
HAL Id: hal-01873261
https://hal.science/hal-01873261v1

Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Prediction of thermal conductance and friction
coefficients at solid-gas interface from statistical learning

of collisions
Meng Liao, Quy-Dong To, Céline Léonard, Wenlu Yang

To cite this version:
Meng Liao, Quy-Dong To, Céline Léonard, Wenlu Yang. Prediction of thermal conductance and
friction coefficients at solid-gas interface from statistical learning of collisions. Physical Review E ,
2018. �hal-01873261�

https://hal.science/hal-01873261v1
https://hal.archives-ouvertes.fr


APS/124-QED

Prediction of thermal conductance and friction coefficients at

solid-gas interface from statistical learning of collisions

Meng Liao, Quy-Dong To,∗ and Céline Léonard

Université Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle,

UMR 8208 CNRS, UPEC, F-77454 Marne-la-Vallée, France

Wenlu Yang

Sorbonne University, LIP6 CNRS, Paris, France

(Dated: September 11, 2018)

Abstract

In this paper, we present the construction of statistical models of gas-wall collision based on

data issued from Molecular Dynamics (MD) simulations and use them to predict the velocity slip

and temperature jump coefficients at the gas-solid interface. The Gaussian Mixture (GM) model,

an unsupervised learning technique, is chosen for this purpose. The model shares some similarities

with the well-known Cercignani-Lampis model in kinetic theory but it is more robust due to the

unlimited number of Gaussian functions used and the ability to deal with correlated data of high

dimensions. Applications to real gas-wall systems (Argon-Gold and Helium-Gold) confirm the

good performance of the model. The trained GM model predicts physical and statistical properties

including accommodation, friction and thermal conductance coefficients in excellent agreement

with the MD model.
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I. INTRODUCTION

Velocity slip and temperature jump are important interface phenomena which are fre-

quently encountered in micro-nanofluidic systems [1]. The common way to model the im-

perfect boundary conditions is to use the following phenomenological relations

β1vk = −σkz, β2(T − Tw) = −qz, k = x, y, (1)

Here the wall is assumed to be stationary at temperature Tw and normal to direction z.

The slip velocity vk is proportional to the (minus) shear stress σkz and the temperature

jump T − Tw is proportional to the heat flux qz. The constants, β1 and β2, are respectively

the Navier isotropic friction and Kapitza thermal conductance coefficients. For gas flow

problems, it is well-known that the interface phenomena become significant when the mean

free path λ is comparable to the channel height H, starting from λ/H ≥ 0.01. The origin

of the Knudsen layer effect comes from two sources: the finite actual velocity/temperature

jump at the boundary and the deviation from the bulk solution within the distance λ from

the wall. In this paper, we do not consider the variation of the velocity/temperature in the

Knudsen layer and assume that the linear relations Eq. (1) are valid at the solid boundary [2].

Since both the bulk and interfacial transport properties of gases are governed by collisions

at the atomic scale [3], they are expected to be proportional to the collision rate. It is thus

natural to non-dimensionalize the boundary coefficients β1 and β2 as follows

β1 =
β1

n

√
π

2kBTm
, β2 =

β2

n

√
mπ

8k3
BT

, k = x, y, (2)

In Eq. (2), n is the gas density at the wall, m the atomic mass of the monatomic gas and kB

the Boltzmann constant. The other reason to non-dimensionalize the interfacial coefficients

is that β1 and β2 are connected to tangential momentum accommodation coefficient α1 and

energy accommodation coefficients α2 [1]

β1 =
α1

2− α1

, β2 =
α2

2− α2

(3)

The origin of the accommodation coefficients comes from the collision models of gas atoms

with the solid boundary [4–6]. These constants appear in the linear relation between the

pre-collision and post-collision momenta and energy of gas atoms with respect to the wall.
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However, MD simulations showed that the linearity postulate is not always valid. Errors

from the linear regression procedure to obtain α1 and especially α2 are observed [7, 8]. It

is suggested that the more effective way to model slip and jump phenomena is to directly

use coefficients β1 and β2 to quantify them from realistic collision data whenever possible.

On the other hand, the formulation based on coefficients β̄1, β̄2 can avoid the errors due to

the use of (3) and the intermediate accommodation coefficients. It is noted that while Eqs.

(3) are widely used, they are derived under restrictive conditions, e.g the Chapman-Enskog

distribution [3], an approximate solution of the Boltzmann equation, and the Maxwell or

Cercignani-Lampis wall model [9, 10]. As a result, if we want to extend or investigate the

validity (3) in general situations, more accurate methods (see e.g Refs. [11, 12]) should be

adopted.

In the framework of probabilistic modeling, there are numerous ways of reconstructing

the (collision) behavior of the system based on the available (collision) data, which are

realizations via Molecular Dynamics simulations. One of the method, proposed in our pre-

vious work is to use the nonparametric (NP) techniques to estimate the probability density

functions (PDF) and generate new collision data [8]. To avoid the sparsity of the data

in high dimension, the reflection process was assumed to be independent for each velocity

components (c′x, cx), (c′y, cy) and (c′z, cz) and the model can be constructed with a good

accuracy [13]. Although such modeling is relatively general, the uncorrelation hypothesis

can be strong and oversimplify the true behavior. This motivates us to investigate the

use of unsupervised learning techniques and their performance with high dimension data.

Specifically, the present work considers the Gaussian Mixture (GM) model, which is a pop-

ular technique and has proved to be successful in many data science applications. The GM

are probabilistic models using linear combination of multiple multidimensional gaussians to

estimate the probability density of data. Like all collision models (or scattering kernels) in

kinetic theory, the construction of GM are based on parameters which can be determined

from collision data for each gas-solid couple under consideration. While the existing collision

models are limited by a finite number of parameters (e.g accommodation coefficients), the

GM models are not. On the other hand, the GM models require a special algorithm, i.e

Expectation Maximization (EM) algorithm to tune the parameters.
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The paper is organized as follows. In Sect. II, we present a literature review of statis-

tical models of collisions, the general principles to construct them from MD data and their

properties. GM model is then introduced with the EM algorithm to tune the model param-

eters. Criteria based on both statistical and physical parameters including accommodation

coefficients, interfacial coefficients, reflection angles, and Kullback-Leibler divergence will

be used to evaluate the performance of the model. Applications to real material systems

(Ar and He gases vs Au surface) are presented in Section III, confirming the superiority

of the GM model when compared with nonparametric and parametric models of literature.

Finally, some remarks and conclusions are given.

II. DESCRIPTION OF COMPUTATION METHODS

A. Overview of statistical models of collision and their properties

The collision model, also called scattering kernel in kinetic theory, serves as boundary

conditions for Boltzmann equations and aims at describing how gas atoms are reflected

after collision with the wall at temperature Tw. It is defined by the conditional probability

distribution, P (output = c|input = c′, temperature = Tw) or denoted shortly P (c|c′) of

velocity c for a given incoming velocity c′. In addition to the usual PDF properties like non-

negativeness and normalization, P (c|c′) is also expected to satisfy the physical reciprocity

conditions [14–16]:

Peq(c
′)P (c|c′) = Peq(−c)P (−c′| − c), c ∈ R2 × R+, c′ ∈ R2 × R− (4)

where, Peq(c
′) is the distribution associated to the equilibrium gas at the same temperature

as the wall T = Tw and motionless with respect to the wall (zero mean velocity)

Peq(c
′) =

√
2π

θ
|c′z|MB(c′), MB(c′) =

e−c
′2/2θ

(2πθ)3/2
, θ = kBT/m (5)

This condition implies that the incidence-reflection is microscopically reversible when the

wall is in equilibrium state.

It can be shown that all popular collision models in literature can be classified as parametric
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models, in most cases, taking from one to three accommodation coefficients as parameters.

For example, in the Maxwell model [4] where the gas atom can be reflected either specularly

or diffusively with percentage 1 − α and α, only one accommodation coefficient is used.

In the anisotropic Cercignani-Lampis (ACL) model [5, 6], three different accommodation

coefficients associated to tangential momentums along x, y directions and normal kinetic

energy along z direction are used. While the Maxwell model exhibits discontinuities in

the probability space due to the portion of the mirror reflections (Dirac distribution), the

smooth PDF from ACL model agrees better with MD simulations. However, like all para-

metric models, they are subject to common limitations: the requirement of the existence

of a limited number of constant accommodation coefficients and the lack of flexibility in

the case of complex collision data. Since the flow solution depends both on the gas-gas

and gas-wall collision, those limitations may have consequences on the determination of

boundary conditions’ coefficients β1 and β2 in Navier-Stokes-Fourier equations as mentioned

earlier and can cause errors in other simulation methods, e.g direct simulation Monte Carlo

(DSMC) [17], MD [18, 19], moment equations [10, 20], etc. based on the collision model. It

suggests that to achieve better accuracy, we need to rely on the whole data range and to

not be limited by the number of model parameters.

FIG. 1. Procedure of reconstructing the scattering kernel from MD simulations of collisions.

The procedure of reconstructing the scattering kernel from MD simulations of collisions

is shown in Fig. 1. The gas atoms are inserted with velocity c′ at a plane beyond the cut-off

distance and interact with the well thermostated solid atoms before escaping by crossing

the same plane with velocity c. Each couple of input and output velocities (c, c′) recorded

is thus a realization of the joint PDF P (c, c′). In principle, if we can estimate accurately
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P (c, c′), we can derive accurately the scattering kernel via the equation

P (c|c′) =
P (c, c′)

P (c′)
, (6)

where P (c′) is the distribution of input variable c′. While P (c|c′) is a unique function of c

and c′, the joint PDF P (c, c′) depends on the input distribution P (c′) via (6). In the special

case where the input distribution is the equilibrium distribution, P (c′) = Peq(c
′), the joint

PDF becomes the equilibrium joint PDF P (c, c′) = Peq(c, c
′). The reciprocity condition (4)

is equivalent to the symmetry condition of Peq(c, c
′) in hyperspace

Peq(c, c
′) = Peq(−c′,−c) (7)

As a result, to model the scattering kernel via Peq(c, c
′) and the associated collision data, it

is necessary that the above constraints are satisfied.

We remark that in many parametric scattering kernels [5, 6, 21], the reflection process

occurs independently in x, y, and z directions. Under this assumption, both P (c|c′) and

Peq(c, c
′) can be decomposed as:

P (c|c′) =
3∏

k=1

P (ck|c′k), Peq(c, c
′) =

3∏
k=1

Peq(ck, c
′
k), k = x, y, z (8)

A typical example is the well-known Cercignani-Lampis kernel and its associated joint PDF

at equilibrium PCL
eq (c, c′)

PCL(c|c′) =
e
− [cx−(1−αt)c

′
x]

2

2αt(2−αt)θw√
2πθwαt(2− αt)

e
−

[cy−(1−αt)c
′
y ]

2

2αt(2−αt)θw√
2πθwαt(2− αt)

cze
− c

2
z+(1−αe)c′2z

2αeθw

αeθw
×

I0

(√
1− αeczc′z
αeθw

)

PCL
eq (c, c′) =

e
− (c2x−2(1−αt)cxc

′
x+c
′2
x )

2αt(2−αt)θw

2πθw
√
αt(2− αt)

e
−

(c2y−2(1−αt)cyc
′
y+c
′2
y )

2αt(2−αt)θw

2πθw
√
αt(2− αt)

|czc′z|e
− (c2z+c

′2
z )

2αeθw

αeθ2
w

×

I0

(√
1− αeczc′z
αeθw

)
, (9)
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have this property. In particular, they are based on two parameters αt, αe, combination of

multivariate Gaussian functions, and I0 as modified Bessel function of first kind and zeroth

order. Additionally, the joint PDF PCL
eq (c, c′) also satisfies the symmetry condition (7).

It is interesting to note that a general class of 1D nonparametric collision model can also be

constructed based on Eq. (8) and collision data. The uncorrelation hypothesis reduces the

model from 3D (or 6D in data space c′, c) to 1D (or 2D in each of 3 data spaces c′x, cx, c
′
y, cy,

c′z, cz), which greatly simplifies the kernel construction. Using kernel density estimation

(KDE) techniques, the constructed collision model has good performances when determin-

ing velocity slip and temperature jump coefficients like for the CH4-graphite or Ar-Au

systems [8, 22]. However, for nearly perfect elastic-reflection system like the He-Au system

[22], the independent assumption of Eq. (8) can overestimate the reflective energy and can

cause errors in the thermal conductance coefficient. In what follows, we shall explore the

GM model, a popular and general purpose machine learning technique, which is not subject

to above limitations. The model shares some similarities with the CL kernel which is among

the best parametric models, by the presence of smooth multivariate Gaussian functions but

it is much more powerful and flexible by means of superposition and unlimited number of

the parameters used. Furthermore, the algorithms to identify those parameters from data

are well developed in literature and in commercial software. Thus the efforts to construct

an accurate collision model will be significantly minimized.

B. Preprocessing of training data and Gaussian mixture model (GM)

As mentioned earlier, the data are collected from MD simulations of independent gas-wall

collisions at a given temperature Tw. The pre-collision velocity is drawn from equilibrium

distribution, i.e P (c′) = Peq(c
′) and P (c, c′) = Peq(c, c

′) and we can fit the GM model

with data, the realizations of Peq(c, c
′). To achieve the best performance of the method, we

propose to precondition the data in the following way

- Symmetrization of the data: For each realization (c, c′), a virtual copy (−c′,−c) is also

added to the existing data. This step will double the size of the training data and ensure

the symmetry of Peq(c, c
′) as shown in (7).

- Transformation of the random variables c and c′: This is because of the support constraints
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cz > 0 and c′z < 0 are not compatible with gaussian functions. Specifically, while cx, cy, c
′
x, c
′
y

have Gaussian distributions, cz, c
′
z have Rayleighian distributions. In this case, we propose

to adopt a transformation T that changes the distributions of cz, c
′
z to the same type as

cx, cy, c
′
x, c
′
y. For example

T (U) =
√

2θerf−1

[
1− 2 exp

(
−U

2

2θ

)]
, T −1(U) =

√
−2θ ln

[
1

2
− 1

2
erf

(
U√
2θ

)]
,

xR =


cx

cy

T (cz)

 , xI =


c′x

c′y

T (c′z)

 , c =


xR1

xR2

T −1(xR3)

 , c′ =


xI1

xI2

−T −1(xI3)

 , (10)

where xR and xI are two vector which are used to record the reflective value or incident value

respectively. We note that to map the Gaussian to the Rayleigh distribution, we compute

the CDFs of Gaussian distribution and of Rayleigh distribution

FG(T ) =
1

2

[
1 + erf

(
T√
2θ

)]
, FR(U) = 1− exp

[
−U2/ (2θ)

]
. (11)

and use the relation FG(T ) = FR(U) to recover the transformation (10) concerning cz, c
′
z.

The GM model is a probabilistic model that assumes all the data points are generated

from a mixture of Gaussian distributions [23]. More importantly, it is general enough to

estimate complex PDF function. Specifically, the GM estimator of P (xR,xI) can be written

as a superposition of M Gaussian functions with weights ϕ1, ϕ2, .., ϕM as follows

P (xR,xI) ' PGM(xR,xI) =
M∑
m=1

ϕmpm(xR,xI), pm(xR,xI) = N (X|µm,Σm) (12)

Each Gaussian pm(xR,xI) has its own parameters µm and Σm as mean vector and covariance

matrix

N (X|µm,Σm) =
1

(2π)d/2
1

|Σm|1/2
exp

[
−1

2
(X − µm)TΣ−1

m (X − µm)

]
,

X =

 xR
xI

 , µm =

 µmR
µmI

 , Σm =

 ΣmRR ΣmRI

ΣmIR ΣmII

 , (13)
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where d is the dimension of variables X. Comparing with the parametric CL model (9),

the bivariate gaussians also appear in the independent reflection process x and y where the

covariance parameters (1− αt) are connected to the tangential momentum accommodation

coefficients. In the case M = 1, the GM model also shares some strong similarities with

Nocilla [24] model based on a drifted Maxwellian for reflected velocities. However, the

application of the GM model on the preprocessed collision data rather than the original

data, as mentioned previously has fully eliminated the negative reflective velocity cz that

the drifted Maxwellian can not. Furthermore, as seen in (12,13), the GM model is much

more general. Constituted of multiple multivariate Gaussian functions, it does not rely

on independent reflection hypothesis and contains numerous parameters to fit with data.

Those are ϕm, µm and Σm with m = 1, 2, ..,M which can be effectively determined using

the EM algorithm. (see Appendix 1) [25–27].

The scattering kernel is the conditional probability function of reflective velocity P (xR|xI)

given incident velocity and this function can also be written as a mixture form[23, 28]:

PGM(xR|xI) =
M∑
m=1

ϕ̃m(xI)pm(xR|xI). (14)

with the following weights

ϕ̃m(xI) =
ϕmpm(xI)∑M
m=1 ϕmpm(xI)

. (15)

The marginal and the conditional distributions appearing in equations (14) and (15) are

calculated with the formula

pm(xI) =

∫
pm(xR,xI)dxR = N (xI |µmI ,ΣmII), (16)

and

pm(xR|xI) =
pm(xR,xI)

pm(xI)
= N (xR|µmR|I ,ΣmR|I),

µmR|I = µmR + ΣmRIΣ
−1
mII(xI − µmI),

ΣmR|I = ΣmRR −ΣmRIΣ
−1
mIIΣmIR. (17)
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In the next section, we will study the performance of the GM model in comparison with the

NP and CL kernels.

C. Evaluation of model performance and comparisons

Generally, the criteria to judge the quality of a statistical model is the accuracy of fitting

with the given data and more importantly, the ability to generate new data predicting quan-

tities consistent with the realistic system. For evaluation, we propose to compute physical

based parameters including accommodation coefficients, the reflective deviation angle and

boundary conditions coefficients β̄1 and β̄2 at the interface using the GM model and com-

pare with the same parameters issued from NP, CL kernels and the realistic MD simulations.

As mentioned earlier, accommodation coefficients appear in parametric collision models

as constants. However, for realistic atomistic systems, these constants may not be properly

defined. In literature, there exist several methods to identify those coefficients but they

cannot guarantee the uniqueness of the obtained results (see examples in Appendix 2).

Among those works, we consider the method based on correlation analysis [8, 29]. In this

case, the accommodation coefficients are defined via the correlation parameters of the data

α1 = 1− 〈c
′
xcx〉 − 〈c′x〉〈cx〉
〈c′2x 〉 − 〈c′x〉2

, α2 = 1− 〈c
′2c2〉 − 〈c′2〉〈c2〉
〈c′4〉 − 〈c′2〉2

αn = 1− 〈|c
′
z|cz〉 − 〈|c′z|〉〈cz〉
〈c′2z 〉 − 〈c′z〉2

, αe = 1− 〈c
′2
z c

2
z〉 − 〈c′2z 〉〈c2

z〉
〈c′4z 〉 − 〈c′2z 〉2

(18)

While α1 and α2 are the tangential momentum accommodation coefficient (TMAC) and the

energy accommodation coefficient (EAC), respectively (see equation (3)), αe is the normal

momentum accommodation coefficients (NMAC) and αe is the normal energy accommo-

dation coefficients (NEAC). Those expressions are derived from the linear regression of

collision data (c′x, cx), (c′2, c2), (|c′z|, cz) and (c′2z , c
2
z), respectively. Being special composite

parameters depending on the moments of P (c, c′), they can be sensitive to the choice of

P (c, c′) and P (c′). In what follows, we assume that those parameters are obtained from

the equilibrium distribution Peq(c, c
′) which is also the basis of our model. For the sake of

simplicity, we continue to call them accommodation coefficients despite knowing that from

definition (18), they are more statistical than physical quantities.
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In addition to the correlation analysis of velocities in association with the accommoda-

tion coefficients described above, we also examine in details the statistical relations between

the incident γ′, reflection γ and deviation η angles as defined in Fig. 2.

FIG. 2. A simple scheme of the incident-reflective velocities, c′-c, the incident-reflective vertical

angles, γ′-γ, and the deviation angle η.

Other physical parameters to be checked are the interfacial coefficients β̄1 and β̄2. From

the kinetic consideration of the terms involved in equations (1) and (2), β̄1 and β̄2 can be

computed by the expressions

β̄1 =

√
π/2θ〈c′x − cx〉

〈c′x/|c′z|+ cx/|cz|〉
, β̄2 =

√
9π/32θ〈c′2 − c2〉

〈c′2/|c′z|+ c2/|cz|〉 − 3θw〈1/|c′z|+ 1/|cz|〉
(19)

Because of the non-equilibrium origin of the expressions, those coefficients cannot be de-

termined using the equilibrium distribution for the gas at the same temperature and the

same velocity as the wall, i.e P (c′) 6= Peq(c
′|θ = θw, 〈c′x〉 = 0), otherwise we shall encounter

numerical issues. Instead, for the determination of β̄1, the equilibrium distribution with

a non zero mean velocity 〈c′x〉 6= 0 and the temperature of the wall θ = θw is used as the

input gas distribution P (c′) = Peq(c
′|θ = θw, 〈c′x〉 6= 0) and for β̄2, we used the equilibrium

distribution with zero mean velocity 〈c′x〉 = 0 and a temperature different from the wall

temperature θ 6= θw or P (c′) = Peq(c
′|θ 6= θw, 〈c′x〉 = 0). We also highlight the importance

of transforming the variables cz and c′z in the data preconditioning step before training

the GM model. This step guarantees the vanishing probability at c′z = 0 and cz = 0 like

the Rayleigh distribution and the convergence of the rational moments containing 1/c′z

and 1/cz. Unlike the previous analysis of accommodation coefficients and reflective angle

based on the existing collision data at equilibrium, this method requires new realizations,
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i.e using the new input P (c′) to generate new data P (c′, c) with the wall model P (c|c′)

(parametric/nonparametric kernels, GM model or atomic wall).

Another criteria to evaluate the statistical performance of different scattering kernels is

based on the relative entropy, the Kullback-Leibler divergence (DKL) [30]. This quantity is

a measure of the differences between the probabilities P and Q. Defined as the expectation

of the logarithmic difference, its discrete form is written as:

DKL(P‖Q) =
∑
j

P (xj) log
P (xj)

Q(xj)
, (20)

To compute P (xj) and Q(xi), we divide the data space into n bins and choose a Parzen-

window size h, then the probability density of data generated by MD simulation or a scat-

tering kernel is estimated. The density in each bin can be written as:

P (xj) =
Nj∑
j Nj

, (21)

where, xj represents the center of bin j, Nj is the number of data in the window of length

h centered on xj. We note that the above formula can be applied to any distribution of

random variables x, for example velocity, kinetic energy, collision angles etc..

III. APPLICATIONS TO REAL GAS-WALL SYSTEMS

A. Construction of scattering kernels from Molecular Dynamics simulation data

Based on the same systems as Refs. [22, 31], we shall carry out more detailed analysis of

the MD simulation results, in order to construct and evaluate statistical models of collision.

We simulate the process of He or Ar gas atoms impacting smooth/rough Au atomic sur-

face and investigated the gas-solid friction and thermal conductance. The rough surface is

generated by deposing randomly atoms on the smooth surface. The He or Ar molecules are

inserted one by one in the collision zone, only after the molecule interacts with the wall and

goes out of the collision zone, another molecule is inserted in the zone from a random posi-
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Pair A[eV] B[eVÅ−1] C[eVÅ] α[Å−1] γ[Å−2] C6[eVÅ6] C8[eVÅ8] β[Å−1]
He-Au -2.9755 0.47351 4.8980 -2.576 0.8204 9.5073 131.18 3.618
Ar-Au 1.623×104 - - 3.356 - 76.785 1066.9 3.051

TABLE I. The parameters of the He-Au and Ar-Au pairwise interaction potentials [22, 31].

tion with a random velocity. The MD simulations are performed by LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator)[32]. Each collision simulation was run with

one gas atom at a time. The simulation parameters will be described briefly as follows as

follows:

• temperature of the Au surface: 300 K, controlled by the Nosé-Hoover thermostat

• to compute β1 we apply a average velocity to the incident gas atom: ranging from -0.5

Å/ps to 0.5 Å/ps (with a step of 0.25 Å/ps)

• to compute β2 we apply a initial temperature to the incident gas: ranging from 100 K

to 400 K (with a step of 100 K)

The highly optimized version of multibody EAM potential [33] is employed for the descrip-

tion of the interaction between the Au atoms. The Au-Ar and Au-He pairwise potentials,

which are recently determined from ab-initio studies [22, 31], are implemented in LAMMPS

and adopted in this work. The functional form of the pair potentials Vg−Au(R) is given by

Vg−Au(R) =

(
A+BR +

C

R

)
e(−αR−γR2) +

∑
n=6,8

Cn
Rn

fn (βR) . (22)

where R is the distance between the gas atom (′g′ standing for He or Ar) and a gold atom

(Au). The parameters A, B, C, α, and γ are associated with the repulsive part and the

remaining parameters correspond to the attractive part of the potential. The function fn is

the damping function of Tang and Toennies [34],

fn(x) = 1− e−x
(

1 + x+ ...+
xn

n!

)
. (23)

The numerical values of the pairwise potential parameters are given in Tab.I

In this paper, to construct the scattering kernel, we use the velocity data of the MD sim-

ulations under the equilibrium state, in which the temperature of gas flow is equal to the
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temperature of the atomic wall (300 K) and the mean velocity of the flow equals to 0. We

can calculate the accommodation coefficients for the CL kernel using Eq. (18). For the NP

kernel, we followed the model of Ref. [22], the He velocities range from −40 to 40 Å/ps, and

the Ar velocities range from −20 to 20 Å/ps. The incident and reflective velocity spaces

were discretized into 100 and 1000 intervals, respectively, the Parzen-window size h = 1

Å/ps. The probability that a reflective velocity does not belong to a category is determined

by interpolation. In the GM model, the number of mixtures M is a free parameter which

needs to be chosen before the learning. To avoid the risk of overfitting or underfitting, there

is an optimal value of M for a given MD data size. We tested the number of Gaussian

functions from M = 1 to 512 with different initial covariance matrices and mean vectors.

To find the optimal M we calculate the energy accommodation coefficient α2 using the

reflective velocity generated by GM model and Eq. (18). In Fig.3, we found that when M

is equal to 64 (26), the performance of the GM model is the best and much better than CL

and NP models. So the GM model with M = 64 has a good accuracy and a reasonable

computation time and is used in the present study.
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FIG. 3. Number of Gaussian vs. α2 determined by statistical models and MD

We then used each kernel, CL, NP and GM, to generate new incident-reflective velocities

(about 105 data points) based on incident velocities under equilibrium or non-equilibrium

states. We investigated the characteristics of the scattering kernels according to the following

14



aspects:

• the accommodation coefficients and the momentum/energy distribution

• the incident, reflective, and deflection angles

• the surface friction and the thermal conductance

B. Accommodation coefficients

We decomposed the velocity into the normal and the tangential components and then

studied the correlations between the incident-reflective velocities and the kinetic energy.

Using Eq. (18), we can calculate TMAC (α1), NMAC (αn), and EAC (α2) from incident-

reflective velocity data. Tab. II presents TMAC, NMAC and EAC of He/Ar gas on the

smooth/rough Au surface using the atomic wall and the different statistical models of col-

lision (GM, NP, CL). From this table, we find that TMAC and NMAC obtained by the

different kernels are very close to the atomic simulation results. However, significant differ-

ences are observed for the coefficient EAC. The result of the GM kernel is consistent with

the atomic model, but the NP and CL kernels considerably overestimate EAC, especially

for the He-Au rough surface system. We note that, unlike Ar, He is a special gas which

has a very small atomic mass and its interaction with the gold surface is very weak (see ref.

[22]). These points can explain the nearly perfect elastic collision of an helium atom on a

Au wall, even for the rough atomic surface. In other words, while the atomic motion can

change its direction after collisions due to the surface corrugation (e.g via the influences of

the atomic roughness, the thermal motion, and the energy landscape), the atomic kinetic

energy is almost conserved.

Using the density estimator presented in Eq. (21), we can estimate the joint probability of

the incident-reflective velocities, and of the kinetic energy. The kinetic energy distributions

determined by the atomic wall use and by different scattering kernels are plotted in Fig. 4.

The energy clouds of the atomic and GM models are visibly narrower than those of the CL

and NP kernels. From the column figures of both atomic and GM surface, we can see that

roughness does not significantly change EAC (16.7% for He, 5.9% for Ar). However, this

trend cannot be captured by both NP and CL kernels.

15



Gas Surface model
Smooth Rough

α1 αn α2 α1 αn α2

He

Atomic 0.012 0.052 0.020 0.326 0.293 0.024
GM 0.012 0.052 0.021 0.327 0.297 0.031
NP 0.015 0.058 0.040 0.323 0.295 0.303
CL 0.012 0.055 0.036 0.325 0.317 0.416

Ar

Atomic 0.425 0.803 0.596 0.688 0.831 0.633
GM 0.425 0.798 0.597 0.686 0.835 0.643
NP 0.450 0.823 0.665 0.701 0.844 0.759
CL 0.424 0.814 0.739 0.689 0.841 0.865

TABLE II. The tangential momentum accommodation coefficient (TMAC) α1, the normal momen-

tum accommodation coefficient (NMAC) αn, and the energy accommodation coefficient (EAC) α2,

computed using different statistical models: GM, NP, CL, and the atomic (MD) model. The con-

struction of the statistical models NP, GM and CL from MD data is discussed in sec. IIIA. The

accommodation coefficients associated to the statistical models are computed based on generation

of new data and Eq. (18). It is noted that the CL model uses tangential momentum accommoda-

tion coefficient (TMAC) and normal energy accommodation coefficient (NEAC) computed by MD

as parameters. Consequently, numerical TMAC values of CL model are extremely close to MD

results.

These phenomenas are further illustrated in Fig. 5. The KL divergence DKL between

different statistical models and the atomic model was calculated. We can notice that for

tangential and normal momentums, the DKL of the GM and NP kernels is at the same level.

For the CL kernel, although the DKL for cx and cz are larger than those of the other two

kernels, its good performance in determining TMAC and NMAC (Tab. II) indicates that

CL kernel is still a good kernel to generate a single velocity component. Meanwhile, Fig. 5b

presents anomalies for the kinetic energy. The energy DKL of NP and CL kernels are close

to 1 for the He/rough Au case, meaning that the incident-reflective kinetic energy distri-

butions determined by the NP and CL kernels differ greatly from the results of the atomic

simulations. Considering the good performance of CL and NP kernels for the momentum

reflection, and less for the kinetic energy, it is suggested that the independent assumption

of Eq. (8) may oversimplify the true behavior especially for nearly perfect elastic systems

like He/Au. This deficiency has been properly covered by the GM model. We note that the

EAC value difference between the statistical models is due to the correlation parameter

〈c′2c2〉 =

∫
c′2c2Peq(c, c

′)dcdc′

16



FIG. 4. The joint probability density of incident-reflective kinetic energy with unite Å
2
/ps2 (the

prefactor m/2 is removed for simplicity) determined by the atomic simulations, the Gaussian

mixture (GM), the nonparametric (NP), and the Cercignani-Lampis (CL) kernels. The horizontal

axis indicates the incident energy c′2 and the vertical axis indicates the reflective energy c2. The

red line is the least-square linear regression of kinetic data, its slope is equal to 1-α. When the

red line is close to the diagonal dashed line, the reflection is close to be specular (elastic collision).

When the red line is close to the horizontal dashed line, the reflection is diffusive.

As a result, the accuracy of Peq(c, c
′) governs the accuracy of the correlation parameter and

EAC. While it is not trivial to connect the elastic collision phenomena to the property of

the probability function Peq(c, c
′) or P (c|c′), we can conclude mathematically that using

the decomposition postulate (8) like CL and NP models oversimplifies the real behavior of

Peq(c, c
′). In other words, due to the exchange between the velocity components in order to

conserve the energy, each of post-collision velocity components is expected to depend on all
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the pre-collision components.
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FIG. 5. The Kullback Leibler divergence DKL(Atomic||Kernel) of momentum and kinetic energy

determined by the atomic simulations, the Gaussian mixture (GM) kernel, the nonparametric (NP)

kernel, and the Cercignani-Lampis (CL) kernel.

C. Collision angles

To further study the performance of each scattering kernel, the probability densities of

deviation angle η and incident-reflective vertical angles γ′-γ determined by atomic sim-

ulations and scattering kernels were analyzed. The geometric definitions of η, γ′, γ are

illustrated in Fig. 2.

Angle η can be calculated from velocity components c′x, c
′
y, cx, cy and measures the de-

viation of the gas atom reflection from the incident direction in xy-plane. The incident

angle γ′ and reflective angle γ depend on the incident, c′, and reflective, c, velocities,

respectively. By calculating the correlation between γ′ and γ, we can understand the aber-

ration of the reflection in the normal direction.

Figure 6 shows the probability of the reflective direction on the tangential plane obtained

from atomic simulation data, GM, NP and CL kernels under equilibrium state. Numerical

results show that the rough surface can increase the deviation of the reflective direction

with respect the incident direction in xy-plane, especially the percentage of backscattering

(π/2 < η < 3π/2). As the result, the overall scattering is more diffusive and the probability

contour is shifted towards and envelope the origin. In contrast, the contour of reflection on

smooth surfaces is narrower. From analysis of gas atoms, the adhesion between Au wall and

Ar gas atoms is stronger than for the He-Au system, so that the reflection direction has a

greater probability of deviating from the specular direction. From Fig. 6, we can find that
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FIG. 6. The probability density of the reflective deviation angle η determined by the atomic

simulations, the Gaussian mixture (GM), the nonparametric (NP), and the Cercignani-Lampis

(CL) kernels in polar coordinate system. The distance from the curve to the origin, the radius,

indicates the probability of associated to angle η, which coincides with the angle coordinate of the

system.

both CL and NP kernels overestimate the diffusivity of the reflective direction. Only the

probability contour of the GM kernel is identical with the one of the the atomic simulations.

Figure 7 shows the joint probability density of γ′ and γ. When the deviation angle is

small, the data population becomes narrow and shrinks toward the diagonal line. Through

these cloud figures, we can also confirm that the roughness of the wall surface and the

bonding properties between the gas and the wall affect the reflective direction of the gas

atom. To quantitatively compare the differences between the three types of kernels and the

atomic simulations, we calculate the KL divergence between the scattering kernels and the

atomic wall results. The KL divergence of the reflective angle probability is presented in

Fig. 8. The results of the figure confirm the differences observed in Figures 6 and 7. The KL

divergence of the CL kernel is over 3 times larger than that of the GM kernel, especially for

He-Au rough surface system. Basically, the CL kernel incorrectly estimates the distribution

of the reflection direction. The results of the NP kernel for the Ar-Au system are better
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FIG. 7. The probability density of the incident-reflective vertical angles determined by the atomic

simulations, the Gaussian mixture (GM), the nonparametric (NP), and the Cercignani-Lampis

(CL) kernels. The horizontal axis indicates the incident angle γ′ and the vertical axis indicates the

reflective angle γ. The incident and reflective angles range from 0 to 90◦

than the CL kernel ones, the corresponding KL divergence is under 2 times larger than the

GM kernel ones in terms of tangential deviation angle η. We can clearly see that the GM

kernel has a great advantage in predicting the distribution of the reflection directions.
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FIG. 8. The Kullback-Leibler divergence DKL(Atomic||Kernel) derived form Fig. 6 and 7.

D. Interfacial friction and thermal conductance

The surface friction and thermal conductance properties can be characterized by the ve-

locity slip coefficient, β̄1, and the temperature jump coefficient, β̄2, respectively. These two

coefficients can be determined by the accommodation coefficients determined previously and

relation (3) or by a direct method based on equation (19) and the non-equilibrium collision

simulation data. This step permits to test the ability of the GM model in terms of gener-

ating new data and reproducing these important physical properties for real systems. We

note that if the final objective is to construct kernels usable in kinetic simulation methods,

this step is crucial and guarantees the reliability of the results.

The results for two coefficients are reported in Tab. III. The coefficient β̄1 depends on

the accommodation momentums and is sensitive to the surface roughness. It means that

the friction significantly increases β̄1. These effects are observed for both Ar/Au et He/Au

systems. From smooth surface to rough surface, the β̄1 value increases about 34 times for

He-Au system and about 2 times for Ar-Au system. In contrast, the contribution of the

surface roughness to the increase of the thermal conductance is relative small, about 20%

for He and 9% for Ar.

The numerical tests confirm again the superior performance of the GM model. This is the

statistical model that produces the best results when compared with the atomic model. It

is surprising to find that the simple analytical relation between β and α (Eq. (3)) works

relatively well and yields values of the same order as MD and GM models. It is less accu-

rate than the GM model but better than other models in terms of evaluating the thermal

coefficient β̄2. In Appendix 2, we also carry out theoretical investigation of CL models.
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Gas Scheme
Smooth Rough

β̄1 β̄2 β̄1 β̄2

He

Atomic 0.0069 0.0123 0.236 0.015
GM 0.0064 0.0120 0.240 0.020
NP 0.0087 0.0194 0.194 0.176
CL 0.0060 0.0186 0.205 0.252
α/(2− α) 0.0060 0.0100 0.195 0.012

Ar

Atomic 0.276 0.445 0.571 0.485
GM 0.283 0.442 0.555 0.484
NP 0.301 0.459 0.559 0.548
CL 0.273 0.518 0.530 0.644
α/(2− α) 0.270 0.424 0.524 0.463

TABLE III. The friction coefficient (β̄1) and the thermal conductance (β̄2) determined by different

schemes.

Specifically, we compute analytically the slip and jump coefficients β̄1 and β̄2 for the CL

model with parameters αt, αe using the same approaches as the MD model. Results show

that the obtained expressions for β̄1 and β̄2 in terms of αt, αe are different but the numerical

differences are very small for the whole admissible range (0, 1) of αt and αe. However as

discussed previously, the coefficients α1 and α2 defined by Eq. (18) are more of statistical

nature and furthermore α2 is not associated to any parametric statistical models in literature

(except for the Maxwell model). This fact will limit the application of those coefficients in

particle and/or statistical based simulation methods like MD or DSMC. In contrary, the

GM model is not subject to this limitation.

FIG. 9. The average relative error of the different schemes, GM, NP, CL, and α, comparing with

the atomic simulations.
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IV. CONCLUSION

In this paper, we present the application of unsupervised learning techniques in the

construction of wall-gas models and the computation of interfacial properties like friction

and thermal conductance. The data obtained from the Molecular Dynamics simulations of

gas-wall collision is used to train the scattering kernels, i.e statistical collision models that

predict the post-collision velocity from a given pre-collision velocity. Due to the common

similarities with the well-known Cercignani-Lampis (CL) model in kinetic theory and the

good overall performance in general data treatment, the GM model is chosen for this purpose.

Unlike CL and other parametric scattering kernels in literature, the GM model is flexi-

ble with unlimited number parameters and supported by EM algorithm, a robust technique

to identify those parameters from data. We also propose to use physical and statistical based

criteria e.g accommodation coefficients, friction and thermal conductance, collision angles to

evaluate the performance of the GM model. Applications to real gas-wall systems including

He-Au and Ar-Au confirm the accuracy of the model. All the coefficients obtained/predicted

by the GM model are close to MD results. The overall accuracy of the trained GM model

assessed by KL divergence is also superior to other models. The constructed model is useful

both for theoretical studies of boundary conditions and for the gas simulation methods like

MD and DSMC by saving considerable computation cost devoted to the atomic wall.
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APPENDIX

1. Expectation maximization algorithm

Expectation maximization (EM) algorithm is an iterative method to find the maximum

likelihood of parameters in statistical models, which is introduced by Dempster et. al. [26].

The parameter set of the GM model is noted as Θ = (θ1, θ2, ...θM) and the mth parameter

is θm = (ϕm,µm,Σm). Noting samples as X, i.e Xi corresponds to the ith training data of

total N training data, the likelihood can be written as

L(X|Θ) =
N∏
i=1

p(Xi|Θ),

p(Xi|Θ) =
M∑
m=1

ϕmN (Xi|µm,Σm) (24)

To determine the parameter Θ, we can maximize the log-likelihood function:

Θ = arg max
Θ

logL(X|Θ)

= arg max
Θ

N∑
i=1

log p(Xi|Θ), (25)

and the sun of log-likelihood function in Eq. (25) can be replaced by the expectation of

log-likelihood function:

Θ = arg max
Θ

E (log p(Xi|Θ)) . (26)

Then, we can use an iterative algorithm to determine the parameter Θ of the GM model. The

EM algorithm can be concluded in four steps: initial state, E-step, M-step and convergence

test:

1. Initial state: take the initial value θ
(0)
m = (ϕ

(0)
m ,µ

(0)
m ,Σ

(0)
m ) for each Gaussian distribution

in the GM model.

2. E-step: use the parameters of the (r− 1)th iteration to calculate the mixture weights wim
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of each sample Xi for the (r)th iteration:

wim =
ϕ

(r−1)
m N (Xi|µ(r−1)

m ,Σ
(r−1)
m )∑

m ϕ
(r−1)
m N (Xi|µ(r−1)

m ,Σ
(r−1)
m )

. (27)

3. M-step: use the wim calculated by E-step to determine the new parameters µ
(r)
m , Σ

(r)
m and

ϕ
(r)
m :

µ(r)
m =

∑
iwimXi∑
iwim

Σ(r)
m =

∑
iwim(Xi − µ(r)

m )(Xi − µ(r)
m )T∑

iwim

ϕ(r)
m =

1

n

n∑
i=1

wim. (28)

4. convergence test: conclude the iterative process if the following conditions are met:∣∣∣∣∣1− E
(
log p(Xi|Θ(r)

)
E (log p(Xi|Θ(r−1))

∣∣∣∣∣ < ε, (29)

where, ε is a threshold. Repeat the steps 2 to 4 until the expectation of the log-likelihood

function converge.

The advantage of the EM algorithm is that it guarantees local convergence, but the drawback

is that the algorithm is sensitive to the initial state. In practice, the k-means algorithm [25]

and the iterative pairwise replacement algorithm (IPRA) [23] have a good performance in

giving an initial state for the GM model. In addition, we can also use multiple random initial

states and then compare the distributions of GMs obtained with different initial states.

2. Comparisons of interfacial coefficients associated to the CL model by different

methods

We consider the CL kernel whose analytical expression is given by (9) and examine the

coefficients α1, α2, β̄1, β̄2 computed from the correlation analysis and by the non-equilibrium

method.
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Using the equilibrium distribution PCL
eq (c, c′), the moments f(c, c′) in correlation analy-

sis can be calculated by

〈f(c, c′)〉 =

∫
f(c, c′)PCL

eq (c, c′)dcdc′ (30)

which yields the explicit expressions

〈cx〉 = 〈c′x〉 = 0, 〈cxc′x〉 = (1− α1)θw, 〈c2
x〉 = 〈c′2x 〉 = θw, 〈c2

z〉 = 〈|c′2z |〉 = 2θw,

〈c2〉 = 〈c′2〉 = 4θw, 〈c2c′2〉 = 4θw
2
(
αt

2 − 2αt − αe + 6
)
, 〈c4〉 = 〈c′4〉 = 24θ2

w. (31)

Substituting the above results in (18), we obtain coefficients α1, α2

α1 = αt, α2 =
1

2
[αe + αt(2− αt)] (32)

and the associated interfacial coefficients, β̄1, β̄2

β̄1 =
αt

2− αt
, β̄2 =

αe + αt(2− αt)
2 + (1− αe) + (1− αt)2

, (33)

under assumption of the validity of the relation β̄i = αi/(2− αi) with i = 1, 2.

Regarding the non-equilibrium method, we impose the input distribution P (c′) at a different

temperature or velocity from the wall and use the scattering kernel to compute P (c)

P (c) =

∫
PCL(c|c′)P (c′)dc′ (34)

To determine β̄1 and β̄2 with (19), we need to compute the moments

〈f(c′)〉 =

∫
f(c′)P (c′)dc′, 〈f(c)〉 =

∫
f(c)P (c)dc (35)

yielding the final results (after considering θ ' θw)

β̄1 =
αt

2− αt
, β̄2 =

3

2

[
αe + αt(2− αt)

(1− αe) + 2(1− αt)2 + 3

]
. (36)
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We also noted that in literature, there also exists different expressions of coefficients β̄1, β̄2

(see Ref. [5, 16])

β̄1 =
αt

2− αt
, β̄2 =

αe + αt(2− αt)
4− 2

5
[3αe + 2αt(2− αt)]

. (37)

Despite using non equilibrium gas distribution as input distribution, the derivation of these

equations is different from the non equilibrium method used in the present work. It is based

on the moment balance at the wall and the temperature, velocity and stress and heat flux

are parameters of input distribution (Chapman-Enskog) and are not computed from both

input and output distributions as in (19).

A general remark can be made here that while all the methods agree in terms of slip

effects (coefficient β̄1), analytical expressions for the interfacial conductance are different

(coefficient β̄2) . It is suggested that these discrepancies are due to the fact that the EAC

coefficient is undefined for the CL wall kernel [8], except for the diffusive wall αe = αt = 1.

Nevertheless, the discrepancies between the methods are not significant, maximum 6% at

the extreme contrast cases αt = 1, αe = 0 or αt = 0, αe = 1 (see Fig. 10).
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FIG. 10. (a) β1 as a function of αt. (b) Comparisons between different methods of computing β2

with the same CL models: the equilibrium method (33), the nonequilibirum method 1 in this work

(36), the nonequilibirum method 2 in literature (37).
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(2015).

[32] S. Plimpton, P. Crozier, and A. Thompson, “Large-scale atomic/molecular massively parallel

simulator, http://lammps.sandia.gov (accessed may 20, 2018),”.

[33] H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B 83, 134118

(2011).

[34] K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).

29


