N

N

Flatness-based control of a two-degree-of-freedom
platform with pneumatic artificial muscles

David Bou Saba, Paolo Massioni, Eric Bideaux, Xavier Brun

» To cite this version:

David Bou Saba, Paolo Massioni, Eric Bideaux, Xavier Brun. Flatness-based control of a two-degree-
of-freedom platform with pneumatic artificial muscles. Journal of Dynamic Systems, Measurement,
and Control, 2019, 141 (2), pp.021003. 10.1115/1.4041445 . hal-01873100

HAL Id: hal-01873100
https://hal.science/hal-01873100
Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01873100
https://hal.archives-ouvertes.fr

Flatness-based control of a
two-degree-of-freedom platform with pneumatic
artificial muscles

David Bou Saba
Laboratoire Ampére CNRS,
INSA Lyon, Université de Lyon,
69621 Villeurbanne CEDEX, France
Email: david.bou-saba@insa-lyon.fr

Paolo Massioni
Laboratoire Ampére CNRS,
INSA Lyon, Université de Lyon,
69621 Villeurbanne CEDEX, France
Email: paolo.massioni@insa-lyon.fr

Eric Bideaux
Laboratoire Ampere CNRS,
INSA Lyon, Université de Lyon,
69621 Villeurbanne CEDEX, France
Email: eric.bideaux@insa-lyon.fr

Xavier Brun
Laboratoire Ampere CNRS,
INSA Lyon, Université de Lyon,
69621 Villeurbanne CEDEX, France
Email: xavier.orun@insa-lyon.fr

Pneumatic artificial muscles are an interesting type of adeop controller introduced by Fliess et all]. In addition,
tuators as they provide high power-to-weight and power-tahis approach is model-based, and it can be applied thanks
volume ratio. However, their efficient use requires veryuaccto the very accurate models of the muscles, the platform and
rate control methods taking into account their complex antthe servovalves that have been recently experimentally de-
nonlinear dynamics. This paper considers a two-degree-afeloped. Second, we solve the overactuation of the platform
freedom platform (a simplified version of a Stewart platfprnby an adequate choice for the range of the efforts applied by
whose attitude is determined by three pneumatic musclbe muscles. In this paper, we recall the basics of this cbntr
controlled by servovalves. An overactuation is present &schnique and then show how it is applied to the proposed
three muscles are controlled for only two degrees of freedoexperimental platform. In addition to the flathness-basad co
The contribution of this work is twofold. First, whereas odroller, a proportional-integral controller is added in der
of the literature appraches the control of systems of simildo overcome the modeling errors. At the end of the paper, the
nature with sliding mode control, we show that the platforrmproposed approach is compared to the most commonly used
can be controled with the flatness-based approach by chositontrol method, and its effectiveness is shown by means of
an appropriate flat output. This method is a non-linear operexperimental results.



Nomenclature models of PAMs reported in the literature either do not take

Py Atmospheric pressure. into consideration this phenomenon when designing the con-
8o Weave angle of the muscle at rest. trol law, or consider it as a model uncertainty. It is note-
Do Diameter of the muscle at rest. worthy to mention that while many models of PAMs can be
lo Length of the muscles at rest. found [2,13,14], the model we adopt in this work is a new,

o Experimentally determined power coefficient. experimentally obtained model§] resulting from static and

K Experimentally determined coefficient. dynamic tests done at our laboratory. These tests have pro-
€a Experimentally determined coefficient. vided a very accurate model for the specific PAM that we
gp Experimentally determined coefficient. consider in this work. As observed experimentally, the hys-
k Polytropic index (air). teresis phenomenon is relatively small and can be approxi-
r Perfect gas constant. mated by the average of the values obtained in both compres-
T Airtemperature. sion and deflation at each working point of the muscle. Itis

R Muscle application point distance from center (constantjkorth mentioning that other references have adopted other
J Momentum of inertia about an horizontal axis (constantjpossibly more complicated) approaches to solve this jssue
@1 =-—90¢° Angular position of the 1st muscle (constant). see for instance Schindele et dlf].

@ =30° Angular position of the 2nd muscle (constant). The topic of this paper is a study of a two-degree-of-
@3 =150 Angular position of the 3rd muscle (constant). freedom platform, actuated by three pneumatic muscles. The
B¢ Angular position of the platform aroundaxis. objective is the synthesis of a model-based control lawallo

6y Angular position of the platform aroundaxis. ing the tracking of a reference trajectory for a wide opesti

P Absolute pressure inside tif8 muscle. range of the muscles. The platform is constrained to a lonite

v \oltage applied to thé" servovalve. operating domain due to mechanical constraints and to the
V; Volume of thei" muscle. fact that the muscles generate only pulling forces. Fuither
g Mass flow into thé!" muscle. more, the system can be considered as overactuated (three
& Contraction of the!" muscle. actuators moving two degrees of freedom), which requires a
€o Initial contraction of the muscle. control allocation strategy.

F  Force applied by thé" muscle. In this work, we propose a flatness-based (feedforward)
I Perturbation torques. control [1] that simultaneously exploits the model of all the

elements involved and solves the over-actuation problem.
The originality of adopting this model-based approachities

1 Introduction the very detailed and recently developed experimental mod-

Pneumatic artificial muscles (PAMs) are an efficientls of the muscles, that together with the inherently nenlin
type of actuators featuring high power-to-volume ratio angar control method, lead to a high accuracy in the trajectory
high pulling efforts at a relatively low price2[3] This makes tracking for a wide range of set-points. Furthermore, we
their use quite interesting in many engineering and robofirovide a theoretical proof of the flathess of the system by
applications, even if their control is problematic due te thconsidering a flat output that also allows an allocation con-
non-linearity found in their behavior. trol strategy. The robustness with respect to model errors

The control of PAMs has been approached with seis provided by coupling the flatness-based controller with a
eral methods trying to cope with the strong nonlinearitiggroportional-integral (PI) controller feeding back theoer
of their dynamics. The approaches found in the literatukeith respect to the reference trajectory.
are mainly inherently nonlinear control method4;q] slid- The paper is structured as follows. At first, we intro-
ing mode controllers are one of the most common choicefyce the notation used throughout the paper. Subsequently,
[6,7, 8] also sometimes combined with adaptive or neurale introduce the model of the platform and of all its ele-
controllers, P, 10, 11] or backstepping.12] Sliding mode ments, including the pneumatic artificial muscles. We then
controllers in fact provide enough robustness with resfmectshow that a proper choice of outputs makes the system flat,
a dynamical model containing uncertainties. Nonetheless)d therefore a flatness-based control law is possibler-Afte
the main drawback of the sliding mode control is the chattewards, the problem of overactuation is studied. At last,essom
ing phenomenon (quick switching of the control action). experimental results are shown before concluding.

The nonlinearity in the model of the pneumatic muscles
stems from the fact that the contraction effort they produce
is a nonlinear function of both internal pressure and netati2 Notations and definitions
length contraction (as shown in Fig3). Some hysteresis Let R be the set of real numbers, abdthe set of the
effects can also be remarked as the effort produced is rsictly positive integers. For a matri&, A" denotes the
the same if the muscle is being contracted or deflated. Ttranspose ofA. Given two functionsf (x),g(x) € R", with



x € R", let the Lie derivative off alongg be defined as
E-1
Lof(x) = 2 . g(x). Forg e N, letL§f (x) = 29" . g(x), . _ .
with L (x) = f(x). For all signalsx depending on the time . IS ) Inclinometer
t, X© will indicate its&-th time derivative, i.ex() = & = x Platform
x? = %‘ =%, etc.
All the symbols concerning the pneumatic muscle pla
form are defined in the nomenclature section. T

Pneumatic muscle

3 The pneumatic platform
3.1 Description Z
The pneumatic platform studied in this paper is reprgee®
sented in Figl and Fig.2. It consists of a metal plate fixed il
to a central spherical hinge on top of a vertical beam, wit
three pneumatic muscles (Festo DSMP), controlled by sé
vovalves Festo MPYE-5-M5-010-B, attached radially to thf#
plate at equally spaced points. Due to the structure of thmss==
system and since the muscles can only exert pulling efforts
in the same direction of their central axis (which is assumed Fig. 1. The experimental platform.
to be vertical in our case), the motion of the platform will
be restricted to only two degrees of freedom, i.e. the two
rotational anglesty and®y) with respect to horizontal axes 0,
passing through the hinge. An inclinometer (TE Connec-
tivity G-NSDOG2-001) provides the measurement of these
angles, and pressure sensors (Festo SDET-22T-D10-G14-U-
M12) are present at each muscle. The sensors and acuators
are connected to a computer through a dSPACE system.
This platform can be considered as a simplified versio
of a Stewart platform. Therefore, it is a test bench on which
control laws can be tried and evaluated before moving to
more complex systems with more degrees of freedom.

Servovalve

Pressure sensor

Fig. 2. Axonometric view and view from the top of the top plate,
with definition of the axes X, Y, Zand the rotation angles By and 6.
3.2 Model M1, M2 and M3 are the attachment points of the three pneumatic

This section reports the differential equations descgbir?"iﬁda' muscles and define the three angular positions @1, @2 and

the system dynamics and the different assumptions made $agiven in the nomenclature section.

more detailed description of the complete model of the sys-

tem is presented ?n Bou Sapa et al7]} with all the hypothe- time derivative of;, i.e.

ses and explanations. The interested reader may refer s wg]

to Sermeno Mena et allf] for more details (including how

the hysteresis has been approximated) about the expesment & :B [—éxsin(n OBy COSBy

made on the PAM model we adopt. lo (2)
The first elements to be modeled are the pneumatic mus- +9y (cosp cosBy + sing sinBysindy) | .

cles, which are supposed to be identical (they have the same

length at restp, the same initial contractiogy, etc.). The

length contraction of each muscleq {1,2,3}) can be writ- The direct dynamical model[]is written as

ten as:
8, il
2| =M (6x,6 +=T 3
si:IB(cosrgsiney—sincgsinexcosey)+so. Q) [ey} (6 ) Z J ©
0

Subsequently, the rate of contraction of each muscle is thehere the matri (6, 8y) is given in equationd) at the top



M (6,.6,) R — singy cosBy cosBy — singp cosBy cosBy — sing3 cosBy cosBy @
X =3
7 cosp; cosBy + sing Sinby sinBy cosy, cosBy + sing, sinby sinBy cosps cosBy + Sings sinby sinby
R — singy cosBy cosBy — singp cosBy cosBy
| COSp1 cOSBy + singy SNy sinBy cosp, coSBy + sing sinby sindy
()
R — sing; cosby cos
G608y =5 Y

cosp3 cosBy + sin@s sinBy sinby

of the next page. The term= [y, [y} " contains the torques and a, K, &, and &, experimentally determined constants
that will not be modeled (as an arbitrary choice) and will bEL5]. Considering that the operating range of the servovalves
left to the feedback control to take care of. Such terms ai®1.25 bar< P < 7 bar, the contraction force in the operat-
either due to friction, or to gyroscopic couplings betwdsa t ing domain for each muscle is represented in BigOnly

two axes, or to external forces acting on the platform. Thmntraction forces are possible (the muscles cannot push),
friction terms are quite difficult to model exactly, whereasherefores > 0.

the gyroscopic couplings are relatively small due to thé fablotice that the angles of the platforriy( 6y) are physi-
that the platform keeps always almost horizontal and moveally constrained to be in the rangel5°, 15°]. Accordingly,

at relatively low angular velocities. This allows considgr contractiong; are within the rangé-0.03,0.21], for which

the platform’s movement around each axis as decoupled, &b;) is never equal to 0.

cording to @) above. Such an equation can also be written

as

1000

éx 1 ‘ ‘ ‘ ‘ P‘=1.25bar
A =E e e G e e -r 6 Pl=2bar |
{Gy] (6x,6y) [Fz} + G (6x, y)F3+J (6) z::i\ —n |

- P =4bar
P‘:Sbar

700 1\
W e P, =6 bar
\ -

600 | A\ — — —P,=Tbar

where the matrices (64,08y) and G(6x,6y) are given in
equation ) at the top of the next page. This form separates
the effect of the first two forces with respect g, which
makes it easier to approach the overactuation problem.

In turn, the effort exerted by a pneumatic muscle can be
modeled with a quasi-static modélq, 15] as

Traction force (F.) [N]

0.25

Fi(R&) =H(&)(R —Po) + L(&i), ()

Contraction (8‘)

where Fig. 3. Contraction force applied by a muscle as a function of the

contraction & and absolute pressure P,.

™3 [3(1—&)° 1

H (Ei) = T tan? 60 - Sinzeo ) (8)
The pressure inside each muscle is modeled as
&i(gi—¢ : krT P oV(g).
L(si):Kﬁv 9) P':W qi(PI,vi)—# aii')si (10)



wherek is the polytropic index of the gas,the perfect gas i.e. we can always find the required voltagehat should be
constant]T the temperaturey; the mass flow of gas, and  applied to theét" servovalve in order to have a desired flow
the volume of the muscle, for which the following formulag; for a defined pressum in theit® muscle. The inverse of
has been proposedT, 15] this model will be used in the control synthesis.

v m_, 1 (1-¢)°

3.3 Control objectives
— (&) = =D3lo | — +(a+1
o¢i (&) 4-9% " sirPe, ( )

The aim of this test rig is to demonstrate the ability to
track any smooth trajectory &y and 6. Trajectories of
The paramete®g, lo and6p are defined in the nomenclaturethIS k.|nd can be chosen as |nf|n|t.ely.d|fferent|able pieasew

h . . functions without loss of generality in the control syntises
section. The temperatufeis considered constant, due to the
fact that the relative variation of the temperature durimg t

movement of the muscle is very low and thus neglected far

simplicity. X .
At last, the mass flow of gag entering each muscle is a The acgura_te modelln?,_ previously proposed, enables
roper application of non-linear control theory, such as

nonlinear function of the pressure inside the muscle and t gtness-based control. Before beina apolicable. an essen-
voltagev; fed to the servovalve. More precisely, it can b ) 9 app '

modeled 4] as: ial cond|t|or_1 has to be verified; it consists in proving that
the system is flat. The relevant concepts about flatness are
recalled here.

(11)

Model analysis and control

ai(vi,R) = o(R) +W(R,sgnvi))vi (12)

4.1 Flatness and flatness-based control
where¢ andy are two invertible polynomial functions with The concept of flat system and flathess-based control for
a minimal degree of 4 and 5 respectively. The coefficients abnlinear systems have been introduced in Fliess etlpl. |
the polynomial functions have been determined numericalBasically, the “flatness” is a property of a dynamical system
by approximation of the experimental data obtained by oand a choice of its outpwyt as defined here.
research group at the Ampeére laboratofyd [This function o )
is graphically depicted in Figl. We note as well that the dy- Definition 1 (Flat system [ 1,19]). A dynamical system
namical model of the servovalve is neglected due to its vef§ €quations
fast dynamics and large pass-bard00 Hz) compared to
the dynamics of platform and muscles { Hz). x= f(x)+g(x)u (13)

with xe R", ue RMis flat if and only if there exist aR™-
150 valued smooth function h depending on x and a finite number

£ 200
é o p € N, such that the square differential-algebraic system de-
g’w" fined by(13) and the by the following equation
2 o
2 00 y=h(x,u,u® ... u®) (14)
-200
° has a solutior(x, u) of the form
Voltage (v.) [\?]
-5 1 2 3 4 5 ° ! X: r](y7y(1)7"'7y(\)7l>)7 (15)
Pressure (P‘) [bar]
Fig. 4. Mass flow of a servovalve as a function of voltage Vj and U— E(y y(1> y(\,)) (16)

absolute muscle pressure B,.

for an appropriate value of € N, wheren and¢§ are smooth
Note that from equationl@) and because of the invert-functions inR" and R™ respectively. The output y is then
ibility of ¢ andy, the model of the servovalve is invertible called “flat output”.



The idea of flatness can be explained briefly as follow&onsequently, the following open-loop law
If one can choose as many output varialjleas inputs (the
system is square), in a way to recover the state and the inputs

(P1)
from these output variables and their successive deragtiv yl,rlef Lﬁc)lhl(x)
then the system is flat and a flatness-based, open-loop con- i ygf’fgf L?2ha(x)
trol law can be derived by system inversion (as applied later u=A(x) - . (19)

on). The subtlety in this task lies in the capability of exgere
ing every state variable and input variabldependentlyas

functions of the output variables and their successivevderi
tives. Two fundamental concepts for system inversion are tra
relative degree and the coupling matrix.

o) [t

ref

an be used to track a given smooth reference trajectory
Vref(t). This kind of flatness-based control has been applied
in the literature in many examples, for instance in motion
Definition 2 (Relative degree). The relative degre_e of planning p0], for 2D crane control {] and for a standard
the Fr_‘ Eomponent yof y is the smallesp; € N for which 1y yrajler system control41]. In these cases, each control
Lo, L "hi # O for at least one value of j, & {1,---,m}. variable has been explicitly determined as function of the
The relative degree will determine how many times an oWesired outputs and their successive derivatives. Theesxpr
put has to be differentiated in order to get to a correspogdinsion given in (9) is a compact matrix form of the flatness-
input variable. based control for a multi-input multi-output system. It & e
sential to note that is a function ofy,e; and its derivatives
Definition 3 (Coupling matrix). ~ The coupling matrix only, since according to the definition of a flat system, the
A(x) is given by the expression: statex verifies (L5). It is therefore a major difference with
input-output linearization techniques.

LglL‘f’l’lhl ngL‘f’l’lhl LgmL‘f’l’lhl Remark 1. A necessary condition to include all the dynam-
LglL‘f’zflhz ngLﬁ?Z’lhz o LgmL‘f’zflhz ics of all the state variables (and therefore be able to espre
A(X)= ) (17) them in terms of the desired outputs and their successive
: : : : derivatives), is that the sum of the orders of differentiati
Lo, L2 thin Lo, L2 thin. . Lg, L2 th of the outputs is equal to the order of the system (number of
state variables):

Differentiating(14) with respect to time and using.3), we m
have that -
Pi =n. (20)
2

y<pl) LPLh,
y(1p2> Lg’zhz In addition, every input has to be associated to a different
2 f

=AXu+ | . |- (1) output.

Remark 2. One should make sure that the coupling matrix
A(X) given in equation 17) is invertible (at least locally).
Otherwise, the flatness-based control cannot be used, since
the control variables cannot be decoupled, i.e. we will not
be able to express each control input independently as func-

The control law which has been applied to the test rigon of the desired outputs and their successive derivatige
is based on the following theorem, which is a well-knowgequired for a flatness-based control.

result for which no proof is necessary here.

yiom) L™ hrm

4.2 Complete state-space model

The state of the platform model can be chosex as
[X;]_,Xz,Xg,...X7]T = [ex,ey,ex,ey,Pl,Pz,Pg]T, whereas the
input vector isu = [q1,d2,03] .

Theorem 1. (Proposition 4 From Fliess et all]) If a sys-
tem of equationg = f(x) + g(x)u with ue R™ is flat (Def-
inition 1) with respect to a flat output 3 h(x) € R™ with
relative degreeg;, then the system is controllable.
Remark 3. For the control law synthesis, we have consid-
Therefore, for a flat (thus controllable) system, an exered the mass flow rates as the input variables instead of the
plicit control law can be found by inverting equatiob8]. voltages, in order to get an explicit expression of the aantr



as will be shown later. The static characteristic of the sed.3 Flatness of the model

vovalve will then be inverted numerically to determine the  Atfirst, a flat outpufy; y-ys] " has to be determined and
voltage that should be applied. The computation allows get-has to be written according ta4), such that equation4 %)

ting the required flow rate at any time, and it uses the desirexhd (L6) hold and the conditions stated in Rematkand 2
outputs, the pressure inside each muscle from the inversiare fulfilled.

of the quasi-static model ir7), and the platform dynamics Let us note that for non-linear systems, there is no gen-
in (6). Note that the required efforts and pressure values faral method for determining a flat output and for proving
the trajectory tracking can be deduced at any time from thts uniqueness (whereas for linear systems the flat output is
reference. unigue and easily determined from the Smith for2d][or

from the Brunovsky formZ(]).

By neglecting the perturbation term the system dy- This paragraph shows that the by adopting the following

namics can then be expressed as follows.

output:
x= f(X)+g(x)u, (1) yi=X1
Y2 =X (25)
wheref (x) = y3 = Fs =H(es)(x7 — Po) +L(g3)
- X3 . the system is actually flat.
” In order to prove the validity of equatioi¥), we can
65 co5GSNeL (M (&) 06 — Py T L&) remark thatxl,_xzz X3 qndx4 can b_e obtained directly from
— cosxy cosesings (H (g2) (xg — Po) + L (€2)) y1, Y2 and their first time derivatives. Onog, x2, x3 and
— cosxg cosxpsings (H (3) (x7 — Po) + L (£3)) x4 are known, alk;, H(g;) andL(g;) are determined as well.
(COS(p; COSXz + SNy Sinxg Sinxz) (H (£1) (Xs — Po) + L (£1)) SinceRs is an output andH (€3) # 0, X7 is immediately also
+ (Cospp COSXz + sing, sinxg sinxz) (H (€2) (X6 — Po) + L (€2)) determined. At lastxs andxg can be determined fromy and
+ (cosgz cosxe + sin@z sinxa sinxz) (H (€3) (x7 — Po) + L (€3)) X4 if the matrix
a(ey,€1)(%s — Po)
a(e2, £2) (%6 — Po) — COSX1 COSX2 Sin@y — COSX3 COSX2 SiNg,
L a(es, €s)(x7 — Po) _(22) COSX2 COSPy +SiNXg SiNX2 SiN@ COSX2 COSP +SiNX1 SiNX SiNgy
90x) = [82(x), 62(x), g3 ()] with is invertible. The determinant of this matrix is
COS Xp COSX1 (SiN@p COSPy — Sin@; cosgy) which is never 0 in
[0 7 [0 ] [0 | therange oBy = x4, 6y = x; allowed for the platform (i.e.
0 0 0 they never reach-90°).
0 0 0 We now compute the relative degree of each output and
axX)=| 0 |, gx)=| 0 |, gx)=]| O their Lie derivatives along the vectoggx) and f(x) fori €
b(e1) 0 0 {1,2,3}. These derivatives will be used to verify equation
0 b(e2) 0 (20) (Remark1), the invertibility of A(x) (Remark?2), and
| 0 ] | 0 ] |b(e3) |  for the synthesis of the control law.
(23)
and
Outputy
a(ei, &) ko aV(E‘)'si Lg,Y1 = Lgoy1 = Lgy1 = 0= p1 > 1;
V(Si) asi (24) )
b(s-):kr—T- Lty1=Xs; .
! V(&) Lo Lyi=LgLiy1=Lgliy1=0 =p1>2;
It should noted that the dependency of the right hand S|deL
of equation 23) and of both sides of24) on the state< is TYL=Xs .
omitted for readability reason. According to equatid, = — 0S¥ COSXz (Siny (H (e1) (X6 — Po) +L(&1))
the contractions; are functions 0By and6y and therefore + singy (H(g2)(Xe — Po) +L(g2))

they are functions of the statei.e. & = & (x) andg; = &(x). + singz (H(e3)(x7 — Po) +L(€3));



Lg, L2y1 = — sin@; cosxq cosxoH (€1)b(€1),
Lg,L2y1 = — sing, cosx cosxoH (€2)b(€2), 0o
LgsL2y1 = — sin@; cosx; cosxpH (€3)b(g3).

It can be pointed out thaty, L2y;, Lg,L7y1 andLg,L3ys o8 . " \

are never equal to O for the andxy within the valid 075 N
. 20 -
range, which makes; = 3. 0o - w 2
-10 -10
Outputys 0, (deg) Sl )
Lg,Yo =LgYo =Lgyo =0=p2 > 1; Fig. 5. Value of Zas function of X1 = By and Xp = 6.
Lty2 = Xa;

Lo Ley2=LgLty2 =LgLty2=0=p2>2;

0.9

0.85

L%yz =X 08 /
= (COSP1 COSXp + SiN@; SiNXy SiNxy) o A \

0.7
20

x (H(e1)(xs — Po) + L(g1)) 0 ) 4 I
-10 .

+ (cosgy cosxe + Ssing, sinxg Sinxz) 6, dew) 20 -20 " 6_(deg)

x (H(e2)(x6 — Po) + L(€2)) Fig. 6. Values of Mas function of By and By.

+ (cosps cosxe + sings sinxg sinxg)

H — Po) + L(g3)); :

x (H(ea) 0 — Po) + L(ea); mattix
L,L7y2 = o Lo, L5y1 Lo LFya LgsLiya
I(_coiczp;coyfr singy sinxg sinxz)H (€1)b(g1), A= |Lg, L2y, Lo L2y, Ly, L2ys 27)

O2-1Y2 = L L L

(cosp, CosXp + singy sinxg sinxz)H (g2)b(e2), 0¥s te¥s Leds
Lgs L%yz =
(cospz cosxp + sings sinxg sinxz)H (€3)b(€3). is invertible. The expression & is made explicit in 28)

_ 5 ) ) at the top of the next page (with the shorthand notation of

Notice thatl.g,L ty» can never be zero inthe valid rangep; — Hg;), Lj = L(g;), by = b(g))).
as the function The determinant of this matrix j&\|= HyHaHzb;bobsm

with m = —sing; COSX;COSXp(COSPCOSXy  +
(26) sin@sinx; SinXg) + SN COSX COSX2(COSP; COSX2  +

singy sinxs Sinxz). The values ofn as function ofdx and6y

in the valid interval are depicted in Fi§.
plotted in Fig.5 never reaches zero in this interval. Thus  Accordingly,|A|# 0, and therefore the coupling matrix
po = 3. is invertible over the operating range and the chosen output

is proven to be flat.

Z = COS COSX2 + SN, Sinxy SinX,

Outputys
Lg,ys = Lg,y3=0; 4.4 Control law
Lg,ys = b(ez)H(e3) #0=ps = 1. The explicit expression of a flatness-based open-loop
control law can now be determined as
The necessary conditio() is satisfied ap; + p2 + _ (P 30,
p3 = 7. Furthermore, one can readily check from the calcu- a1 1 y(lp ) L§3_/1
lation of pj, i € {1,2,3} that every input is associated to a R =4"7(X) V(z 2= (L2 ) (29)

different output. The last step is to verify that the couglin 0s 73"3) Ltys



—sing; cosxg cosxoH by — sing, cosxg cosxoHoby — sin@z cosxg cosXoH3bs
A = | (cospy cosxz + singy sinxg sinxz) Hiby (cosg, cosxp + singp sinxg sinxg) Haby (cosps cosxp + sings sinxg sinxg) Habs (28)

0 0 Hsbs

: | servovalves = platform |—=]inclinometer f——— flatness controllerp— :

L pressure sensor

:>Imuscle model

Vi

Oj‘_ inverse polynomial map|_]
- of the servovalve

experimental setup controller

Fig. 7. Global control scheme.

wherey; is the reference trajectory; we will denote as welbf artificial muscles already has a stabilising effect. Fégu

the variables calculated from this reference by an over-linshows the overall control scheme. We can notice that the
The voltages; that should be supplied to the servovalves am@pen-loop control contribution is generated without anyse
computed according to Remagk Due to the presence of sor output, and then added to the Pl feedback control which
the perturbation termg™§ which have been neglected, therés based on measured errors.

will necessarily be a non-zero ermgr=y; — ;. The flatness- The flatness-based control reveals some common as-
based control only provides a feedforward action and thergects with the feedback linearisation contr@l3][ The main

fore it is guaranteed not to destabilise the system; on thifference lies in the fact that flatness-based requiresa sp
other hand, it is not robust to model errors. For this reasagific choice of flat output, whereas feedback linearisatim ¢
we introduce a feedback term, consisting of a proportionakke any output, assuming the system is observable, and re-

integral (P1) controller acting in parallel with the flatises quires also the knowledge of the state variables.
based, open-loop contribution:

. 5 Solving the overactuation
Vi = Vi + Kpi + k@/ & dt. (30) It can be pointed out that the platform is overactuated,
0 in the sense that the three forces applied by the muscles are
generating only two torques. To tell it in another way, the
This PI controller provides robustness with respect taverage value of the is irrelevant for the platform’s dynam-
modelling errors; its gains have been tuned experimentals; if a givenF; = F1, F, = F, andFs = F3 generate certain
(i.e. assuming a linearised model as reference and then figFques, therFy = F1 + Fo, F = R+ Fo and Fs = Rz + Fo
proved with trials and errors). A detailed discussion otter t will generate the same torques for afy Nevertheless, it is
overall stability of the system, which should also take inteequired to have three muscles instead of two due to the fact
account possible model errors, is out of the scope of this ghat muscles can only pull and not push, i.e. their forceeang
per. However we can say that stability here is not a concemlimited to positive values as shown by F&j.
if the PI is carefully tuned, due to the fact that the dynamics On the other hand, a given position of the platform cor-
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responds to three values of the contractienso the effort el P it
.. . . 2 i
exerted by each muscle at that position, according to Fig. A ———P=7bar
3, is bounded to be between a maximal vakigax and a _oasol N
minimal valueF min. These limit values depend of course £ AN
ong; and on the fact that the range of the allowed pressures %8' \\
is between 5 and 7 bar. Consequently, we can compute s 3% <
the maximum and the minimum allowed forces that can be g N
. e S \\
exerted by any of the three muscles at any given position by ~ ﬂg\ .
Fiax \\1\
H Fm\n S~ ~
Fmax=_min (K max), (31) \ ! ; I T~
i€{1,23} 0 0 0.05 0.1 0.15 02 0.2t
Fmin= max (Fl,min)y (32) Contraction (g,)

ic{1,2,3}
Fig. 8. Valid range of the efforts, bounded from below by Fmin and

as depicted in FigB. The Operating range associated to gom above by Fmax for a gi\{en position of the platform, determined
platform position defined byy, €, andes is marked by the by the three contractions &, i € {1,2,3}.

shaded area. The reference trajectofigsind 6, can be
defined according to a desired movement for the platform, .. . . .
whereas the reference trajectdfy can be chosen in ordero.éc'l!atlonS _around the refe_zrence traje_zctory. Even if sosh .
to satisfy other objectives or constraints. The flat cordatfol cillations might be small, in mechanical systems they will

lows choosing the value d¢%, which lets one make the bestproduce vibrations (high frquency aC“OT‘S on the compo-
choice in order to let all the muscles stay in their operatin ents)_as well as NOISE, both hlghl_y undesirable. For the sak
clarity, we have designed a sliding mode controller to our

force range. Roughly speaking, increasing the desiredevalu

. : . system by constructing a sliding surface in the sens@]of [
of 3 will add some stiffness to the system, since more pres* ! .

. S . the error being on the three output components. The detailed
sure will be supplied into the muscles in order to have the

: o . : calculations are out of the scope of this paper and so they
required position, whereas decreasing the valuésodill are not reported here. Fig.shows the value of the forde
add more compliance. P - 8.

Under the reasonable hypothesis that the platform mov%%rénfg arSeIn:::JeIZ';(ladSehxc[))eglrgecr;talunt\écr)llxlng :}g\iﬁ%ﬁ;ﬁtg'ch a
slowly (in any case it is constrained to angles smaller tha 'gu y W Ing p » Su

15, it can be assumed th&i, F» andF; have to be close phenomenon can be attenl_Jated by_addlng a boundary layer
S : . thickness to the standard sign function. However, the effec
to the equilibrium values, i.eéx1 =~ F, = F3. For this reason,

setting the reference 6% as will persist wit_h j_ust vibrations of small_er amplitude. Bhi
phenomenon is instead totally absent if flathess-based con-
trol is used.
(Fna(E1, £2,€3) + Frnin(E1, €2, €3)) (33) Anotherdrawback of the sliding mode is that, due to the
high relative degree of the output (equal to 3 @grand6y),
the feedback control requires computing the second deriva-
with & = gi(ex,ey), will make F; andF, within the allowed tive of the measured angles, which is numerically problem-
interval as well, and therefore all the efforts will defimte atic. This can be achieved by either using online deriva-
belong to the operating range at equal distance from figes of the output signals or designing a non-linear state
boundaries. Note that the reference trajectgrgan be de- observer that yields the computation &f and 6. Either
termined offline from the reference trajectorfgsandy us-  way, this makes the control implementation more cumber-
ing (33). some. On the other hand, by using the flatness-based control,
the derivatives of the output signals are not required since
this approach is an open-loop control and it relies on offline
6 Some considerations on sliding mode control computations using the reference and its derivatives.
As mentionnend in the introduction, the vast majority of
the literature concerning the control of pneumatic arafici
muscles makes use of sliding mode cont®I7, 8]. Slid- 7 Experimental results
ing mode is a very attractive choice, because of its inherent A set of experiments has been conducted on the platform
robustness and ease of tuning. Nevertheless, it works by ial-order to assess the performance of the proposed control
ternating very strong control actions in opposite diratdio approach. The sampling time isOQ s and the inclinome-
resulting in the so-called chattering phenomenon, i.ellsm#ers’ output has a quantisation ofl8 degrees. We remind

Faz
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Fig. 9. Simulation result of the evolution of the output F3 when the
sliding mode control is used.

the reader that the trajectories assigneétandéy have to
be smooth enough (at least three times differentiable)ato th
the control can be computed according #8)( Let us first 0 5 10 " 2 p 0
consider a smooth step described by the hyperbolic tangent fmes

function to check the precision in reaching a final static po-

sition. The target angles fd and 9y are chosen to be-6 Fig. 10. Static set point tracking using the flatness-based control
and—6 degrees respectively, so that the muscles operate gia 4 pI.

wide range. Figl0shows that the measured response (incli-
nometer output) of the platform converges instantly to tire d
sired trajectories foBy and@y. The plots of the contractions
are depicted in Figl1, where the actual contractions, recon-

structed from the output angles usirig, (are compared with - T
the reference. As we can naotice, these plots highlight a con- —— ¢, (reconstructed)
siderable operating range of the muscles (0.428% con- ol ”’:‘j;’:c”::;‘:;c‘;d)
traction) including the non-linear region illustrated iig F3. reference for cg

Next, the proposed flatness-based control coupled with
a PI controller is compared with a Pl controller, empirigall
tuned to get the best apparent performances (the scheme car =
be obtained from Fig7 by omitting the feed-forward con-
trol part). We apply as reference a combination of sinusoids
representing a generalization of any dynamic smooth varia-
tions. We should note that the parameters of the propoitiona
and integral contributions, as well as the reference trajgc
have been kept the same for both controllers during the test. ‘ ‘ ‘ ‘ ‘ ‘
Figure 12 reports the results for the PI controller, whereas 0 s 10 W 20 % w0
Fig. 13 shows the flatness-based controller results. It is clear
from Fig. 12 and 13 that the feedforward action added by
the flathess-based control greatly improves the trackiilg ab
ity. The root mean square tracking errors (Barand®y re-
spectively) are (1 and 059 degrees with the PI controller,
whereas it is less than.Zb and 029 degrees respectively and the forces exerted by the three muscles respectively dur
with the flatness controller. We notice as well a better trajeing the flatness-based controller test. Note that the nefere
tory tracking when the flatness-based control is used, espg-s determined by the overactuation-solving la&®)( In-
cially in terms of delay with respect to the reference trajegerestingly, the forces never saturate (and neither dodte v
tory. ages nor the pressures), which validates the proposesd strat

Figures14 and 15 show the evolution of the pressuresgy.

5

Fig. 11. Muscles contraction for the setpoint tracking.
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0 ° 10 tim1:[s] 2 ® % Fig. 14. Pressures inside the pneumatic artificial muscles during the

flatness-based control plus Pl experiment.

Fig. 12. Trajectory tracking with simple Pl control.
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mated using (6) and the measurements of the pressures and the

Fig. 13. Trajectory tracking with flatness-based control plus a PI. ) .
contractions) with flatness-based control plus a PI.

8 Conclusion however, in order to compensate any model error and pertur-
This paper has presented a successful application obations, a Pl controller is added.
flatness-based control (a non-linear open-loop contra)} au  The experimental results clearly show a better trajectory
mented with a PI controller to a platform featuring thre¢racking compared to a simple Pl controller, highlightihg t
PAMs and presenting an overactuation. We have shown tmatevancy of a non-linear model-based control for systems
by choosing an adequate output the system is flat, and thaturately modeled. Interestingly, the control perforogan
a flatness-based controller can be computed based on ithédependent from the shape of the trajectory itself. We
inverse of a coupling matrix. The control law, consistinghowed its efficiency in moving the platforma to a static set-
of the mass flow rates applied to the muscles, is explicitjyoint, as well as in tracking dynamical variations in a wide
expressed in terms of the desired output and its successiperating range of the muscles.
derivatives. The required voltages are consequently ealcu Compared to a sliding mode control, the flathess-based
lated by a numerical inversion of the static characteristapproach provides a good level of performance with no chat-
of the servovalve. The platform features an overactuaticering, which usually causes undesirable high-frequecy v
which is solved by an appropriate choice of the third outplorations and noise. In addition, whereas other non-linear
component, restraining the muscles efforts to their vatid ocontrollers for this system will require the knowledge ajthi
erating range. The flatness-based controller, being applierder derivatives of the platform position in the feedback
in open-loop, does not require any state or output feedbatdop, the flathess-based control law is expressed offling onl



as function of the desired output and its successive deriva-
tives. This can significantly simplify the implementatioh o

a non-linear controller. Based on this, we conclude that tfi&l]
proposed approach yields a reliable controller providing a
good tracking accuracy.

Future research will look at the possibility of using

PAMs for building a complete six-degree-of-freedom Stew-

art platform, and controlling it with the same approach.

[12]
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