Chs(Aj∗r∗ωs(σ ⊗ p∗σ′), Y ).

Furthermore, if we consider the product super-connection

B = j∗A⊗ 1 + 1⊗ p∗A′,

then we get:
Aj∗r∗ω(σ ⊗ p∗σ′) = j∗(Ar∗ω(σ)⊗ 1) + 1⊗ p∗(A′(σ′)),

because vσ⊗p∗σ′ = vσ ⊗ 1 + 1⊗ p∗vσ′ . So the equality.

Let now σ be a G-transversally elliptic symbol along the fibers of p : M → B. We defined
in Section 3 the Chern character of the index class ChHL(IndM|B([σ])). Moreover, we identified
it with an element Ch(IndM|B([σ])) ∈ C−∞(G,H2•(B))G in the Theorem 3.6. We can restrict
such element through its associated generalized function because such element is an element of
C−∞(G)G ⊗H(B).

We can now state our main theorem:

Theorem 5.8. Let σ be a G-transversally elliptic symbol along the fibers of a compact G-equivariant
fibration p : M → B with B oriented and G-trivial. Denote by N s the normal vector bundle to M s

in M .

1. There is a unique generalized function with values in the cohomology of B denoted IndG,M |Bcoh :
KG(T VGM)→ C−∞(G,H(B))G satisfying the following local relations:

IndG,M |Bcoh ([σ])‖s(Y ) = (2iπ)− dim(Ms|B)

ˆ
TVMs|B

Chs(Ar∗ωs(σ), Y ) ∧ Â2(T VM s, Y )
Ds(N s, Y ) ,

∀s ∈ G, ∀Y ∈ g(s) small enough such that the equivariant classes Â2(T VM s, Y ) and
D(N s, Y ) are defined.
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2. Furthermore, we have the following index formula:

IndG,M |Bcoh ([σ]) = Ch(IndM|B([σ])) ∈ C−∞(G,H(B))G.

Proof. Recall that G(s) means the centralizer of s in G and that g(s) is its Lie algebra. Denote
by Us(0) ⊂ g(s) a G(s)-invariant neighborhood of 0, such that the Â-genus Â(T VM s, Y ) as well
as 1

Ds(N s, Y ) are defined on Us(0). Denote by ns the dimension of M s and n the dimension of

B. By Theorem 3.6, we have Ch(IndM|B([σ]))‖s(Y ) ∈ H−∞G(s)(Us(0), B) ∼= C−∞(Us(0))G(s) ⊗H(B).
To compute Ch(IndM|B([σ]))‖s(Y ) it is sufficient to pair it with the de Rham homology of B.
Moreover, the de Rham homology of B is generated by the range of the Chern character of the
K-homology of B. By Corollary 3.5, we know that the pairing of the index class of a family of
G-invariant operators which are G-transversally elliptic with an element of the K-homology of B
is represented by a G-invariant, G-transversally elliptic operator on M . Let σ′ be a symbol on B
then we can apply Theorem 5.5 to the G-transversally elliptic symbol σ ⊗ p∗σ′, to deduce ([25]):

IndG,Mcoh ([σ � p∗σ′])‖s(Y ) = (2iπ)−ns

ˆ
T ∗Ms

Chs(Aωs(σ � p∗σ′), Y ) ∧ Â2(TM s, Y )
Ds(N s, Y ) .

By Theorem 4.1 we know that TM s ∼= T VM s ⊕ p∗TB and that N is vertical because the action
of G on B is trivial. So we have:

Â(TM s, Y ) = Â(T VM s, Y ) ∧ p∗Â(TB).

Moreover, we have Chs(Aωs([σ � p∗σ′]), Y ) = j∗Chs(Ar∗ωs([σ]), Y ) ∧ p∗Ch(A([σ′])), where j :
T ∗M → T VM∗. So we get

IndG,Mcoh ([σ � p∗σ′])(seY ) =(2iπ)−ns

ˆ
T ∗Ms

j∗Chs(Ar∗ωs(σ), Y )Â2(T VM s, Y )
Ds(N, Y ) p∗

(
Ch(A(σ′))Â2(TB)

)
.

As B is oriented, we get:

IndG,Mcoh ([σ � p∗σ′])(seY )

=

ˆ
b∈B

(2iπ)−(ns−n)

ˆ
(TMb)s

Chs(Ar∗ωs([σ]), Y )Â2(T VM s, Y )
Ds(N s, Y )

ˆ
TbB

(2iπ)−nCh(A([σ′]))Â2(TB).

But,
´
TB|B

(2iπ)−nCh(A([σ′]))Â2(TB) = PD(Ch([Pσ′ ])) where [Pσ′ ] ∈ KK(C(B),C) and where
Ch([Pσ′ ]) is the Chern character of [Pσ′ ] in de Rham homology of B and PD is the Poincaré
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duality isomorphism HdimB−•(B,C)→ H•(B,C). So we get that

IndG,M |Bcoh ([σ])‖s(Y ) = (2iπ)− dim(Ms|B)

ˆ
TVMs|B

Chs(Ar∗ωs(σ), Y ) ∧ Â2(T VM s, Y )
Ds(N s, Y ) ,

defines an element of C−∞(G,H(B))G = C−∞(G)G ⊗H(B), since for any σ′ ∈ K(TB) the gener-
alized functions (IndG,Mcoh (σ ⊗ σ′)‖s)s define an element of C−∞(G)G by Theorem 3.18 of [25].
By Theorem 4.5 of [6], we know that

IndG,Ma ([σ � p∗σ′]) = IndM|B([σ])⊗C(B) [Pσ′ ].

We denote by ChHL the Chern character in bivariant local cyclic homology [26]. The following
diagram is commutative:

C−∞(G,H(B,C))G ⊗H∗(B,C) 〈·,·〉 //
� _

��

C−∞(G)G� _

��
Hom(R(G)⊗ C, H∗(B,C))⊗H∗(B,C)

∼=
��

〈·,·〉 // Hom(R(G)⊗ C,C)
∼=
��

HL(C∗G,C(B))⊗ HL(C(B),C) ◦ // HL(C∗G,C).

From this we deduce that the product ChHL(IndM|B([σ]))◦ChHL([Pσ′ ]) becomes via the isomorphism
HL(C∗G,C) ' Hom(R(G)⊗ C,C):

ChHL(IndM|B([σ])) ◦ ChHL([Pσ′ ]) ∼= IndG,Ma ([σ]⊗ p∗[σ′]).

Now, by Theorem 5.6, see [25], we know that IndG,Ma = IndG,Mcoh . So

ChHL(IndM|B([σ])) ◦ ChHL([Pσ′ ]) ∼= IndG,Mcoh ([σ]⊗ p∗[σ′]).

As IndG,Mcoh ([σ]⊗ p∗[σ′]) = 〈IndG,M |Bcoh ([σ]), PD(Ch(P[σ′])〉, we get by Poincaré duality that

ChHL(IndM|B([σ])) ' IndG,M |Bcoh ([σ]).

By the identification of Theorem 3.6, we eventually get:

Ch(IndM|B([σ])) = IndG,M |Bcoh ([σ]).
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