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CLASSIFICATION OF SIMPLE CUSPIDAL MODULES
OVER A LATTICE LIE ALGEBRA OF WITT TYPE

Y. BILLIG AND K. IOHARA

Abstract. Let Wπ be the lattice Lie algebra of Witt type associ-
ated with an additive inclusion π : ZN ↪→ C2 with N > 1. In this
article, the classification of simple ZN -graded Wπ-modules, whose
multiplicities are uniformly bounded, is given.
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Introduction

In 1939, H. Zassenhaus published a long influential article [Z] where
he launched basic theory of Lie algebras over a field of positive charac-
teristic. In particular, he showed that the Lie algebra Der(K[Z/pZ]) =

(K[T ]/(T p))
d

dT
, where K is a field of characteristic p > 2, is simple

and its Killing form is trivial. In 1966, a central extension of this Lie
algebra was found by R. Block [Bl]. Its characteristic 0 version (with-

out central extension), called the Witt algebra W = C[T±1]
d

dT
, had

been considered long time ago by E. Cartan, see, e.g., [C]. Since its
appearance in quantum field theory in the late 1960’s, this Lie algebra
had been studied extensively both in mathematics and in physics.

One of the important results obtained for this Lie algebra is a clas-
sification of its Harish-Chandra modules. In 1992, O. Mathieu [M]
showed that a simple Z-graded module over the Virasoro algebra, the
central extension of the Witt algebra W, whose weight multiplicities
are finite, is either a highest/lowest weight module or a module of inter-
mediate series, that is, a Z-graded module whose weight multiplicities
are bounded by 1. The intermediate series for the Witt algebra W was
previously classified by I. Kaplansky and L. J. Santharoubane [KS].

The Witt algebra W has a basis formed by Lm = Tm+1 d

dT
(m ∈ Z)

and these elements satisfy the commutation relations:

[Lm, Ln] = (n−m)Lm+n.

This Lie algebra has several generalizations. For example, the Lie
algebra of algebraic vector fields on a torus (C∗)N for some N > 1
(cf. [BF2]). For any lattice Λ of finite rank and an additive injective
map l : Λ→ C, H. Zassenhaus [Z] (see pages 47-48) considered the Lie
algebra Wl with basis (Lλ)λ∈Λ satisfying

[Lλ, Lµ] = l(µ− λ)Lλ+µ.

Such a Lie algebra is called the generalized Witt algebra or solenoidal
Lie algebra (cf. [BF2]).

Y. Billig and V. Futorny classified in [BF1] simple ZN -graded mod-
ules for the Lie algebra of vector fields on an N -dimensional torus.
Just as in case of the Witt algebra W, there are two classes of mod-
ules: generalized highest weight modules and modules with bounded
multiplicities. Let us briefly explain a new method developed in [BF1]
for the classification of the modules with bounded multiplicities, also
known as the cuspidal modules. Let V be either a Lie algebra of vector
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fields on a torus or a solenoidal Lie algebra. A key feature of these Lie
algebras is that they are free modules over the ringA = C[t±1

1 , · · · , t±1
N ].

Based on this fact, one first classifies irreducible AV-modules, that is
V-modules on which one can define a compatible A-action. For a V-

module M one defines its cover M̂ in the category of AV-modules as
a certain submodule of the coinduced module HomC(A,M). The key
step is to prove that a cover of a cuspidal module is again cuspidal. Fi-
nally it is shown that any simple ZN -graded V-module with uniformly
bounded multiplicities can be realized as a quotient of the restriction
to V of an irreducible cuspidal AV-module.

In 2013, K. Iohara and O. Mathieu [IM1] classified Lattice Lie al-
gebras, that is ZN -graded simple Lie algebras whose multiplicities are
1. Among such Lie algebras, there is a class defined below, which is
another generalization of the Witt algebra.

Let 〈·, ·〉 be the standard symplectic form on C2. The Poisson al-
gebra S of the principal symbols of pseudo-differential operators in
one variable is the vector space S =

⊕
λ∈C2 CLλ equipped with the

commutative algebra structure

Lλ · Lµ = Lλ+µ+ρ,

where ρ = (1, 1) is a fixed vector, with the Poisson bracket {·, ·} given
by

{Lλ, Lµ} = 〈λ+ ρ, µ+ ρ〉Lλ+µ.

For any additive injective map π : Λ ↪→ C2, the Lie algebra Wπ is the
Lie subalgebra of S generated by (Lλ)λ∈π(Λ).The intermediate series for
Wπ has been classified by the same authors [IM2].

Throughout this paper we assume the following technical condition:

(C) 〈α+ 2ρ, β〉 6= 0 for any α ∈ π(Λ) and β ∈ π(Λ) \ {0}.
Since Wπ has Aπ-module structure, where Aπ =

⊕
λ∈π(Λ) CLλ−ρ, and

the commutative ring Aπ has Wπ-module structure, we can apply the
machinery of AV-modules with A = Aπ and V = Wπ.

In this article, we classify simple Λ-gradedWπ-modulesM =
⊕

α∈ΛMα

with a uniform bound on dimMα, following the approach developed in
[BF1]. Our main result states that such a simple Wπ-module is either
a quotient of SΓ :=

⊕
µ∈Γ CLµ, where Γ = β + π(Λ) for some β ∈ C2

or of the form SΓ ⊗ Cn with n ≥ 3 where a non-trivial action of Wπ is
defined in section 1.4.

This article is organized as follows. In Section 1, we define our basic
objects, the Lattice Lie algebra Wπ of Witt type, some examples of
graded Wπ-modules, and state the main result of this article. In Section
2 we discuss a connection between Wπ-modules and AVπ-modules. We
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classify simple cuspidal AVπ-modules in Section 3. In Section 4, we
prove our main theorem classifying simple cuspidal Wπ-modules.
Acknowledgement. The first author gratefully acknowledges sup-
port from the Natural Sciences and Engineering Research Council of
Canada. The second author is partially supported by the French ANR
(ANR project ANR-15-CE40-0012). He would like to thank also the
Embassy of France in Canada for the mobility grant that allowed him
to visit Carleton University. This work was partially supported by the
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon. We
would also like to thank the University of Lyon and Carleton University
for the hospitality during our respective visits.

1. Lie algebras of Witt type

In this section, we introduce the Poisson algebra S of the principal
symbols of pseudo-differential operators on C. As a Lie subalgebra,
we introduce a Lattice Lie algebra of Witt type Wπ depending on the
additive embedding π : Λ ↪→ C2, where Λ = ZN with N > 1.

1.1. Poisson algebra S. The Poisson algebra S of symbols of twisted
pseudo-differential operators on a circle is the algebra with a basis
(Lλ)λ∈C2 with products given by

Lλ · Lµ =Lλ+µ+ρ,

{Lλ, Lµ} =〈λ+ ρ, µ+ ρ〉Lλ+µ,

where 〈·, ·〉 is the standard symplectic structure of C2 and ρ = (1, 1).
Indeed for λ = (a, b), Lλ is the symbol of the twisted pseudo-differential
operator za+1(d/dz)b+1, see [IM1] for details.

The Poisson algebra S viewed as a commutative algebra is also de-
noted by A.

For an element ξ ∈ C2 \ Cρ, the subspace
⊕

m∈ZCLmξ is stable
under the Poisson bracket and is isomorphic to the Witt algebra, the
Z-graded Lie algebra W with basis (Lm)m∈Z and bracket given by
[Lm, Ln] = (n − m)Ln+m. This generalizes to a Λ-graded algebra as
follows.

Given an injective additive map π : Λ ↪→ C2, let Wπ ⊂ S be the
Lie subalgebra with basis (Lλ)λ∈π(Λ). In what follows, we will always
assume:

i) Im π 6⊂ Cρ,
ii) 2ρ 6∈ Im π,
iii) π(Λ) does not lie in a complex line.
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The condition i) is necessary since otherwise Wπ is commutative. It is
easy to show that Wπ is simple iff the condition ii) holds (cf. Lemma 49
of [IM1]). The condition iii) implies that we exclude the case when Wπ

becomes a so-called solenoidal Lie algebra (see, e.g., [BF2]). Besides
these conditions, we assume

(C) 〈α+ 2ρ, β〉 6= 0 for any α ∈ π(Λ) and β ∈ π(Λ) \ {0}.

We will indicate clearly, whenever we need this condition.

Remark 1.1. It seems that all results of this paper may be established
under a weaker assumption of existence of a Z-basis {εk}1≤k≤N of Λ
such that 〈α + 2ρ, εk〉 6= 0 for all 1 ≤ k ≤ N and α ∈ π(Λ).

Let Aπ :=
⊕

λ∈π(Λ) CLλ−ρ be a commutative subalgebra of A. It
is clear that, since π is injective by assumption, Aπ is isomorphic to
C[t±1

1 , · · · , t±1
N ]. The following Lemma follows immediately from the

definitions:

Lemma 1.2. (1) The Lie algebra Wπ has an Aπ-module structure.
(2) The commutative algebra Aπ has a Wπ-module structure.

Notice that L−ρ is the identity element of Aπ and Lλ−ρ ·L−λ−ρ = L−ρ
for any λ ∈ C2.

1.2. Definition of AVπ-modules. AnAVπ-module T is a vector space
which is simultaneously a module for the unital commutative associa-
tive algebra Aπ and a module over the Lie algebra Wπ with the two
actions being compatible:

θV(Lλ)θ
A(Lµ−ρ) = θA({Lλ, Lµ−ρ}) + θA(Lµ−ρ)θ

V(Lλ), for λ, µ ∈ π(Λ),

where θV : Wπ → End(T ) and θA : Aπ → End(T ) denote the module
structures. To simplify the notations, we may also write LVλ in place of
θV(Lλ) and LAλ−ρ for θA(Lλ−ρ).

Note that the condition (C) implies that the additive map 〈ρ, ·〉 :
Λ→ C, α 7→ 〈ρ, α〉, is injective. An AVπ-module T is called graded if

T =
⊕
α∈C2

Tα,

where

Tα =
{
x ∈ T | θV(L0)x = 〈ρ, α〉x

}
.

It follows that θV(Lλ)(Tα) ⊂ Tα+λ and θA(Lλ−ρ)(Tα) ⊂ Tα+λ for λ ∈
π(Λ).
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Suppose T is an irreducible graded AVπ-module with Tβ 6= (0). Then
T is supported on a coset Γ = β + π(Λ):

T =
⊕
α∈Γ

Tα.

Here is a basic example. As the Poisson algebra S has a C2-graded
structure, for each coset Γ ∈ C2/π(Λ), the subspace of S defined by
SΓ =

⊕
µ∈Γ CLµ is stable under the action of Wπ. Notice that this Wπ-

module also has the structure of Aπ-module. The Wπ-module structure
of SΓ is described by the following:

Lemma 1.3 (cf. [IM2]). Let Γ ∈ C2/π(Λ).

(1) The Wπ-module SΓ is irreducible iff −ρ,−2ρ 6∈ Γ.
(2) If −ρ ∈ Γ, then there is an inclusion of the trivial 1-dimensional

Wπ-module CL−ρ ↪→ SΓ. Set M = S−ρ+π(Λ)/CL−ρ.
(3) If −2ρ ∈ Γ, then there is an inclusion of the Wπ-module M ↪→
SΓ and its cokernel is a trivial representation.

1.3. Λ-graded Wπ-modules. AWπ-moduleM is said to be Λ-graded
if there exists a coset Γ ∈ C2/π(Λ) such that

M =
⊕
µ∈Γ

Mµ,

where

Mµ = {m ∈M |L0.m = 〈ρ, µ〉m} .
It is easy to check that Lλ.Mµ ⊂Mλ+µ for any λ ∈ π(Λ) and µ ∈ Γ.

Similarly, an AVπ-module is Λ-graded if it is Λ-graded as a Wπ-
module.

A Λ-graded Wπ-module M (resp. AVπ-module T ) is said to be

(1) simple graded iff M (resp. T ) does not contain a proper Λ-
graded submodule,

(2) cuspidal if the dimensions of homogenous components of M
(resp. T ) are uniformly bounded.

Notice that, by the condition (C), any submodule of a graded module
is graded.

1.4. Irreducible Wπ-modules with multiplicities > 1. It has been
proved in [M] and [MP] that all of the homogenous components of
a simple cuspidal W-module have dimension ≤ 1. Here we recall a
construction of cuspidal Wπ-modules with the homogenous components
of an arbitrary dimension d ≥ 1, given in [IM2].
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Let V be a C-vector space and 〈·|·〉 be a skew-symmetric bilinear
form on V . It induces a Poisson bracket on the symmetric algebra S•V
satisfying

{α, β} = 〈α|β〉1
for α, β ∈ V . Since {SmV, SnV } ⊂ Sm+n−2V , it follows that S2V is a
Lie subalgebra and each component SnV is an S2V -module.
In the rest of this subsection, we consider the case V = C2 with the
standard symplectic form 〈·, ·〉 on C2 used to define the Poisson algebra
S in §1.1. In such a case, S2V is isomorphic to sl2 (see section 4.1
below) and SnV is the irreducible sl2-module of dimension n+ 1.

Since S is a Poisson algebra, it will be convenient to denote by V the
underlying Lie algebra and by A the underlying commutative algebra.
As vector spaces, S = V = A. Set

Sext = V n
(
A⊗ S2V

)
.

Clearly Sext has a structure of Lie algebra, and for any n, A⊗ SnV is
an Sext-module. Define a linear map c : V → A⊗ S2V by the formula:

c(LVλ ) =
1

2
LAλ−ρ ⊗ λ(λ+ ρ).

For X ∈ V , set j(X) = X + c(X).

Lemma 1.4. The map j : V → Sext is a Lie algebra morphism, i.e.,
the map c satisfies the Maurer-Cartan equation

c([X, Y ]) = X.c(Y )− Y.c(X) + [c(X), c(Y )]

for any X, Y ∈ V.

For any n ≥ 0, A⊗ SnV is naturally an Sext-module. Then Mn :=
j∗A⊗SnV is a C2-graded V-module, with all homogenous components
of dimension n+ 1. Given a coset Γ ∈ C2/π(Λ), set

Mn(Γ) =
⊕
µ∈Γ

Mn
µ.

Recall that we assume that π(Λ) does not lie in a complex line (cf.
Assumption iii)).

Lemma 1.5. Assume that condition (C) holds. For any n ≥ 2, the Wπ-
module Mn(Γ) is irreducible. Moreover, given two distinct π(Λ)-cosets
Γ 6= Γ′, the Wπ-modules Mn(Γ) and Mn(Γ′) are not isomorphic.

The proof of this lemma will be given in Section 4.

Remark 1.6. The Wπ-module M1(Γ) is reducible. Indeed,
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(1) there is an embedding S− 1
2
ρ+Γ ↪→M1(Γ) of Wπ-modules

Lµ− 1
2
ρ 7−→ LAµ−ρ ⊗

(
µ+

1

2
ρ

)
(∀µ ∈ Γ).

(2) The Cokernel of the above embedding is isomorphic to S− 3
2
ρ+Γ

where the quotient map is

LAµ−ρ ⊗ v 7−→
〈
µ+

1

2
ρ, v

〉
Lµ− 3

2
ρ (∀µ ∈ Γ).

(3) The short exact sequence S− 1
2
ρ+Γ ↪→M1(Γ) � S− 3

2
ρ+Γ does not

split.

1.5. Main result. Now, we can state our main result of this article
which was a conjecture in [IM2] (cf. Lemmas 1.3 and 1.5):

Theorem 1.7. Assume that π : Λ → C2 satisfies the condition (C).
Let M be a non-trivial simple Λ-graded cuspidal Wπ-module. Then M
is isomorphic to one of the following Wπ-modules:

(1) SΓ for some Γ ∈ C2/π(Λ) such that −ρ,−2ρ 6∈ Γ,
(2) S−ρ+π(Λ)/CL−ρ,
(3) Mn(Γ) for some n ≥ 2 and Γ ∈ C2/π(Λ).

The authors have been informed that, in some particular cases,
Olivier Mathieu has independently proved this conjecture.

2. AVπ-modules

In this section, we show that, for any simple cuspidal module M over
Wπ, there exists a simple cuspidal AVπ-module T such that T �M .

In what follows we identify Λ and its image π(Λ) in C2 to simplify
notations.

2.1. Coinduced modules. Here, we recall basic definition from Sec-
tion 4 of [BF1].

Let M be a Λ-graded Wπ-module. Recall that, on the C-vector
space HomC(Aπ,M), one has the following standard Wπ-action and
Aπ-action:

(X.ϕ)(a) :=X.(ϕ(a))− ϕ(X.a),

(a.ϕ)(b) :=ϕ(a · b),

where ϕ ∈ HomC(Aπ,M), a, b ∈ Aπ and X ∈ Wπ. These actions
define an AVπ-module structure on HomC(Aπ,M) and there is a nat-
ural surjective morphism of Wπ-modules HomC(Aπ,M) � M ;ϕ 7→
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ϕ(LA−ρ) (cf. Proposition 4.3 in [BF1]). However the coinduced module
HomC(Aπ,M) is too big for our purposes.

Now, let M̂ be the subspace of HomC(Aπ,M) spanned by linear
maps of the form ψ(X,m) with X ∈ Wπ and m ∈M defined as

ψ(X,m)(a) = (a.X).m ∀ a ∈ Aπ.

It follows that M̂ is a Λ-graded AVπ-module and via the surjection
HomC(Aπ,M) �M , its image is Wπ.M (cf. Proposition 4.5 in [BF1]).

M̂ is called the Aπ-cover of M .
A homogeneous component M̂γ is spanned by {ψ(Lλ,Mγ−λ) |λ ∈ Λ}.
The finiteness of the multiplicities of M̂ is a non-trivial issue. In the

next subsection, we show that if M has bounded multiplicities, so does

M̂ .

2.2. Differentiators. For α, β, ξ ∈ Λ and m ∈ N, we define a differ-
entiator as

Ω
(m)
α,β;ξ =

m∑
i=0

(−1)i
(
m

i

)
Lα−iξLβ+iξ ∈ U(Wπ).

By definition, differentiators satisfy the following relations:

Ω
(m)
α,β;ξ = (−1)mΩ

(m)
α−mξ;β+mξ;−ξ,

Ω
(m)
α,β;ξ = Ω

(m−1)
α,β;ξ − Ω

(m−1)
α−ξ,β+ξ;ξ.

(1)

Here, we state an analogue of Theorem 3.3 in [BF1]:
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Proposition 2.1. Let α, β, γ, δ, ξ ∈ Λ and m, r ≥ 2 be integers. Then
the following identity holds in U(Wπ):

m∑
i=0

r∑
j=0

(−1)i+j
(
m

i

)(
r

j

)(
[Ω

(m)
α−iξ,β−jξ;ξ,Ω

(r)
γ+iξ,δ+jξ;ξ]+

− [Ω
(m)
α−iξ,γ−jξ;ξ,Ω

(r)
β+iξ,δ+jξ;ξ]+

)
= 〈β − rξ + ρ, γ − rξ + ρ〉

(
〈α + ρ, δ + 2rξ + ρ〉Ω(2m+2r)

α+δ+2rξ,β+γ−2rξ;ξ

+ 2(m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)Ω(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

)
− 〈β − γ, ξ〉

[(
2(m+ r)〈α + ρ, δ + 2rξ + ρ〉

− (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)
)

Ω
(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

+ (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉) (2m+ 2r − 1))Ω
(2m+2r−2)
α+δ+(2r−2)ξ,β+γ−(2r−2)ξ;ξ

]
,

where [·, ·]+ denotes the anti-commutator.

Proof. We follow the proof of Theorem 3.3 in [BF1]. By definition, the
left hand side of the proposition reads

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)

×
(
[Lα−(i+a)ξLβ−(j−a)ξ, Lγ+(i−b)ξLδ+(j+b)ξ]+

− [Lα−(i+a)ξLγ−(j−a)ξ, Lβ+(i−b)ξLδ+(j+b)ξ]+
)
.
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Switching i with a and j with b in the second term, we obtain

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)

×
(
[Lα−(i+a)ξLβ−(j−a)ξ, Lγ+(i−b)ξLδ+(j+b)ξ]+

− [Lα−(i+a)ξLγ−(b−i)ξ, Lβ+(a−j)ξLδ+(j+b)ξ]+
)
.

Setting A = Lα−(i+a)ξ, B = Lβ−(j−a)ξ, C = Lγ+(i−b)ξ and D = Lδ+(j+b)ξ,
this becomes

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)
([AB,CD]+ − [AC,BD]+).

By the identity

[AB,CD]+ − [AC,BD]+

=A[B,C]D +DA[C,B] + [C,D]AB +D[C,A]B +D[A,B]C + [D,B]AC,

we rewrite the latter sum. In particular, as the monomials in last four
terms depend only on three of the four running variables i, j, a and b,
thanks to the identities

p∑
k=0

(−1)k
(
p

k

)
=

p∑
k=0

(−1)kk

(
p

k

)
= 0

for any integers p ≥ 2, we see that this latter sum becomes

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)
(A[B,C]D +DA[C,B])

=
m∑

i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)
([A,D][B,C] + A[[B,C], D]),

thanks to the identity

A[B,C]D +DA[C,B] = [A,D][B,C] + A[[B,C], D].
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The second term becomes zero since the monomial part does not
depend on the running variables j and b. Hence, this sum becomes

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)

× [Lα−(i+a)ξ, Lδ+(j+b)ξ][Lβ−(j−a)ξ, Lγ+(i−b)ξ]

=
m∑

i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)

× (〈β + ρ, γ + ρ〉 − (j − a)〈ξ, γ + ρ〉+ (i− b)〈β + ρ, ξ〉)

× (〈α + ρ, δ + ρ〉 − (i+ a)〈ξ, δ + ρ〉+ (j + b)〈α + ρ, ξ〉)

× Lα+δ−(i+a)ξ+(j+b)ξLβ+γ+(i+a)ξ−(j+b)ξ.

As we have

〈β + ρ, γ + ρ〉 − (j − a)〈ξ, γ + ρ〉+ (i− b)〈β + ρ, ξ〉
=〈β + ρ, γ + ρ〉+ (i〈β + ρ, ξ〉+ a〈ξ, γ + ρ〉)− (j〈β + ρ, ξ〉+ b〈ξ, γ + ρ〉)
=〈β + ρ, γ + ρ〉

+
1

2
((i+ a)− (j + b))〈β − γ, ξ〉 − 1

2
((i− a) + (j − b))〈ξ, β + γ + 2ρ〉,

the last term, which is skew-symmetric with respect to the substitution
i↔ a and j ↔ b, will disappear when we take the sum, leaving

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)

×
(
〈β + ρ, γ + ρ〉+

1

2
((i+ a)− (j + b))〈β − γ, ξ〉

)

× (〈α + ρ, δ + ρ〉 − (i+ a)〈ξ, δ + ρ〉+ (j + b)〈α + ρ, ξ〉)

× Lα+δ−(i+a)ξ+(j+b)ξLβ+γ+(i+a)ξ−(j+b)ξ.
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Making the change of variables j 7→ r − j and b 7→ r − b, we obtain

m∑
i,a=0

r∑
b,j=0

(−1)i+j+a+b

(
m

a

)(
r

b

)(
m

i

)(
r

j

)

×
(
〈β − rξ + ρ, γ − rξ + ρ〉+

1

2
(i+ j + a+ b)〈β − γ, ξ〉

)

× (〈α + ρ, δ + 2rξ + ρ〉 − (i+ a)〈ξ, δ + ρ〉 − (j + b)〈α + ρ, ξ〉)

× Lα+δ+2rξ−(i+j+a+b)ξLβ+γ−2rξ+(i+j+a+b)ξ.

Now, set u = i+j+a+b. The coefficient of Lα+δ+(2r−u)ξLβ+γ−(2r−u)ξ in
the above formula is the same as the coefficient of tu in the polynomial

〈β − rξ + ρ, γ − rξ + ρ〉〈α + ρ, δ + 2rξ + ρ〉(1− t)2m+2r

+ 〈β − γ, ξ〉〈α + ρ, δ + 2rξ + ρ〉t d
dt

(1− t)2m+2r

− 〈β − rξ + ρ, γ − rξ + ρ〉〈ξ, δ + ρ〉(1− t)2rt
d

dt
(1− t)2m

− 〈β − rξ + ρ, γ − rξ + ρ〉〈α + ρ, ξ〉(1− t)2mt
d

dt
(1− t)2r

− 1

2
〈β − γ, ξ〉

(
〈ξ, δ + ρ〉t d

dt

(
(1− t)2rt

d

dt
(1− t)2m

)
+〈α + ρ, ξ〉t d

dt

(
(1− t)2mt

d

dt
(1− t)2r

))
.

This polynomial can be rewritten as follows:

〈β − rξ + ρ, γ − rξ + ρ〉〈α + ρ, δ + 2rξ + ρ〉(1− t)2m+2r

−2(m+ r)〈β − γ, ξ〉〈α + ρ, δ + 2rξ + ρ〉t(1− t)2m+2r−1

+ (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)

×
(

2〈β − rξ + ρ, γ − rξ + ρ〉t(1− t)2m+2r−1

+ 〈β − γ, ξ〉t d
dt

(
t(1− t)2m+2r−1

))
.
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Thus, its coefficient in tu is

〈β − rξ + ρ, γ − rξ + ρ〉〈α + ρ, δ + 2rξ + ρ〉(−1)u
(

2m+ 2r

u

)
−2(m+ r)〈β − γ, ξ〉〈α + ρ, δ + 2rξ + ρ〉(−1)u−1

(
2m+ 2r − 1

u− 1

)
+ (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)

×
[
2〈β − rξ + ρ, γ − rξ + ρ〉(−1)u−1

(
2m+ 2r − 1

u− 1

)
+ 〈β − γ, ξ〉

(
(−1)u−1

(
2m+ 2r − 1

u− 1

)
− (2m+ 2r − 1)(−1)u−2

(
2m+ 2r − 2

u− 2

))]
,

and we obtain

m∑
i=0

r∑
j=0

(−1)i+j
(
m

i

)(
r

j

)(
[Ω

(m)
α−iξ,β−jξ;ξ,Ω

(r)
γ+iξ,δ+jξ;ξ]+

− [Ω
(m)
α−iξ,γ−jξ;ξ,Ω

(r)
β+iξ,δ+jξ;ξ]+

)
=〈β − rξ + ρ, γ − rξ + ρ〉〈α + ρ, δ + 2rξ + ρ〉Ω(2m+2r)

α+δ+2rξ,β+γ−2rξ;ξ

−2(m+ r)〈β − γ, ξ〉〈α + ρ, δ + 2rξ + ρ〉Ω(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

+ (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)

×
[
2〈β − rξ + ρ, γ − rξ + ρ〉Ω(2m+2r−1)

α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

+ 〈β − γ, ξ〉
(

Ω
(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

− (2m+ 2r − 1)Ω
(2m+2r−2)
α+δ+(2r−2)ξ,β+γ−(2r−2)ξ;ξ

)]
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=〈β − rξ + ρ, γ − rξ + ρ〉
(
〈α + ρ, δ + 2rξ + ρ〉Ω(2m+2r)

α+δ+2rξ,β+γ−2rξ;ξ

+2(m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)Ω(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

)
−〈β − γ, ξ〉

[(
2(m+ r)〈α + ρ, δ + 2rξ + ρ〉

− (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)
)

Ω
(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

+ (m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉) (2m+ 2r − 1))Ω
(2m+2r−2)
α+δ+(2r−2)ξ,β+γ−(2r−2)ξ;ξ

]
.

�

A simple case is given as follows:

Corollary 2.2. In particular, for β − γ ∈ Cξ, we have
m∑
i=0

r∑
j=0

(−1)i+j
(
m

i

)(
r

j

)(
[Ω

(m)
α−iξ,β−jξ;ξ,Ω

(r)
γ+iξ,δ+jξ;ξ]+

− [Ω
(m)
α−iξ,γ−jξ;ξ,Ω

(r)
β+iξ,δ+jξ;ξ]+

)
=〈β + ρ, γ + ρ〉

(
〈α + ρ, δ + 2rξ + ρ〉Ω(2m+2r)

α+δ+2rξ,β+γ−2rξ;ξ

+2(m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)Ω(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

)
.

Fix ξ ∈ Λ \ Cρ. Recall that the Lie subalgebra
⊕

m∈ZCLmξ is iso-
morphic to the Witt algebra W.

By Corollary 3.4 of [BF1], it is known that, for any cuspidal W-
module V whose multiplicity is bounded by a constant, say d, there

is m ∈ Z>0 (determined by d) such that the differentiator Ω
(m)
rξ,sξ;ξ acts

trivially on V , for any r, s ∈ Z. With the aid of this fact, we show the
next proposition:

Proposition 2.3. Assume that π : Λ→ C2 satisfies the condition (C).
Then there exists n ∈ Z>0 such that for any δ, ξ ∈ Λ the differentiator

Ω
(n)
δ,0;ξ acts trivially on a cuspidal Wπ-module M .

Proof. Let α, β, γ ∈ Zξ such that β 6= γ and δ ∈ Λ \ Zξ.
As we have discussed above, the differentiator Ω

(m)
rξ,sξ;ξ acts trivially

on M . Hence, the left hand side of the formula in Corollary 2.2 becomes
0 and we obtain

〈α + ρ, δ + 2rξ + ρ〉Ω(2m+2r)
α+δ+2rξ,β+γ−2rξ;ξ

+2(m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉)Ω(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ = 0
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on M . Set

K = 〈α + ρ, δ + 2rξ + ρ〉, L = 2(m〈ξ, δ + ρ〉+ r〈α + ρ, ξ〉).

The left hand side of the above equation can be rewritten with the aide
of (1) as

KΩ
(2m+2r)
α+δ+2rξ,β+γ−2rξ;ξ + LΩ

(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ

=KΩ
(2m+2r−1)
α+δ+2rξ,β+γ−2rξ;ξ + (L−K)Ω

(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ.

Writing the same formula for α′ = α + 2(r −m)ξ, β′ = β − 2(r −m)ξ
and ξ′ = −ξ, the coefficients K,L now become K ′ and L′ that can be
expressed as

K ′ = K − L+ 2r〈ξ, α + δ + 2ρ〉, L′ = −L.

Hence by (1), the system of linear equations we obtain is

KΩ
(2m+2r−1)
α+δ+2rξ,β+γ−2rξ;ξ + (L−K)Ω

(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ = 0,

(L′ −K ′)Ω(2m+2r−1)
α+δ+2rξ,β+γ−2rξ;ξ +K ′Ω

(2m+2r−1)
α+δ+(2r−1)ξ,β+γ−(2r−1)ξ;ξ = 0,

whence the determinant of the matrix of the coefficients is

K ·K ′ − (L−K) · (L′ −K ′) = L · 2r〈ξ, α + δ + 2ρ〉
=4r(m〈ξ, δ + ρ〉+ r〈ρ, ξ〉)〈ξ, δ + 2ρ〉.

In particular, for r = m, the right hand side becomes 4m2〈ξ, δ〉〈ξ, δ+2ρ〉
which is non-zero by assumption (C). Thus,

Ω
(4m)
α+δ+2mξ,β+γ−2mξ;ξ = Ω

(4m−1)
α+δ+(2m−1)ξ,β+γ−(2m−1)ξ;ξ = 0

on M . Thus, for an appropriate choice of α, β and γ, the above formula

shows that for n = 4m we get Ω
(n)
δ,0;ξ = 0 on M . The case δ ∈ Zξ follows

from Corollary 3.4 of [BF1]. �

As a corollary, one can show

Theorem 2.4. Assume that π : Λ → C2 satisfies the condition (C).

Let M̂ be the cover of a cuspidal Wπ-module M . Then the dimensions

of the homogeneous components of M̂ are uniformly bounded.

Proof. Assume M = ⊕µ∈ΓMµ for some coset Γ ∈ C2/π(Λ). Fix β ∈ Γ
such that 〈ρ, β〉 = 0. By condition (C) there exists at most one such
element in Γ. If Γ contains no elements with this property, we fix β to
be an arbitrary element of Γ.
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Fix a Z-basis ε1, . . . , εN of Λ. Let n be a natural number from

Proposition 2.3. For any γ ∈ Λ, it is sufficient to show that M̂β+γ is
spanned by

N⋃
i=1

⋃
0≤ki<n

{ψ(Lγ−∑N
i=1 kiεi

, x)| x ∈Mβ+
∑N

i=1 kiεi
},

that is, we show that for any α ∈ Λ and x ∈Mα, ψ(Lγ−α, x) is express-
ible as a linear combination of the elements of the above form. For
α =

∑N
i=1 kiεi with 0 ≤ ki < n (∀ i), there is nothing to do. Otherwise,

let y ∈ Mβ+α such that x = L0.y. By Proposition 2.3, Ω
(n)
γ′,0;±εk acts

trivially on M for any 1 ≤ k ≤ N and γ′ ∈ Λ. This implies the next
equality holds:

(2) ψ(Lγ−α, x) = −
n∑
i=1

(−1)i
(
n

i

)
ψ(Lγ−α∓iεk , L±iεk .y).

Indeed, one can show this identity by evaluating
n∑
i=0

(−1)i
(
n

i

)
ψ(Lγ−α∓iεk , L±iεk .y)

on Lδ−ρ (δ ∈ Λ):
n∑
i=0

(−1)i
(
n

i

)
ψ(Lγ−α∓iεk , L±iεk .y)(Lδ−ρ)

=
n∑
i=0

(−1)i
(
n

i

)
(LAδ−ρ.Lγ−α∓iεk)L±iεk .y

=
n∑
i=0

(−1)i
(
n

i

)
Lγ+δ−α∓iεkL±iεk .y = Ω

(n)
γ+δ−α,0;±εk .y = 0.

Thus, applying appropriately (2), we have proved the proposition. �

Remark 2.5. In fact, the above proof shows that the multiplicities of

M̂ is uniformly bounded by d · nN .

2.3. From AVπ-modules to Wπ-modules. Let M be a simple cus-

pidal Wπ-module and M̂ be its Aπ-cover. There is a surjection pr :

M̂ � M (see §2.1). Let M̂ = T0 ) T1 ) · · · ) Tk = 0 be the com-
position series of AVπ-modules whose quotient modules Ts/Ts+1 are
simple AVπ-modules. As M is simple, there exists 0 ≤ s < k such
that pr(T0) = · · · = pr(Ts) = M and pr(Ts+1) = · · · = pr(Tk) = 0. In
particular, we see that pr(Ts/Ts+1) = M . This means that any simple
cuspidal Wπ-module is a quotient of a simple cuspidal AVπ-module.
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In the next section, we classify simple cuspidal AVπ-modules. As an
application, we obtain the classification of simple cuspidal Wπ-modules.

3. Classification of simple AVπ-modules of Aπ-finite rank

3.1. Operator D(λ). Let T be an AVπ-module with the finite-dimen-
sional homogeneous components, supported on a coset Γ = β + π(Λ),
β ∈ C2. We set U to be the weight space U = Tβ, and as before, we
can write T = Aπ ⊗ U .

We introduce the following family of operators on finite-dimensional
space U :

Definition 3.1. For λ ∈ π(Λ), we set D(λ) = LA−λ−ρ ◦ LVλ .

To be precise, the first factor Lλ acts as an element of Wπ and the
second factor L−λ−ρ as an element of Aπ.

Let us compute the commutation relations between D(λ) and D(µ):

Lemma 3.1. For λ, µ ∈ π(Λ), we have
(3)
[D(λ), D(µ)] = 〈λ+ρ, µ+ρ〉D(λ+µ)−〈λ, µ+ρ〉D(λ)−〈λ+ρ, µ〉D(µ).

Proof.

[D(λ), D(µ)]

=LA−λ−ρ ◦ {Lλ, L−µ−ρ}A ◦ LVµ − LA−µ−ρ ◦ {Lµ, L−λ−ρ}A ◦ LVλ
+ LA−λ−ρ ◦ LA−µ−ρ ◦ LVλ ◦ LVµ − LA−µ−ρ ◦ LA−λ−ρ ◦ LVµ ◦ LVλ

=〈λ+ ρ, µ+ ρ〉D(λ+ µ)− 〈λ, µ+ ρ〉D(λ)− 〈λ+ ρ, µ〉D(µ)

�

We denote by D the infinite-dimensional Lie algebra spanned by
elements D(λ), λ ∈ Λ, subject to the commutation relations (3).

The AVπ-module structure can be recovered from the action of D:

Lemma 3.2. Let U be a module for the Lie algebra D. Then Aπ ⊗ U
has a structure of an AVπ-module with Aπ acting by multiplication on
the left tensor factor and the action of Wπ defined as follows:

LVλ (LAµ ⊗ u) = 〈λ+ ρ, µ+ ρ〉LAµ+λ ⊗ u+ LAµ+λ ⊗D(λ)u.

The proof of this lemma is straightforward and is left as an exercise
to the reader.

Let ε1, ε2, . . . , εN be a Z-basis of π(Λ). Write λ =
∑N

i=1 λiεi. Our
goal is to show that the operator D(λ) is an End(U)-valued polynomial
in λ1, . . . , λN .

We will need with the following auxiliary Lemma:
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Lemma 3.3. Let Qi, Ri ∈ C[X1, . . . , XN ], i = 1, . . . , r, with
GCD(Q1, . . . , Qr) = Q0. Let S be the set of common zeros of Q1, . . . , Qr

in ZN . Suppose D is a function ZN → C, satisfying Ri = QiD, for all
i = 1, . . . , r (here Qi, Ri are viewed as functions on ZN). Then there
exists a polynomial R0 ∈ C[X1, . . . , XN ] such that Q0D = R0 on ZN\S.

Proof. The statement is trivial if r = 1. Let us prove the claim when
r = 2. We have Q1R2 = Q2R1 as functions on ZN . Since a poly-
nomial is determined by its values on ZN , the same equality holds in
C[X1, . . . , XN ]. Let Q0 = GCD(Q1, Q2). Then Q1

Q0
R2 = Q2

Q0
R1. Since

C[X1, . . . , XN ] is a unique factorization domain and GCD(Q1

Q0
, Q2

Q0
) = 1,

there exists a polynomial R0 such that Ri = Qi

Q0
R0 for i = 1, 2. Com-

paring this with QiD = Qi

Q0
Q0D, we conclude that Q0D = R0 at all

points of ZN where one of Q1, Q2 does not vanish.
The case of r ≥ 3 may be now obtained by induction. Let Q′ =

GCD(Q2, . . . , Qr). By induction assumption there exists a polynomial
R′ such that Q′D = R′ outside the common zeros of Q2, . . . , Qr. Since
Q0 = GCD(Q1, . . . , Qr) = GCD(Q1, Q

′), we may apply the above ar-
gument with r = 2 and get a polynomial R0 such that Q0D = R0

whenever Q1 or Q′ is non-zero. Since Q′ is non-zero outside the set of
common zeros of Q2, . . . , Qr, we conclude that the equality Q0D = R0

holds outside the set of the common zeros of Q1, . . . , Qr. �

Now we can establish polynomiality of D(λ).

Lemma 3.4. Assume that π : Λ→ C2 satisfies the condition (C). The
operator D(λ) is polynomial in λ1, . . . , λN with coefficients in End(U).

Proof. By Lemma 3.1, we have

[D(mεi), D(sεi)] = 〈ρ, εi〉((s−m)D((m+ s)εi) +mD(mεi)− sD(sεi)),

which is exactly the case corresponding to the Witt algebra W. Hence,
by [B], it follows that the operator D(λiεi) is polynomial in λi.

Now let us prove by induction on k that D(λ1ε1 + . . . + λkεk) is
a polynomial in λ1, . . . , λk. The basis of induction, k = 1 is already
established.

For the induction step, we assume that D(λ1ε1 + . . . + λk−1εk−1) is
a polynomial. Consider the commutator

[D(λ1ε1 + . . .+ λk−1εk−1), D(λkεk)]

= 〈λ1ε1 + . . .+ λk−1εk−1 + ρ, λkεk + ρ〉D(λ1ε1 + . . .+ λkεk)

− 〈λ1ε1 + . . .+ λk−1εk−1, λkεk + ρ〉D(λ1ε1 + . . .+ λk−1εk−1)

− 〈λ1ε1 + . . .+ λk−1εk−1 + ρ, λkεk〉D(λkεk).
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By induction assumption, the left hand side, as well as the last two
summands in the right hand side, are polynomials. Set

P1 =〈λ1ε1 + . . .+ λk−1εk−1 + ρ, λkεk + ρ〉
= λ1λk〈ε1, εk〉+ . . .+ λk−1λk〈εk−1, εk〉
+ λ1〈ε1, ρ〉+ . . .+ λk−1〈εk−1, ρ〉 − λk〈εk, ρ〉.

Then P1(λ1, . . . , λk)D(λ1ε1 + . . .+ λkεk) is a polynomial in λ1, . . . , λk.
We can perform a change of basis ε′k−1 = εk−1 + εk, ε

′
i = εi for i 6=

k−1; λ′k = λk−λk−1, λ′j = λj for j 6= k, and apply the same argument,
obtaining that P ′1(λ′1, . . . , λ

′
k)D(λ′1ε

′
1 + . . . + λ′kε

′
k) is a polynomial in

λ1, . . . , λk.
Note that λ′1ε

′
1 + . . .+ λ′kε

′
k = λ1ε1 + . . .+ λkεk.

Set

P2(λ1, . . . , λk) = P ′1(λ′1, . . . , λ
′
k)

= λ1(λk − λk−1)〈ε1, εk〉+ . . .+ λk−1(λk − λk−1)〈εk−1 + εk, εk〉
+ λ1〈ε1, ρ〉+ . . .+ λk−1〈εk−1 + εk, ρ〉 − (λk − λk−1)〈εk, ρ〉.

Let us consider the difference

P3 = P1−P2 = λ1λk−1〈ε1, εk〉+ . . .+λk−1λk−1〈εk−1, εk〉− 2λk−1〈εk, ρ〉,
and factor out λk−1:

P4 = λ1〈ε1, εk〉+ . . .+ λk−1〈εk−1, εk〉 − 2〈εk, ρ〉
= 〈λ1ε1 + . . .+ λkεk + 2ρ, εk〉.

Finally, set

P5 = P1 − λkP4 = λ1〈ε1, ρ〉+ . . .+ λk〈εk, ρ〉.
Then for each j = 1, . . . , 5, Pjλk−1D(λ1ε1+. . .+λkεk) is a polynomial

in λ1, . . . , λk.
Since GCD(P4, P5) = 1, we obtain by applying Lemma 3.3 that

λk−1D(λ1ε1 + . . . + λkεk) is a polynomial in λ1, . . . , λk outside the set
of common zeros of P4 and P5. However by assumption,

〈δ + 2ρ, εk〉 6= 0

for all δ ∈ Λ. Hence P4 has no zeros in ZN .
By symmetry, we obtain that λjD(λ1ε1 + . . .+λkεk) is a polynomial

for all j = 1, . . . , k. Since GCD(λ1, . . . , λk) = 1 in C[λ1, . . . , λk], apply-
ing again Lemma 3.3, we establish that there exists an End(U)-valued
polynomial T such that D = T on Zk\{0}.

However we know from [B] that D(λ1ε1) is given by a polynomial in
λ1 for all λ1 ∈ Z and must agree with T (λ1, 0, . . . , 0) for λ1 6= 0. Two
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polynomials in λ1 that have equal values on Z\{0}must be equal, hence
D(0) is the constant term of T , and D = T everywhere on Zk. �

3.2. Lie algebra P. By Lemma 3.4, we may assume that the operator
D(λ) can be expressed in the form

(4) D(λ) =
∑
K∈ZN

+

λK

K!
PK ,

where PK = 0 except for finitely many K. Here, Z+ = Z≥0. We denote
by |K| the sum of the components of a vector K ∈ ZN+ . It follows from
the above that P0 = D(0). Lemma 3.1 implies that P0 is a central
element. By Lemma 3.1,

[D(λ), D(µ)] =
∑

K,S∈ZN
+

λKµS

K!S!
[PK , PS]

=
(∑
i 6=j

λiµj〈εi, εj〉+
∑
i

(µi − λi)〈ρ, εi〉
) ∑
R∈ZN

+

(λ+ µ)R

R!
PR

−
(∑
i 6=j

λiµj〈εi, εj〉 −
∑
i

λi〈ρ, εi〉
) ∑
R∈ZN

+

λR

R!
PR

−
(∑
i 6=j

λiµj〈εi, εj〉+
∑
i

µi〈ρ, εi〉
) ∑
R∈ZN

+

µR

R!
PR

=
(∑
i 6=j

λiµj〈εi, εj〉+
∑
i

(µi − λi)〈ρ, εi〉
) ∑
|R1|,|R2|>0

λR1

(R1)!
· µ

R2

(R2)!
PR1+R2

+
∑
i

µi〈ρ, εi〉
∑
|R|>0

λR

R!
PR −

∑
i

λi〈ρ, εi〉
∑
|R|>0

µR

R!
PR −

∑
i 6=j

λiµj〈εi, εj〉P0.

Let K,S ∈ NN such that |K|, |S| > 1. Comparing the coefficient of
λKµS, we obtain
(5)

[PK , PS] =
∑
i 6=j

KiSj〈εi, εj〉PK+S−εi−εj +
∑
i

(Si −Ki)〈ρ, εi〉PK+S−εi .

Now, compute the case K = εi and S = εj. Comparing the coeffi-
cients of λiµj, we obtain

(6) [Pεi , Pεj ] = 〈ρ, εj〉Pεi − 〈ρ, εi〉Pεj − 〈εi, εj〉P0.
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For K = εi and |S| > 1, Comparing the coefficients of λiµ
S, we

obtain

(7) [Pεi , PS] = −〈ρ, εi〉PS +
∑
j

〈ρ, εj〉sjPS+εi−εj .

Let P be the infinite-dimensional Lie algebra with a basis {PK |K ∈
ZN+} subject to the commutation relations (5)-(7).

Lemma 3.4 implies that every finite-dimensional representation of
Lie algebra D yields a representation of P on the same space with the
property that PK act trivially for all but finitely many K. In fact, all
finite-dimensional P-modules have that property.

Lemma 3.5. For every finite-dimensional P-module U , all but finitely
many PK act trivially.

The proof of this fact is based on the following Lemma, which is a
minor modification of Lemma 3.4 from [B]:

Lemma 3.6. Let θ : L → End(U) be a finite-dimensional representa-
tion of an infinite-dimensional Lie algebra L. For an element x ∈ L
and a ∈ C let

Lx(a) =
∞
∪
k=1

Ker (ad(x)− a · id)k

be the generalized eigenspace of ad(x). Then θ(Lx(a)) = 0 for all but
finitely many a.

We can use this result to prove Lemma 3.5. Indeed, it follows from
(7) that

(8) PS ∈
∞
⊕
k=0
PPεi

((si + k − 1)〈ρ, εi〉).

Then Lemma 3.6 implies that there exists a constant m ∈ N such that
PS will act as zero on U for all S with |S| ≥ m.

Theorem 3.7. There is an equivalence of categories of cuspidal AVπ-
modules supported on a coset β+π(Λ) and finite dimensional P-modules.

Proof. We have seen above that every cuspidal AVπ-module T sup-
ported on a coset β + π(Λ) yields a representation of P on the weight
space U = Tβ. It is straightforward to check that this functor is invert-
ible, and every finite-dimensional module U of P produces a cuspidal
AVπ-module structure on Aπ ⊗ U . Indeed, we can recover the rela-
tion (3) from the Lie brackets in P and then by Lemma 3.2 we get a
Wπ-module structure on Aπ ⊗ U . �

Our next goal is to describe irreducible finite-dimensional represen-
tations of P .
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3.3. Irreducible representations of P. The following Lemma is
quite useful for the study of irreducible finite-dimensional represen-
tations:

Lemma 3.8 (cf. [FH], Proposition 9.17). Let U be an irreducible finite
dimensional representation of a finite dimensional Lie algebra g. Then

[g, g] ∩ Rad g

acts trivially on U , where Rad g stands for the solvable radical of g.

Lemma 3.9. For every K ∈ ZN+ with |K| ≥ 2 we have PK ∈ [P ,P ].

Proof. Using (8), we see that every PK with ki ≥ 2 is in the commutator
subalgebra [P ,P ]. Let us show that for K = εi1 + . . .+ εir with r ≥ 2
and i1, . . . , ir distinct, PK ∈ [P ,P ]. Indeed,

[Pεi1 , P2εi2+εi3+...+εir
] =− 〈ρ, εi1〉P2εi2+εi3+...+εir

+ 2〈ρ, εi2〉Pεi1+εi2+...+εir

+ 〈ρ, εi3〉Pεi1+2εi2+εi4+...+εir
+ . . .

+ 〈ρ, εir〉Pεi1+2εi2+εi3+...+εir−1
.

Now the left hand side, as well as all terms, except possibly the second
one, in the right hand side, are in [P ,P ]. Hence, Pεi1+εi2+...+εir

is also
in the commutator subalgebra. �

Lemma 3.10. Let U be a finite-dimensional irreducible P-module.
Then all PK with |K| > 2 act trivially on U .

Proof. First, by Lemma 3.5, every finite-dimensional representation of
P factors through a quotient

P ′ = P/Span{PS
∣∣ |S| ≥ m}.

for some m ∈ N. We can immediately see from (5) and (7) that ele-
ments PK with |K| > 2 form a solvable ideal in P ′ and hence belong
to the solvable radical. Combining this with Lemma 3.9, we conclude
that all PK with |K| > 2 belong to [P ′,P ′] ∩ RadP ′ and hence vanish
on U according to Lemma 3.8. �

Hence, an irreducible finite dimensional P-module U induces an
irreducible finite dimensional P-module structure on U , where P =
P/
⊕
|K|>2 CPK . The image of PK in P for |K| ≤ 2 will be denoted by

the same letter.
Let us determine the reductive quotient P/(RadP ∩ [P ,P ]).
First of all, we note that P is a semidirect product, P = P1 n P2,

where the subalgebra P1 is spanned by PK with |K| = 0, 1, and the
ideal P2 is spanned by PK with |K| = 2.
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Lemma 3.11. Lie algebra P1 is a solvable Lie algebra with an abelian
commutator subalgebra. The map τ : P1 → V ∼= C2, given by

τ(Pεi) = εi

τ(P0) = ρ,

has [P1,P1] as its kernel and induces an isomorphism between the quo-
tient P1/[P1,P1] and a 2-dimensional abelian Lie algebra V .

Proof. Using (6), we can compute

τ([Pεi , Pεj ]) = 〈ρ, εj〉εi − 〈ρ, εi〉εj − 〈εi, εj〉ρ = 0.

Here we used the fact that

〈ρ, εj〉εi − 〈ρ, εi〉εj = 〈εi, εj〉ρ.
This tells us that τ is a homomorphism of Lie algebras with [P1,P1] ⊂
Ker τ . In fact, it is easy to see that we actually have the equality
[P1,P1] = Ker τ . It is straightforward to verify that [P1,P1] is abelian.
It is also obvious that τ is surjective. �

Consider the space CN = C ⊗Z Λ with a skew symmetric bilinear
form 〈·|·〉 induced from π(Λ) ⊂ C2. Then the space S2CN has a Lie
algebra structure coming from the Poisson bracket on S•CN .

Lemma 3.12. There is an isomorphism of Lie algebras η : P2 →
S2CN , given by

η(Pεi+εj) = εiεj.

Proof. This follows immediately from the Lie bracket (5):

[Pεa+εb ,Pεc+εd ]

= 〈εa|εc〉Pεb+εd + 〈εa|εd〉Pεb+εc + 〈εb|εc〉Pεa+εd + 〈εb|εd〉Pεa+εc .

�

Lemma 3.13. There is a homomorphism π∗ : S2CN → S2C2 ∼= sl2,
given by

π∗(λµ) = π(λ)π(µ), for λ, µ ∈ CN .

The kernel of this homomorphism is a solvable ideal in S2CN .

Proof. The Lie bracket in S2CN is

(9) [αβ, γδ] = 〈α|γ〉βδ + 〈α|δ〉βγ + 〈β|γ〉αδ + 〈β|δ〉αγ.
Since by definition 〈α|γ〉 = 〈π(α), π(γ)〉, the map π∗ is a homomor-
phism of Lie algebras. The kernel of π∗ is spanned by αβ with β ∈
Ker π. Consider also the subspace Z ⊂ S2CN spanned by αβ with both
α, β ∈ Ker π. We immediately see from (9) that Z is central in S2CN .
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Moreover, it follows from (9) that [Ker π∗,Ker π∗] ⊂ Z. Hence Kerπ∗
is a solvable ideal in S2CN , as claimed. �

Identifying P2 with S2CN , we can rewrite the Lie bracket (7) in the
following way:

(10) [Pεi , λµ] = −〈ρ, π(εi)〉λµ+ 〈ρ, π(λ)〉εiµ+ 〈ρ, π(µ)〉εiλ.
It follows immediately from this formula that the pull-back of Kerπ∗

to P2 is an ideal in P . Since this ideal is solvable and belongs to [P ,P ]
by Lemma 3.9, it will vanish in every finite-dimensional irreducible rep-
resentation of P . Hence irreducible representations of P factor through
the quotient

P1 n S2C2.

The action of P1 on S2C2 defines the homomorphism P1 → Der(S2C2).
Since S2C2 is isomorphic to sl2, we have Der(S2C2) ∼= S2C2, and we
obtain a homomorphism

ϕ : P1 → S2C2.

Lemma 3.14. The map ϕ is given by the formulas:

ϕ(Pεi) =
1

2
π(εi)ρ, ϕ(P0) = 0.

Proof. It is sufficient to calculate on each λµ for λ, µ ∈ C2: by (5), (10)

1

2
[π(εi)ρ, λµ]− [Pεi , λµ]

=
1

2
(〈π(εi), λ〉ρµ+ 〈π(εi), µ〉ρλ+ 〈ρ, λ〉π(εi)µ+ 〈ρ, µ〉π(εi)λ)

− (−〈ρ, π(εi)〉λµ+ 〈ρ, λ〉π(εi)µ+ 〈ρ, µ〉π(εi)λ)

=
1

2
(〈π(εi), λ〉ρµ+ 〈π(εi), µ〉ρλ) + 〈ρ, π(εi)〉λµ

− 1

2
(〈ρ, λ〉π(εi)µ+ 〈ρ, µ〉π(εi)λ).

Now, the identities

〈π(εi), ν〉ρ− 〈ρ, ν〉π(εi) = −〈ρ, π(εi)〉ν, ν ∈ {λ, µ},
imply that 1

2
[π(εi)ρ, λµ]− [Pεi , λµ] = 0. �

By this Lemma, the semi-direct product P1 n S2C2 splits into a
direct sum of ideals, with the isomorphism map

P1 n S2C2 → P1 ⊕ S2C2,

given by (x, y) 7→ (x, ϕ(x) + y), with x ∈ P1 and y ∈ S2C2.
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Applying Lemma 3.11, we see that for x ∈ Ker τ , elements x−ϕ(x) ∈
P form an abelian ideal and act trivially on every irreducible finite-
dimensional P-module. Then irreducible finite-dimensional represen-
tations of P are described by the irreducible finite-dimensional repre-
sentations of the reductive Lie algebra C2⊕S2C2, where the first direct
summand is an abelian Lie algebra.

Fix a vector ρ† ∈ C2 such that 〈ρ, ρ†〉 = 1.
The following theorem gives a description of finite-dimensional irre-

ducible representations of P :

Theorem 3.15. Every irreducible finite-dimensional module for the
Lie algebra P is given by an irreducible finite-dimensional module U
for the Lie algebra S2C2 ∼= sl2, and two scalars K0, K1 ∈ C. The action
of P on U is the following:

P0 7→ K0idU ,(11)

Pεi 7→ 〈εi, K0ρ
† +K1ρ〉idU +

1

2
π(εi)ρ,(12)

Pεi+εj 7→ π(εi)π(εj),(13)

PK 7→ 0, for |K| ≥ 3.(14)

Proof. By Lemmas 3.9-3.14, finite-dimensional irreducible representa-
tions of P are pull-backs of simple modules for the reductive Lie algebra
C2 ⊕ S2C2 via the map γ : P → C2 ⊕ S2C2, given by

γ(P0) = ρ ∈ C2,

γ(Pεi) = π(εi) +
1

2
π(εi)ρ,

γ(Pεi+εj) = π(εi)π(εj) ∈ S2C2,

γ(PK) = 0, for |K| ≥ 3.

Every finite-dimensional simple module for the Lie algebra C2⊕S2C2 is
a simple S2C2 ∼= sl2-module U , on which elements of C2 act as scalars.
Assuming that ρ ∈ C2 acts as K0idU , and ρ† ∈ C2 acts as −K1idU and
taking into account the decomposition

π(εi) = 〈εi, ρ†〉ρ− 〈εi, ρ〉ρ†,

we obtain the claim of the theorem. �

Using Theorem 3.15 we can prove that the class of modules intro-
duced in section 1.3 exhausts all simple Λ-graded AVπ-modules of Aπ-
finite rank.
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Theorem 3.16. Assume that π : Λ → C2 satisfies the condition (C).
Then every simple Λ-graded AVπ-module T of Aπ-finite rank is iso-
morphic to Mn(Γ) for some n ≥ 0 and Γ ∈ C2/π(Λ).

Proof. Let U be a weight space of T , U = Ta for some a ∈ C. Then U
is a finite-dimensional module for the Lie algebra D with D(0) acting
by aidU . Since T is a simple AVπ-module, it follows from Lemma
3.2 that U is an irreducible representation for D. By Lemma 3.4, U
admits the action of the Lie algebra P . Since the action of D can be
expressed in terms of the action of P , U is irreducible as a P-module.
Using Theorem 3.15, we conclude that U is an irreducible S2C2 ∼= sl2-
module with the action of P given by (11) - (14). Combining Lemma
3.2 with (4) and (11) - (14), we recover the AVπ-module structure on
T = Aπ ⊗ U :

LVλ (LAµ ⊗ u) = 〈λ+ ρ, µ+ ρ〉LAλ+µ ⊗ u

+LAλ+µ ⊗K0u+
N∑
i=1

λi〈εi, K0ρ
† +K1ρ〉LAλ+µ ⊗ u

+
1

2
LAλ+µ ⊗

(
N∑
i=1

λi(π(εi)ρ)u+
∑
i 6=j

λiλj(π(εi)π(εj))u+
N∑
i=1

λ2
iπ(εi)

2u

)
=〈λ+ ρ, µ+ ρ〉LAλ+µ ⊗ u+ 〈λ+ ρ,K0ρ

† +K1ρ〉LAλ+µ ⊗ u

+
1

2
LAλ+µ ⊗ λ(λ+ ρ)u.

This shows that T is isomorphic toMn(β+ Λ) with β = K0ρ
†+K1ρ+

π(Λ) and n = dimU − 1. �

Corollary 3.17. Then Mn(Γ) is irreducible as an AVπ-module for
every Γ ∈ C2/π(Λ) and n ≥ 0.

Proof. Every V-submodule ofMn(Γ) is Λ-graded, and every Λ-graded
A-submodule of Mn(Γ) is of the form SΓ ⊗ U ′ for some subspace U ′

in SnC2. But then U ′ is a P-submodule in SnC2 and hence is also
an sl2-submodule. However SnC2 is an irreducible sl2-module. Hence
every AVπ-submodule in Mn(Γ) is trivial. �

4. Proof of the Main Theorem

In this section, we prove Lemma 1.5 and the Main Theorem 1.7. We
shall notice that the hypothesis rank Λ > 1 is essential.

In this section, we identify the lattice Λ with its image π(Λ) in C2.
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4.1. Isomorphism S2C2 ∼= sl2. Let ξ, η ∈ Λ \ 0 ⊂ C2 be two linearly
independent elements. Set

e = − 1

2〈ξ, η〉
ξ2, f =

1

2〈ξ, η〉
η2, h = − 1

〈ξ, η〉
ξη.

The triplet {e, f, h} forms a standard sl2-triplet, i.e., they satisfy
[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

4.2. Irreducibility of Mn(Γ) with n ≥ 2. Every Wπ-submodule N
of Mn(Γ) is Λ-graded, i.e., N =

⊕
µ∈ΓNµ where Nµ = N ∩Mn

µ. Fix

µ ∈ Γ and let N ′µ be the subspace of SnV such that Nµ = CLAµ−ρ⊗N ′µ.

For any λ ∈ Λ, the element w = LVλ−γ.(L
V
γ .(L

A
µ−ρ⊗n′)) with n′ ∈ N ′µ is

an element of N ′λ+µ for any γ ∈ Λ, and w is a degree 4 polynomial in
γ. Varying γ ∈ Λ, we see that each coefficient of monomials in γ is an
element of N ′λ+µ. In particular, the quartic component of w in γ sits
in N ′λ+µ and is given by

1

4
LAλ+µ−ρ ⊗ {γ2, {γ2, n′}}.

Taking γ = ξ, η, ξ ± η, we see that

{ξ2, {η2, n′}}+ {η2, {ξ2, n′}}+ 4{ξη, {ξη, n′}}

are elements of N ′λ+µ. In addition, these two elements corresponds

to −4〈ξ, η〉2(ef + fe − h2) via the isomorphism given in the previous
subsection. Hence N ′ is closed under the operators LAµ−ρ⊗(ef+fe−h2)

for all µ ∈ Λ. By the assumption n ≥ 2, the element ef + fe− h2 acts
on SnV as an invertible semi-simple element. Thus N ′ = N ′µ does not
depend on the choice of µ ∈ Γ, namely, N = SΓ ⊗N ′ ⊂ Mn(Γ). This
shows that N is not just a Wπ-submodule of Mn(Γ), but in fact it is
an AVπ-submodule. But by Corollary 3.17,Mn(Γ) is irreducible as an
AVπ-module.

This completes the proof of the first half of Lemma 1.5. The second
half of Lemma 1.5 can be shown by direct computation.

4.3. Proof of the Main Theorem. Let M be a non-trivial simple
Λ-graded cuspidal Wπ-module. As we have seen in Section 2.3, there
exists a simple cuspidal AVπ-module T with a surjective homomor-
phism T �M . By Theorem 3.16, T is isomorphic toMn(Γ) for some
coset Γ ∈ C2/Λ and n ≥ 0. If n ≥ 2 then by Lemma 1.5, T is irre-
ducible as a Wπ-module, and M is isomorphic to Mn(Γ). If n = 1,
every simple quotient ofM1(Γ) is also a quotient ofM0(−3

2
ρ+Γ), and

hence the case n = 1 may be excluded from our classification. Finally,
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if n = 0, the module M0(Γ) is isomorphic to SΓ, and the structure of
these modules is described in Lemma 1.3.
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