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PROPAGATION OF MOMENTS AND SEMICLASSICAL LIMIT
FROM HARTREE TO VLASOV EQUATION

LAURENT LAFLECHE

ABSTRACT. In this paper, we prove a quantitative version of the semiclassi-
cal limit from the Hartree to the Vlasov equation with singular interaction,
including the Coulomb potential. To reach this objective, we also prove the
propagation of velocity moments and weighted Schatten norms which implies
the boundedness of the space density of particles uniformly in the Planck con-
stant.
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2 LAURENT LAFLECHE

1. INTRODUCTION

1.1. Presentation of the problem. In this paper, we consider the nonrelativis-
tic quantum and classical equations which describe the evolution of a density of
infinitely many particles in the kinetic mean field regime, called respectively the
Vlasov and the Hartree equation. The interaction between particles is described by
a mean field potential V' = V(z) depending only on the space variable x € R? with
d > 2 and which is defined by

Vi=Kxp= | K(z-y)oly)dy,
R
where p is the spatial density and K is an even kernel describing the interaction
between two particles. The force field can then be written

E:=-VV.

fxt—lla with a €
[—2,d—1). The most physically relevant case is the case of the Coulomb interaction
a =d—2ford >3 or K(z) = £In(]z|) in the two dimensional case. It can
describe the interaction of charged particles as well as a system of point masses in
gravitational interaction, the force being repulsive when K is positive and attractive
in the converse case.

In the classical case, the kinetic density of particles f = f(¢, x, &) is a nonnegative
function of time ¢t € R, space and momentum ¢ € R? and the space density is
given by

Typically, we have in mind the pair interaction potential K(x) =

pla) = [ St

The evolution of the kinetic density is then given by the well-known Vlasov equation

(Vlasov) Of+&-Vof+E-Vef=0.
Remark also that by defining the Hamiltonian
2
H = % +V,

we can write the (Vlasov) equation as
Of ={H,f},
where {-,-} is the Poisson bracket defined by
{u,v} =Vyu-Vev — Veu - Vyo.

On the other hand, in the formalism of quantum mechanics, a particle is de-
scribed by a wave function v € L? = L%(R%,C) verifying ||¢|z = 1. Under the
action of the potential V| its evolution is governed by the following Schrédinger
equation

h2
(1) thop) = —7Aw+V’(/J,

where i = % is the reduced Planck constant. In the more general case of sys-

tems with mixed states, the density of particles is described by a trace class and
self-adjoint density operator, p, which by the Spectral theorem can be seen as a
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superposition of pure orthonormal states (¢;);c; € (L?)7 for a given J C N by
writing

(2) pyp = / oz, y)e(y) dy =Y Ajlb;) (w5].
Rd ;
jeJ
This is a Hilbert-Schmidt operator of kernel

p(x,y) = Y Nt () ().
jeJ

Given a density operator, the spatial density is defined as the diagonal of the kernel

pla) = p(a,z) =Y Al

jeJ
and the Hamiltonian is the following operator
2
H=-"atv
where V' = K x p is identified with the operator of multiplication by V(z). We

can then rewrite (1) for each v; as 9y; = %H 1; and we deduce that the density
operator verifies the so called Hartree equation

1
e va]7

(Hartree) Op = e [

where [, ] is the Lie bracket defined by
[A,B] = AB — BA.

The main goal of the present paper is to obtain a quantitative estimate of the
semiclassical limit from the (Hartree) to the (Vlasov) equation, which means the
limit when h = 2nh — 0. This limit was first investigated in a non-quantitative
way using compactness methods by Lions and Paul [41], Markowich and Mauser
[44] and then by Gerard et al [30], Gasser et al [21], Ambrosio et al [2, 1], Graffi et
al [29]. On the other hand, Athanassoulis et al [6] prove quantitative estimates in
L? norm in the case of sufficiently smooth potentials and Amour et al [3, 4] show
that the rate can be improved in the case of very smooth potentials. More recently,
some improvements on the requirement of regularity of the potential K have been
done in Benedikter et al [12] by considering trace and Hilbert-Schmidt norms and
a mixed semiclassical and mean-field limit, and by Golse et al [24] and Golse and
Paul [26] using quantum pseudo-distances created on the model of the Wasserstein-
Monge-Kantorovitch distances. This strategy allows them to prove estimates that
do not require any assumption of regularity on the initial data. However, all these
works still require at least Lipschitz regularity of the potential, which does not
include singular interactions like the Coulomb potential.

Recent attemps on generalizing these results to more singular potentials in the
case of Fermionic systems can be found in the works by Porta et al [50] and Saf-
firio [52], where a joint mean-field and semiclassical limit is obtained. However, it
requires regularity assumptions on the solution of the Hartree equation whose prop-
agation is still an open problem. The closely related problem of the mean field limit
from the N-body Schrodinger to the Hartree equation has been also investigated a
lot. Weak convergence results have been first obtained in [10, 17, 9] for the Coulomb
potential. Quantitative results have been established in [51, 49, 24, 46, 26, 25, 28]
for Bosons and in [20, 19, 13, 11, 7, 48, 50, 47] for Fermions. Remark that some
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of these works use a joint mean-field and semiclassical limit, however they always
require at least a Lipschitz potential or an assumption of regularity on the solution
of the Hartree equation.

An other possible way to derive the Vlasov equation is the classical mean-field
limit. It is also a closely related problem. Results for non-smooth potentials can
be found for example in [31, 32, 37, 36, 38]. The major obstacle here is the absence
of regularity in the N-body problem, which is the reason why all results with
unbounded pair interaction potentials need a cutoff on the force field.

Other results about the mean-field limit are the convergence of the minimizers
of the N-particles energy towards the mean-field energy. We refer for example to
[18] and references therein.

In order to get semiclassical estimates for more general pair potentials K, our
strategy consists in requiring more regularity on the initial data and proving that
it implies regularity at the level of the mean-field potential V. The propagation
of moments is inspired from [42] and [41]. The semiclassical limit is mostly an
adaptation of [26] and of the proof of uniqueness for the Vlasov equation given in
[43]. Some interesting improvements for the uniqueness can be found in [45, 34].

Finally, notice that the global well-posedness in Sobolev and Schatten spaces
and conservation of the energy have been treated in [22, 23, 33, 14, 35, 15, 39].
In particular, our hypotheses on finite quantum moments of order n require the
equation to be well-posed in the corresponding H™ Sobolev space. However, as
we will see, even if quantum moments can be interpreted as H™ norms, the above
mentionned papers do not prove the propagation of these norms uniformly with
respect to 7, which is one the main results of this paper.

1.2. Notations and tools. We describe in this section the main notations that
we will use. Since we are in the semiclassical regime, most of our results have
to be true in the limit and are inspired from the classical results. Therefore, our
notations try to be close for the classical objects and their quantum counterpart.
When comparing quantum and classical objects, we will sometimes add & in the
notation to denote the quantum objects.

1.2.1. Functional spaces. Since most of the functional spaces we use will be defined
for functions defined on R¢, we will often write X = X(R¢, C), as for example in
the case of the Lebesgue spaces LP := LP(R¢, C). When working on the phase space
{(z,€) € R*} we will write L} , := LP(R**,C). Some other standard functional
spaces we will use are the weak and weighted Lebesgue spaces, defined reciprocally
by
LP°° := {f measurable, VA > 0, [{|f| > A}| < C/ P}

Lo = L™

LP(m) := {f measurable, fm € LP}.
Moreover, we will denote by P(X) the space of probability measures on some space
X. We will need the equivalent of some of these spaces in the quantum picture.

The quantum equivalent of the integral on the phase space is the trace which for
an operator p in the form (2) can be written

Tr(p) = /Rd p(z,z)dx = Z)\j.

jeJ
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The trace is defined more generally for trace class operators. We refer to [55] for
the general definition and additional properties. In order to define the equivalent
of Lebesgue norms, let us first recall the definition of the Schatten norm of a trace
class operator A for p € [1,+00)

IAllp = Tr(|A[P)'/?

[Alloo := [ Al 22,

where % = %(L?) is the space of bounded operator on L? and |A| = vV A*A. We
will more precisely use a rescaled version of these norms defined for r € [1, +00] by

(3) lpller = 1= |iplly,

where 7 = -5 denotes the Hélder conjugate of r. They play the role of the
L;7£ norm for the quantum density operators. The space of quantum probability
measures corresponds to the space of normalized hermitian operators defined by

P :={peB(L?),p=p" >0,Tr(p) =1}.

Remark that since p will usually be a nice compact operator, for general unbounded
operators A € L(L?), we can define Tr(Ap) := Tr(p'/2Ap*/?) even if Ap is not a
bounded operator.

1.2.2. Momentum. We recall that the quantum equivalent of the classical momen-
tum ¢ is the following unbounded operator from L? to (L?)?

p:= —ihV.

Its formal adjoint for the scalar product defined by (u,v)2y¢ = f]Rd u - v is then
defined by

*

p* = —ihdiv = p-,

which leads to the following notations

—52A=|p|2
2
n=P oy

1.2.3. Wigner Transform. There exists several ways to try to associate a density
over the phase space to a density operator, one of them being the Wigner trans-
form and its nonnegative but smoothed version called Husimi transform defined
reciprocally for h =1 by

wl(p).§) = [

Rd
w(p) == w(p) x G,

e—2i7ry~§p (l’ + g7x — %) dy = ]:(fsa:)(f)

where p,(y) = p(x +y/2,2 —y/2) and G(z) = %642‘2 with z := (z,€) and we
used the following convention for the Fourier transform

F(u)(€) ::/ eiQi”x'gu(x) dz.

Rd
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We refer for example to [41] and [24] for more details and mathematical results.
Given p solution of the (Hartree) equation we will write its Wigner and Husimi
transforms respectively

(2.6 = wn(p)a.€) = o) (. )

(@, €) == fu * G,
where Gp(z) = ﬁe"zwh = gn(x)gn(y) with gp(x) = We’mg/h. We also

define the quantum velocity moments by

M= Tollpl"p) = [ lel" drde.

Remark that the scaling of the quantum Lebesgue norm LP can be understood by
looking at the Wigner transform and noticing that when r =1 or r = 2

[, frade =l

Hfh”L;E = |lppllc2-
Moreover, when r > 2 and py, is a superposition of coherent states, then
I fl

o .
1falaz, = lonller

i, < lpaller

See Section 7 for the proof and other results for coherent states.

1.2.4. Semiclassical Wasserstein pseudo-distances. A last useful tool in the study
of uniqueness and stability estimates for the Vlasov equation is the Wasserstein-
(Monge-Kantorovich) distance W), which can be defined for any p € [1, 00]. We refer
for example to the books by Villani [57] and Santambrogio [53]. As introduced in
[26], we will use a quantum equivalent of the W5 distance. We first introduce the
notion of coupling between a density operator and a classical kinetic density. Let
~ € L'(R?? 22). We say that v is a semiclassical coupling of f € L' NP(R?¢) and
p € & and we write v € C(f, p) when

Tr(v(2)) = f(2)
/ v(z)dz = p.
R2d

Then we define the semiclassical Wasserstein-(Monge-Kantorovich) pseudo-distance
in the following way

1

3
(@) Wanlron) = (L ant [ r@ontn o)

YEC(f,p) JR24d

where cn(2)p(y) = (lv —y> + 1€ = pl*) ¢(y), 2 = (2,€) and p = —ihV,. This
is not a distance but it is comparable to the classical Wasserstein distance Ws
between the Wigner transform of the quantum density operator and the normal
kinetic density, in the sense of the following Theorem

Theorem 1 (Golse & Paul [26]). Let p € & and f € P(R??) be such that

/]de f(xag)(|$|2 + |§‘2) dxdé‘ < 0.
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Then one has Wa n(f, p)> > dh and for the Husimi transform f, of p, it holds
(5) WQ(fa fﬁ)z S WQ,ﬁ(fa p)2 +dh

See also [27] for more results about this pseudo-distance and Section 7 for the
particular case of coherent states.

1.3. Main results. We will use this pseudo-distance to get explicit speed of con-
vergence in A of the solution p, of (Hartree) equation to the solution f of (Vlasov)
equation. For the classical density f, we consider conditions which ensure existence
and uniqueness of the solution and the boundedness of p as claims the following
theorem

Theorem 2 (Lions & Perthame [42], Loeper [43]). Assume f* € L (R®) verify

(6) / g dedé < C for a given ng > 6,
RS

and for all R > 0,

() supess {f™(y +t&,w), |z — y| < REZ,|€ —w| < Rt} € LS Ry, LELY).
(y,w)€ER®

Then there exists a unique solution to the (Vlasov) equation with initial condition

fizo = f™. Moreover, in this case, the spatial density verifies

(8) pE Llo(;bc(R-HLoo)'

This is actually proved for the Vlasov-Poisson equation only (i.e. K = ﬁ) but
the proof would works for less singular potentials verifying the assumptions of the
following Theorem 4. Actually, the proof we make for the quantum case can be
easily adapted to the classical case, which implies for example that this result holds
in dimension 3 for
9) K = @ for any a € (—1,4/5),
and for all ¢ € [0, Tiax] when a € [4/5,8/7). The strategy to prove the above
theorem is to obtain a Gronwall’s inequality for moments. Our first Theorem uses
the same strategy in the semiclassical picture to prove the propagation of quantum
velocity moments.

Theorem 3. Let b, := 72:;+1d, VK € L% for a given b € (by, +00] and pj, verify
the (Hartree) equation for t € [0,T] with initial condition pi* € 2 N L" such that
M" is bounded independently of h for a given n € 2N. Then there exists T > 0

and ® € C°[0,T) such that for any t € [0,T)
(10) M, < ®(t).

Moreover, T' = 400 when b > by = @. In particular, if K = 23— € L¥Y %> gnd

r = 00, then we require .
eac(-1,2)ifd=2,

e € (—1,%) if d =3,

and T = 400 when

) ifd=2,

) ifd=3.

e a¢c
® €

(1.
(-1

[SUIN NI
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From the quantum kinetic interpolation inequalities (21), we obtain the following
corollary.

Corollary 1.1. Under the assumptions of Theorem 3,

lollze,
is bounded on [0,T) independently of h for any p € [1,p,], where pl, =1 + %,

Remark 1.1. As it can be seen in the proof, when b > b, and there is propagation
of moments of order n € 2N, then the propagation of all higher moments May with
N > n holds with T = +oc0. In particular, in dimension d = 3, as long as the
moments My are finite, then all the higher moments are propagated for b > I, or

57
equivalently if K = |z|=%, fora < &

=, which includes the Coulomb case.

Remark 1.2. As explained in Section 3.2, the constraint a > —1 could be easily
removed by assuming bounded space moments Nj, = Tr(|z|*p) for a given k < n,
allowing for polynomial growth of K for large |x|.

The next theorem is about the following semi-classical convergence result which
uses only hypothesis on initial velocity moments and quantum Schatten norms.

Theorem 4. Assume K wverifies
(11) VK € L™ + L>*® for some b € (1,400)
(12) V2K € L? + L7 for some q € (1,2),

and let f be a solution of the (Vlasov) equation and p;, be a solution of (Hartree)
equation with respective initial conditions

fmern L3¢ wverifying (6) and (7)

prePNL.
Assume also that the initial quantum velocity moment
. d
(13) M, < C for a given ny > -
q—r

Then there exists T > 0 such that for any t € (0,T),
Wan(£(), pa()) < Cr (Wan(f™, i) + V).
Moreover, when b > 4%2"‘/, then there exists ® € C°(Ry) such that for any t >0

(14) Wan(f(1), p(1) < Wan(f™, pi)e® + Co(t)Vh,
where
C1 = [|[V2 K7 ®(1)?
C=1+C1+ VK| 1. ®(t)
Co(t) = CLC (2 — 1).

The next theorem proves the semi-classical convergence in a case of more singular
interactions kernels such that VK is in the Besov space Bj ., which includes the
Coulomb potential. The definition and basic proparties of Besov spaces are recalled
in Appendix A.
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Theorem 5. Assume K verifies

VK € L° 4 L> for some b € (1, +00),
and one of the two following conditions
(15) V2K € L + 14 for some q € (1,2),
(16) VK € Bf .,

and let f be a solution of the (Vlasov) equation and py, be a solution of (Hartree)
equation with respective initial conditions

fmern L3¢ wverifying (6) and (7)
prePNL®.
Moreover, assume that for a given n € 2N such that n > d

Vie [1,d], plpi € L™,

where p; == —ih0;. Assume also that the initial quantum velocity moment
) bn—1)+d
(17) M, < C for a given ny > (71[]7)14_7

with ny € 2N. Then there exists T > 0 such that
M, € L>([0,T7))
pi'py € L*°([0,T], L) for any i€ [1,d]
pr € L=([0,T], L),

uniformly in h, and there exists a constant Cp depending only on the intial condi-
tions and independent of h such that

Wan(F(8). pu(t)) < Cr (Wan(F™, i) + V).

Moreover, when b > d%%, and (15) is verified, we can take T = +oo and the same

time estimate as in Theorem 4 holds. If b > d%r' and (16) is verified (which is
the case for the Coulomb potential in dimension d = 2 if r = 00), we obtain the
following time dependance instead

in in et/ﬁ e /VZ_
Wan(£(8), o (1)) < max (Vah, Wan(f7, pi)e " X0,
where

At =€ (1+ VKl 5y (lell=(8) + llonllz= (1)) ) .

Remark 1.3. From Theorem 1, we can replace the W 1, pseudo-distance in the left
of the semiclassical estimates of the two previous theorems by the classical Wasser-
stein distance up to adding a constant V2dh. Moreover, if the initial states are
superposition of coherent states, then we can also replace the W pseudo-distance
in the right of the inequalities. This is detailed in Section 7.

Remark 1.4. If K = ﬁ or K =—In(|z]) ifa=0 (ie. b= a_‘f_l) and r = 00, we
can summarize the results by the following table, where "global" indicates that the
result is global in time and "local” that it is proved up to a fired mazimal time. We
have highlighted the cases corresponding to the Coulomb interaction.
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Settings Moments | Semiclassical limit
d=2 and a€ (—1,0] global global
d=2 and ac(0,1] global ?
d=2 and ac (%, %] local ?
d=3 and ac (—%, %) global global
d=3 and ac [%, 1] local local
d=3 and ac (1, %] local 2
d>4 and ac€ (% -2, 2%1}”) global global
d>4 and a¢€ [22?;21), "Eld;;)} local local

In particular, if Vi € [[1,d]],pflpihn € L=, it proves the convergence of the Hartree
equation with Coulomb interaction potential towards the Vlasov-Poisson equation
for short times in dimension d = 3 and all times for d = 2 under the assumtion
that M1y is bounded in dimension d = 3 and that M is bounded in dimension
d =2. As an other example, if a is close but smaller than 4/5 in dimension d = 3
then (14) holds as soon as M1 is bounded.

Remark 1.5. The hypothesis a > g—? seems harder to remove since it comes from
the hypothesis V2K € L? which is needed for the comparison between the negative
Sobolev distance and the quadratic Wasserstein distance (see Proposition 6.1).

Remark 1.6. As it can be seen from Proposition 6.3, the semiclassical estimate of
Theorem 5 is actually global in time for the Coulomb potential in dimension d = 3
provided p € LS (R4, L™®). And this would follow from the propagation of order
4 velocity moments globally in time, since then Theorem 3 and Proposition 5.3
would tmply propagation of higher order moments and weighted Lebesque mnorms
and the desired bound. In the classical case, global in time propagation of moments
is proved in [42] through the use of a Duhamel formula in order to use the properties
of dispersion of the kinetic transport semigroup. However, we did not manage to
use the gain of regularity due to the dispersion. FEwven if it is possible to express
the solution of (Hartree) through a Duhamel formula for operators, the lack of
positivity of the opertors involved seems to create difficulties. However, an other
effect of dispersion is the decay in time of space moments which we will use in a
forthcoming paper to prove global in time estimates for small initial data.

The rest of the paper is organized as follows. In Section 2 we generalize the
classical kinetic interpolation inequalities which are the key inequalities of our work.
In Section 3.2 we recall the conservation of energy and Schatten norms and discuss
the case of interaction kernels which do not vanish at infinity.

Sections 4 and 5 prove the propagation of quantum moments (Theorem 3) and
quantum weighted Lebesgue norms uniformly in 7 (First part of Theorem 5). In
each case, we first write the classical version of the proof and then the quantum
case which is more technical.

In Section 6, we prove the semiclassical limit in term of the modified Wasserstein
distance using the regularity results of previous sections. It finishes the proof of
Theorem 4 and Theorem 5.
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Finally, Section 7 shows that the quantum Lebesgue norms and the quantum
Wasserstein pseudo-distance are more natural when looking at superposition of
coherent states. It allows us to justify more precisely the definition of the quantum
Lebesgue norms and to reformulate our results in terms of the classical Wasserstein
distance in this case.

2. KINETIC QUANTUM INTERPOLATION INEQUALITIES

Let n > 0,0 < f = f(z,€) € L, . N L, (I¢]") and py = [pa fdE. Then the
classical kinetic interpolation inequality writes

1-60
(18) lpslzen < C ( /R 5 fIEI"dxd€> I711Z:

where C' depends only on d, n and r and p,, =1’ + % and 6 = ;—// with p’ denoting

the Holder conjugate of p. Even more generally, for 0 < k < n, we have

1-6
[orera| <o nerasa) s,
R4 LPn,k R2d z,

with p, , =7+ % and 6 =1'/p], ;.
The quantum version of (18) is known for n = 2 and is a variant of Lieb-Thirring
inequality (see [41, (A.6)]). It reads

(19) |

1-6
(20) lplle < CTr(=Ap) " |pll?,
with p’ = r’—i—% and 6 = ;—i. It implies (18) when n = 2 by replacing f with f5, even
if fx is not always nonnegative. Recalling the notation p = —ihV for the quantum
momentum, using the £? norm defined by (3) and remarking that

h2(1—0)h—9d/7" — h27#;/2(2+%) =1,
inequality (20) can be written

1-6
lollze < C T (Ipl*p) " lollZ-
By using the results in [16], we obtain the full generalization of (18).

Theorem 6. Let n € 2N. Then there exists C' > 0 depending only on d, r and n
such that

n —0
(21) lpllze < CTr (Ip*p)" " lol1Z-

. - d ! .
withp' =7v"+ 5,0 = ;% Moreover, by defining for k € 2N,

k . k k
pi =Y Aj|p2|* = diag(p? p - p?),
jeJ

for k < n, there exists C > 0 depending only on d, r, n and k such that
n \1-0 0
(22) lpkllLe < CTx (Ip["p)" " llpll

where o/ = (n/k)'p’, and 0y, = (’T/' with (n/k)" denoting the Holder conjugate of n/k.
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Remark 2.1. Since for any u € D'(R?, C), pu € C¢, remark that for any k € N,
pFu € (Cdk, which leads to p*u = (Pi, P, Wiy ..o in)e1,d]s and |p*u| is nothing but

the natural euclidean norm on C&
prul’= > |pypul’
(il ..... ik)E[[l,d]]k

Remark 2.2. As it can be seen in the proof, when k = n, we get an equality in
equation (22)

lonllzr = T (1p]" ) / Flél” d de.

Remark 2.3. Taking h =1, we can write (22) as

n \1-0
lpllzr < CTr ((=2)%p) " llplI7,

which can be written as a Gagliardo-Nirenberg inequality for orthogonal functions
under the form

1-60 0/r

S uleP| <o [ Sa Vi S %

jeJ o jeJ jeJ

Proof of Theorem 6. As proved in [16, Theorem 1], for any s > 0 such that
s>1— % the following bound holds

st d
(23) Z |:uj|S < Cs,n,d /d V_Jr",
; R
J

where the p; are the negative eigenvalues of (— A)% +V. By taking V = —tpP~!

and s =1/, the same proof as in [41] gives inequality (21).

The second inequality requires some more work. We use a vector-valued version
of Gagliardo-Nirenberg inequality proved in [54] which states in particular that for
a given Banach space X and any u € (H™ N LP)(RY, X) we have

1-k/n
(24) HVQUHLzu(Rd X) < Cdknp”U”sz {Rd X)Hv U”Lz (R4,X)?

for any (a,p) € (1,00]%, n € N and k < n such that 1 =
use it for the norm given for ¥ = (¢,) ey by

%(17 %) % We will

NP5 =D Al

jeJ
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For this norm, by integrating by parts, we remark that

POy = [ 3 lp" 20

jeJ

Z )\j/ p11--~Pin/2¢jpil---pin/2¢j
Rd

(Jsityeensing2) €I X [1,d]"/2

R R
Rd

(F5i15esiny2) €T X [1,d] /2

=Y /Rd@ImeIpI%

jeJ
=Tr(lp["p) -
Using inequality (24) for ¥ and multiplying it by 1*/2, we obtain
1—k
(25) Pkl o g, xy < Capnpllollps™ Te(lpl"p)* /™,
where

o1k 1
o n)  pn/k)"
Using the first inequality (21) to bound ||p||z» in the left hand side and the fact

that 6, = (1 — £) 6, we deduce formula (22). O

n
3. CONSERVATION LAWS

In this section, we recall the conservation laws for the (Vlasov) equation and
their equivalent for (Hartree) equation.

3.1. Conservation of the Schatten norm. The Hamiltonian structure of the
Vlasov equation implies the preservation of the Lebesgue norms

_ in
£l = 1F" ey -

The following property is the quantum equivalent of this conservation law expressed
in term of quantum Lebesgue norms.

Proposition 3.1. Let p be a solution of the (Hartree) equation with initial condi-
tion p™ € P NL". Then

lpller = [lp™ler-
Proof. Assume r € N. Since d;p = [H,, p], we obtain
dip® = p[H,, p] + [Hp, plp
= [Hpvp2]v

and by an immediate recurrence, for any n € N, 0,p" = [H,, p"]. It implies in
particular that

d T T
S or) = 1, 7)) =01
Since p > 0, we can write p = |p| and deduce that ||p|z- is constant in time.

When 7 is not an integer, the result follows by complex interpolation and the case
r = 400 is obtained by passing to the limit r — oo. [
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3.2. Conservation of Energy. The conservation of energy is a well known prop-
erty of both (Vlasov) and (Hartree) equations, see for example [22] and [41] for the
quantum case. For the sake of completeness we write here a short proof with our
notations.

Proposition 3.2. Let p € & be a solution of (Hartree) equation. We define the
total energy of the system by

ST::M2+/

PV,
Rd

where My = Tr(|p|?p) and V = K * p for a symmetric kernel K. Then, as in the
classical case, the total energy is conserved

Er(t) = E(0).

Remark 3.1. Notice that we can also write
o= // (el + V(@) e, dadg = Tr((Ipf + V)p),
R2

which shows that the energy has the same expression with the Wigner transform f,
as in the classical case.

Remark 3.2. By the interpolation inequality (21) and assuming that My is bounded
and p € L" N LY, we get that p € LP for p’ € [r' + d/2,00]. Thus, by Hardy-
Littlewood-Sobolev inequality, the negative part of the potential energy (Ep)—- =
Jga PV is bounded for K_ € L% + L> with a = p'/2. Therefore, if p € L™ N Lt
with v < 2bg — d/2, (Ep)— 1is controled by the kinetic energy and both quantities
remains finite if Mi® is bounded. It includes the Coulomb interaction in dimension
d=3. See also [41].

If K is not bounded for |v| — oo but K = Ko+ Ko € L& + L®(|2|7F), as
in the case of the two-dimensional Coulomb interaction K = —1In(|z|), Ep can be
controlled by assuming for example additional finite space moments

Ne= [ (e Olal* dodg = Te(al'p) < C.
R
In this case, one can indeed write
Ep :/ (Ko*p)p+/ (Koo % p)p-
Rd R

The first integral is still controlled as above by My if 2a € [r' + d/2,00]. to control
the second, we write

/ (Koo * p)p' < C/ | — y[*p(dz)p(dy)

Rd Rd
<C [ (el + o )plan)otay)
< 20 MyNy,.

It is easy to see that if Mi* + NIt is bounded, then space and velocity moments up
to order 2 remain bounded, since OyNy = Tr((x -p+p-z)p) < 2N21/2M21/2, which
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combined with the conservation of energy leads to
|0¢(Ms + No + Ep)| < My + No
< My + Ny + Ep + C(MZ MY + NJ2 NJ+).
< (14 C)(My + Ny + Ep) + CMy.

By Gronwall’s Lemma and since Ep is controlled by My + No, we obtain that Ms +
Ny € L2 (Ry).

loc

Proof of Proposition 3.2. Since Tr(H[H, p]) = Tr([H,H]p) = 0 and §;H =
0;V, we obtain

2 (1 p) = 2TH((0,H)p) + 2 Te(HIH. p)
— 2 Tx((8V)p)
- / (@)p,

and since K is symmetric, we get

d
2/ (8tV)P:/ (K*atP)P+(K*p)8tp:E/ pV.
Rd R4 t Jrd

Now we remark that

2Tr(Hp) = Tr(|p|?p) +2Te(Vp) = My + 2/ pV.
Rd

Thus, we obtain

d d d
= (My+2 — 28 Tr(Hp) = &
dt( 2t /dev) a THP) dt/deV’

which leads to the result. O

4. PROPAGATION OF MOMENTS

We study in this section the propagation independently of A of velocity mo-
ments for the Wigner transform of the density operator p solution of the (Hartree)
equation, which write

M= [[ | he e drdg = Te(pi"py).

To clarify the presentation, we first prove the classical estimate which will be our
guideline to prove the semiclassical case.

4.1. Classical case. In this section, we consider only the classical quantities, so
that we define

pn = /R I 9)lel d

M, = //R F(a, )€™ d dé = /R on-

We can then prove the classical analogue of Theorem 3.
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Proposition 4.1. Let b, := "g:rld and VK € L% for a given b € [by, +o0] and
f wverify the (Vlasov) equation for t € [0,T] with initial condition f™» € P N L% ¢
such that My and M are bounded for a given n > 2. Then there exists T > 0 and

® € CY0,T) such that for any t € [0,T)

(26) M, < ®(t).
Moreover, T = +o0o when b > by = 27»%{1_

Proof of Proposition 4.1. Since My and M® are bounded, we deduce that Mi*
is bounded and by conservation of the energy (Proposition 3.2) we deduce that
M, € L? (Ry). To simplify we write f = f(¢,2,£). Then we have

d

7= [ € Vat — B@) - Verer dwag

—n [ /R FB() - gle dede.

Since E = —VK % p with VK € L»>, Holder’s and Hardy-Littlewood-Sobolev’s
inequalities give

(27) ’Mﬂ

< n—1
G| <n | [ e
(28) < nllpn—tllzellpllze,

1B o
LOt

where (, ) € (1,00)? are such that 1 + % = % + % or equivalently

1 1 1

Tty
By the interpolation inequality (19), if we can take o' = p;, ,,_; = np;, = nr'+d > b
and 0 = ;—l,, we get

(29) [on—1llLe < CM}L_QHfHQL;@

Moreover, since the Lj . is conserved, we can replace | f||r- . by 1™z oI
B < pn—1, we can bound ||p||;s using only moments of order less than n — 1 by
using the interpolation inequality (18)

o/’

2 1z -2, L(1-Zr) —
7 7 7 ) pin BT
lollzs < Npllfonslloll® < OMy = My ™[
Therefore, for %Mn, the inequality becomes
M, I A - i - S I
S| < Gty U 0T

Assuming that M,,_; is bounded on [0, T, by Gronwall’s Lemma, it implies a bound
on [0,T] for M,.
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If B > pn—_1, we remark that

B<pue - <
b o 7 p,
slel(ind)
b~ pl, n
@b_nr’—i-d: b,
n+1

In this case, by interpolation between Lebesgue spaces and by the interpolation
inequality (18), we get
lpllze < lpllzen ol pre-s
<C (1 e)(1—0n— 1)M6(1 0,)
d,n, T

n—1

|fin HS;—‘:)anl-‘r&en 7

where 6, = ;—,/ and € € (0, 1) is defined by

1 e 1l-e¢
30 — = .
(30) B P P
By (27) and (29), it implies
’dMn

<Cdnr||fm||9+(1 €)0n— 1+€9nM@o MO

n

dt

where
O=(1-¢)(1-06,_1)
©=1-0+¢(1-0,).

Using equation (30) to compute €, we obtain
11 1 1 \"!
e=lz——){7—3
ﬂ Pp—1 Py Pp—1
B (1 1 1 ) ( 11 )1
b npl Phi) \Ph Paa

n(n—1) (p;p’nl Pr1 ,>
= —_ —pn

d b n
(nr' +d)(n—1r"+d) (n—1)"
= - ]_ - .
7 7 (I1+n)—n
Since 1 — ;—,' = ﬁ we deduce that
,],,I
B T
© npl, + 6d + nr’
d+n=1)0" ((n=1r"+d) (n—1) nd
= — 1 —
d+ nr' + b d+m"’( +n) d+ nr'
1)
_ W R
In particular,
— 1" +d
(31) O<1&<b> w7
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which, by Gronwall’s Lemma, allows to prove that M, is bounded on [0, 7] when
M,,_1 is bounded [0,7] and M is bounded. In particular, since My is bounded
by the energy conservation and b =1+ d_TT/ is decreasing with n, all the moments
will be propagated if the moment of order 3 is bounded, which is the case when

b > L2 O

4.2. Quantum case. As we will not consider the (Vlasov) equation in this section,
we will omit to write the & for p,, solution of (Hartree) equation and p = diag(p;,)
to simplify the notations.

Proof of Theorem 3. To simplify the computations, we define for any k € N,

[p)** = p|**
[p]2*+1 = [p[*p.
Step 1. An inequality for the time derivative of moments. We remark that
[p,H] = [p,V] = —ihV (V") + ihVV = ihE

(lp|>, H)=p-pH —Hp -p=p-[p,H|+[p,H|-p=ih(p- E+E-p)
[lp[***2, H] = |p* [Ip|*", H] + [|p[*", H] |p|*.
By an immediate recurrence, we deduce that for any n € N,

1 " /n ) -
(32) %[|p|2n+2,H] = Z (k) \p|2k(p B+ E~p)|p|2(" k).
k=0

With this formula, we can compute the time derivative of moments as follows

d " In _
— Tr(|p|*""2p) =) <k> Tr (Iplz’“(p -E+E-p)lp/" k)p>

dt
k=0
=3 (:) Tr (P24 B[p ) + [ B - [p291)p)
k=0
2n+1
_ n v k. . 2n+1—k )
(33) =3 (o) T )

Recalling that p =" ._; Aj|¥;)(¢;|, for the term with k = n, we have

jeJ
T (" B ") = SO [ (615 B (1 0)

jeJ
b3
S |E|p2np2n+2'
Rd

For the other terms, for k < n, we integrate by parts and use Cauchy-Schwartz
inequality to find

(34)  Tr([p/*-E-[p]*""'*p) = Z)\j/ " (Elp]*¢;) ([p]"+'¢5)
jer JR?

2
1

S/Rd Z%Hp}"‘k(E[p]’“wj)!Q Pinta-

jeJ
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Next we use the definition of E to write

(35) s |l (Elp e = oA | D Aalpl" T (VK « 105 l?) [p)Fe)

jeJ J€J  |ja€J
To continue, we introduce the multi-index notation

a = (ai)ieq1,q] € N is a finite sequence of integers

d
lal = > o
i=1
p® = (—ih)\"la2 o5z ... 9ae.
With these notations, we can write
() = > C2p®(u),p’(v),
la+b|=2n

where the constants C27% '} are non-negative integers depending on the multi-indices
a and b and such that

(36) > cn < (da).
la+b|=2n

More generally, we will write

>y p(wp’(v),

|la+b|=n

where the sum is taken only over the (a,b) such that |a + b = n — 1 if n is odd,
since then [p]™(uv) is a vector with one free index. Hence, we get

~

P (VE el P) o) = 30 CoyEVE = (0" (05,00 (03) P [P1" 5.

|a+b+c|=n—k

Moreover, by Cauchy-Schwartz inequality

N
W=

> NP @)p (W) < | D0 Nilp® ()P > N lp ()2
je€J jeJ jo€J

1/2 1/2
S PajalPajy|-

Thus, (35) leads to the following inequality

2

~

St ERF <N S c;bb’;<|VK\*(pé{flp;/j))lpc[p]%l

JjeJ jed la+b+c|=n—k
The left hand side can be written under the form

~

Z Aa,b,cqlc 3

la+b+cl=n—k x
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with U, = (|p°[p]*;])jes and [[(u;)jesllk = D ey Ajluil*. Then, Minkowski’s
inequality reads

~ ~

Z Aa7b,c\I/c < Z Aa7b,c ||\I]C||X :

lat+b+cl=n—k x |a+b+c|=n—k

Remarking that [|¥.[|% < pajc/+2k, We obtain

~

Z Aj Hp]"_k(E[p]kwj)f < Z CZ%’Z (|VK‘ * (P§|/<12|/’§|/b2\)) /’;|/02\+2k
jeJ la+b+c|=n—k

Combining this inequality with (34) and (36), we obtain

n n 1/2 1/2 i i
Tr ([p]* - E - [p]*"*'*p / Z Oa e (VK * <p2\/a|p2|/b\>) P3|c|+2kP2n+2

|a+b+c|
1/2 1/2 3
< (4d)"F" sup (3ot Paia| o Np2nszlls
|a+b+c|=n
n—k
< (4d)= Cx  sup ||P2|a\||m ool llo2rcillZ- Mo,
la+b+c|=
where Cx = ||[VK]||po.o,
3 L1, 1 2
o 5/ ,Y/ - b’

and we used Holder’s inequality and the weak Young’s inequality. The case k > n
is treated in the same way. Thus, from (33) and the identity

2n+1 n n
n ek n n (2k+1) —2k
5 () 0 = ()" (S () )™ () () ™)
(1+2vd) (1 +4d)"
- (4d)n+1 =:! Cd,2n+2;

we deduce that for any n € N,

d

ST(pP2p) < caznraCrc s oaalllEe ol s o2l Moo

|a+b4-c|=

Step 2. Using the kinetic interpolation. To simplify the notations, we will fix
n € 2N and write previous formula as

dM,

1 1 1
(38) WCiMi  sup NeziarllZe ozl Zs llpaterllZ -

la+b+c|l=n/2—

To bound the right term by powers of M,,, we use the kinetic quantum interpolation
inequalities (22), which gives for any k € {2|a|,2|b|,2|c|} C [0,n — 2]

_ 0,
(39) pkll Lon ) < Catppn i ML= ® | p]| 22

where p/, (k) = (n/k)'p), with pl, = 7' + ¢ and 6, (k) = 7 (k) Since k < n — 2 the
same inequality holds by replacing n by n — 2. If we can choose «, 3,7 > 1 and
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e € (0,1) such that

1 € 1—¢
(40) o = pn@a) T oL@l
1 € 1—¢
41 — = 4+
(41) 5 @) T p @)
1 £ 1—¢
42 P + )
(42) v = mad T e

By interpolation and since by Proposition 3.1, ||p||z- = || o™z, we get

||P2|a|||La < ||P2\a\||ipn<2\a\>||P2|a|H1L;j,2<z|a\>
N T T

Since |a + b+ ¢| =n/2 — 1, we remark that

(o o+ o) L (3 plel )
2 \ W a@le) " PR pale)) T 2 n-2

1 n—2

a Pl  (n=20" +d

11 1 1 1 1 la| + |b] + |c>
— =z + + = — (32171
b, 2 (p;@al) Ph(2[b]) p%(2|6|>> 2p;, ( n

1 1 n+1
= — 1—’—— = .
ol n nr’ +d

Therefore, by (37), we get

€ 1—¢
43 _— T — _—
( ) b bn + p;l_Z
Let first assume that b < p/,_,. Then, since by assumption b > b,, we can find
(o, 8,7, €) verifying (40), (41) and (42). Hence, (38) becomes
dM,
dt

. 110
(44) S Cd,r,nCK||pln||?3Mr?B2M€ 17
with

61

3 7
= (3= 0u(a) — () — 00 (0) = = (2 _ b)

3 r
o=t )
0 2 P

3
Oy = 5 ©1 — By.
From (43), we can compute ¢ and we get
nr' +d (n72)r’+d7(n72) .
(n—2)r'+3d b
It leads to the following formula for © =1/2 4 6,

d+(n2)r’<1 n—1 )

E =

=1 -
© + 2 b d+(n—2)
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In particular,

—_

n—1
0<1 L
=L e b~ d+(n—2)r

® — 1.

n— 00

The result then follows by Gronwall’s Lemma. If b > p/,_,, it is no more possible
to write (43), but we can still find &€ € (0,1) such that

1_1—5+§<5+1—5)
b b b, p;l_z '

where
S S S R
6 o Cla) T o @) ph i)
and we obtain
dM & 140
(45) dtn < Cp(Maja), Mayy), Moy M2 MZ 7
with © = 1/2 4 £0; < © and we can again conclude by Gronwall’s Lemma. O

5. PROPAGATION OF HIGHER LEBESGUE WEIGHTED NORMS

5.1. Classical case. As previously, we first do the proof in the classical case as
a guideline for the proof of the quantum case. The goal here is to propagate
1flle ((j¢|) norms uniformly in p. Together with the uniform bound on || f||.» o

it leads to the following bound for some C,T > 0 and any ¢ € [0, 7

C
0< f(t,r,§) < W

For n > d, this bound implies that p := [, fd¢ € L*°([0,T] x R?).

Proposition 5.1. Assume E € L*([0,T],L>®) and let f be a solution of the
(Vlasov) equation such that f™ € LP and fi|¢|™ € LP for a given p € [1,q].
Then

1

1 Lo "
o 1B~ [, o)

116y, < (Nrnier

Corollary 5.1. Assume f verifies the hypothesis of Proposition 5.1 for n > d and
p=o00. Then p € L*((0,T),L*>®) and

IpllLee < Clifllzee, (14161
) 1 L " )
< (Hf”%ﬂnﬂzgg*HEHLxILF“H£g§t> {1 e

Proof. Since f = f(t,x,v) is solution of the (Vlasov) equation, differentiating with
respect to time and integrating by parts, we get

s L nere azac= [[ 15 gV~ B@) - Vepierr arag
B % //Rzﬁ‘f Va (If17) = Bx) - Ve (IF7) €] da dg
= [[ 17w €l ar e
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Using the fact that £ € L and Holder’s inequality, we obtain
S, <l ([ 1Pt asag
pdt L7e = R2d
n P*l i
< nllBllu~ 1€ 117, -
This inequality can be written

d 1—1 1
N e < nllElpe 1F1E e ™ 117 -
SRl < nlEll NPT 1A,

Then by conservation of the Li,g norm and Gronwall’s Lemma, we deduce that

. 1 L "
I16sr < (I716PNE,  +1E1= 20, 1)
and if ||fHLzos < o0 and Hfin|€|"HLooﬁ < 00, we can pass to the limit p — co. O

5.2. Quantum case. In this section, we again only focus on the quantum objects,
so that we will write p := p;, and p := diag(p) to simplify the notations. For
k € Ry, we define the £(|p|*) space as the space of compact operators p such that

k
ol copix) = [Pl Pl cr < C,

where LP is defined by (3). Remark that if p is self-adjoint, then |p|p|¥|?> =
Ip|*|p|?|p|* and by cyclicity of the trace, for any p € 2N,

HPHLP(\p\k) = |||P|p|k||zp-

Actually, as proved in [17], this is true also for p = 1 and can be easily generalized
to any p € R, since for any self-adjoint compact operators A and B, as pointed out
in [55, Formula (1.3)], the singular values are the same for AB and (AB)* = BA,
which leads to

(46) [ABIlp = [| BA|p-

We recall Holder’s inequality (see e.g. [55, Theorem 2.8]) which reads for any
compact operators A and B

)

1 1 1
47 AB|, < ||All,||Bl|l¢ when — + — = —
(47) [AB||» < [[Allpl| Bllq P i
and the Araki-Lieb-Thirring inequality [5, Theorem 1] which reads
(48) Tr ((BAB)?") < Tr ((B1AYBY)")

for any operators A, B > 0 and (g,r) € [1,00) x R;. Remark that for A, B > 0,
since |AB| = (BA2B)2, we can rewrite (48) as

(19) JABIS, < | ABY|, for any q > 1.

From these inequalities we deduce the following interpolation inequality

Proposition 5.2. Let A > 0 be a compact operator, then for any 0 € [0, 1]
IAB|l, < [ ABI 7]l Al
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Proof. Since A > 0, we can write A = A?A'~% and by Holder’s inequality (47),
we obtain

148, < (14”57, A"l
p

p/0 H p/(1-0)
<148 415"

Then, we use (49) with ¢ =1/6 > 1 to get

|B°4%],,, < I4BIS,

which proves the result. ([

As a corollary of the previous proposition, taking B = |p|™ and A = p, we obtain
results for the £(|p|*) norm.

Corollary 5.2. Let p be a nonnegative hermitian operator, then for any 0 < k <
n < oo

k/n 1—k/n
(50) 1ol e oy < 0Ny 1o 2"

We are now ready to prove the propagation of weighted quantum Schatten norms.
Proposition 5.3. Let p, := —ihd; for a given i € [1,d],
VK e LY + L™ for some b € (1, +00),
r € (b/,00] and p € P N L" verify (Hartree) equation. Assume moreover that My,

is bounded on [0,T) for a given T > 0 and a given ny € N and that p™ € L?(pl)

for a given p € NU{oo} such that 2p < r and a given n € N such that
d
(51) n§0n1+1—6,

with § =1 — % Then for any t € [0,T),

t n
(52) |mgW@SW<wwywm+me+Awm)>,

/
Lt

r2w - In particular, forr=p =

where Cpin = (4"Cog o, [|[ VK| Lo (1 + Mp))" Hpi“H

00, we obtain

t n
(53) ol o pry <27 <||pm||£°°(pi") + Cpin (t+/0 Mffl) ) :

with Cpn = (4" Cn, | VE | 1o (1 + Mo))™ || o] 257

Corollary 5.3. With the hypotheses of Proposition 5.3, assume that for a given
n>d/2, p™ € L®(p") for alli€ [1,d]. Then

(54) ol < canllpllLee(0,7),c% (14p27))
which is bounded independently from h.

Proof of Corollary 5.3. To prove (54), we remark that from Proposition 5.3,

d
Pop = (1 + Zp?“> p e L>=([0,T],L£>2).
i=1
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Since P, and p are nonnegative self-adjoint operators, by using (49) for r = co and

q = 2, we obtain
3 p3 1p32 d
P2 pPi |0 = [|p? P |5 < [[Pupllee < Chf,
where C,, = || P p| £ ((0,7),c5)- From this, we get that for any ¢ € L?,

(p|Pi pPi 0} < Coh?|o]|* = (oI C,h ),

11 11
or equivalently P pP7 < C’phd. It implies that A := Cphd — P? pP;? is a non-
negative self-adjoint operator. Using the Fourier transform, we remark that P, is

invertible and that for any ¢ € L? we have

i — ¢ N

1
- /Rd Fy (1 S |hyi|2”> (x — 2)p(2) dz.

_1 1 1
Since P, ? is a positive operator, we deduce that C’pthn_1 —p=PFP,%?AP, ?

nonnegative operator of diagonal

1
0 < k(z,z) = C,hiF, | ———— ] (0) — p(z
(z,2) = C, y<1+EiJmm%>() ()
1
zChd/ ———dy —p(z
S TR ST ()

= Cd,nCp - p(x),

where, since 2n > d,

dz
Cdn = —— <
Re 14370 ]2
Since p > 0, we deduce that
0 < p(z) < cgnCp,

which proves the result.

is a

O

Proof of Proposition 5.3. By cyclicity of the trace, for p € N, i € [1,d] and

n € N we have
Te(|p pf) = Tr ((p3"0%)")

Therefore, using again the cyclicity of the trace

ih d n n -1 9n
g ey =T () i 7))

="Tr

[piZn7 H]p2 (pi2np2)p*1)

= Tr (plp?", Hp |pi'p ) .

(p?"p?)" " p?"sz) —Tr ((p?”pz)p_1 p?"pQH)

=T ("0 (p1"07)") = T (B0 (01 0)" )
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Now we write [p?", H] in terms of E thanks to formula (32) to obtain in the same
way

1d n—1 2(n—1-k) 2k
Lameto) = X (") 1 (e i+ B or)

(55)

n—1
2
2n

2:: ( . /2J> Tr (ppi" *Eipl~'pP),

where P = |pl'p|**~%. Since Tr(A*) = Tr(A), the following holds

Tr (ppi" ™" Eipf ' pP) = Tr (pp{ ™' Ep{"~"pP),

so that (55) becomes

1d o
66 S Trel %Z( ) T lw o).

To treat the right term, we remark that Leibniz rule for differentiation leads to

n—k

n— n—k m n—k—m
o= (" wrmme
m=0
Therefore we obtain
n—k
) _ n—=k " m
(57)  Tr(pp?" *EplpP) = Z( m )Tf (pP (P ()i ™ L pP) .
m=0

Thus we can use Holder’s inequality (47) and the interpolation inequality (50) to
get

| Tr(ppi* (P} (E;))p" ™' pP)|
= |Tr (( -’”(E))p? ™! pPpp})|
< |1p]" (Bl ||P} pH2pH|P1
(58) < pi"(£1)]

The term ||p||2, will be controlled by propagation of the £P norm (see Proposi-
tion 3.1). To control ||p!*(E;)| L~ for any m € [0,n — 1], by interpolation, it is
sufficient to prove that it is bounded for m = 0 and m = n — 1. We use again the
Leibniz rule to get

—p{"(Ex) = pi" (VK * p)
= VK * ZAJp;" (| %)

m ——
=z(l)w<*zxjpf<¢j>pi )
1=0 j
Therefore, by Holder’s inequality, recalling the notation
2
par =Y A [Py

p||2p

le pIIQp

b




PROPAGATION OF MOMENTS AND LIMIT FROM HARTREE TO VLASOV EQUATION 27

we get the following bound

 (m 1/2 1/2
pr el <3 () ont (i),

1=0
 (m 1/2 1/2
(59 SO ] ) [T v e
1=0
where Cx = ||[VK]||p» and
1 1 2
60 St =
(60) ¢ @ b

From the hypothesis (51) for n, we get n < n; + 1 and
(n1+1-n)b > (nir' +d).
By defining p;,, ;. = (n1/k)'p,, = (n1/k)" (r' + d/n1), it implies that

b 2 p;’tl,nfl'
Moreover, by the interpolation inequalities (22) and the fact that M,,, and M, are

bounded on [0,T], we deduce that ||p||ze is bounded uniformly with respect to A
for any t € [0,T] and any p € [1,p,, ). In particular, since

2 2 2 1 1
Z< < =

b7 Phin-1 T Phim Pryo p;lhz(m_l)
we can find g1, g2 > 1 such that the left hand side of (59) is bounded on [0, 7] and
(60) is verified, and there exists (g1,£2) € (0,1)? such that

7

1 e
‘71 pfnl,2l
1__ &
g p{nl,Q(mfl)
lp2tll o l2m—pyllzaz < p2el|Tomy 20 1020m—0) 1550y 20— 10201 12 22 1 020m - 11772
(61) < CF o P20 MO My~ My 22

where

A9

N | =

7,,/ ,r/
€1 | +eo| 7/
pn1,2l pnl,Z(mfl)
1 / /
SR PR Y PR N
2 pnl 21 pn1,2(mfl)

Since by (60), % =S 4+ —22 we deduce that

pn1,2l pn1,2(7n—l)

~

r
(_)OZF

1 /
0, = 5 (61 +€2) - F
Moreover, by interpolation, for any k € [0, nq],

My, < MF/™MMTF™ < My + M, .
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Using this inequality for & = 2l and k = 2(m — ) in (61), inequality (59) becomes
(62) I (Ei)|| Lo < 2" Cpin (14 My,) |

where § =1 — %7 Cpin = Cayny Cic|| ™[22 (1 + Mp) and we used the propagation
of the £™ and £! norm (Proposition 3.1). We can now comme back to (56). By
combining it with (57), (58) and (62), we arrive at

d n _ 1 d n 12p
i (Ip7ellay) = o oz TP )

n n—k
n—1 n—k\_., mtl
<G (23 () ()2 el 1ot ol

k=1m=0
n n n 17;
< °Cyu (14 M2,) (13, ot ey, ™ + oL, ) -

By Multiplying the inequality by k=% 2p)" and by conservation of the £2 norm,

we get
o)

Defining u : W and c(t) := 4"Cpin fot (1 + Mﬁl), it can be written

in

1Pl e + o

d n n 6
G PPl cay <47 (14 M2, (0

du _1y\ dc
at = (1 +ul ”) dt’
By Gronwall’s Lemma, we obtain
u(t) < (2¢(t) + w(0)) + (u(0) + 2¢(t)/n)"
< 2"(u(0) +c(t)"),

or equivalently

t n
(63) Ipf pll 2 <27 (Hp” | 2y + Cpin <t+/0 Mffl) ) ,

where C'pm = ||pi“HLQP (4"Cpin)™. It proves inequality (52). Remark that if r = oo
then we can take Cpin depending only on p™ and not on p since by interpolation
between LP spaces (Proposition 47), we have

’p n 1/(217)"

£OO
Therefore we can pass to the limit p — oo in (63) to get

t n
I} ol e <27 <||p" P| poe 4 Cpin <t+/0 Mfil) ) ,

with Cpm = 47°C5 VK7, 0™ 27 (1 + Mo)™. 0

in

1n||1/ 2p)

<’p

|,coo+|p

6. THE QUANTUM COUPLING ESTIMATE

Following the ideas of Loeper in [43], we use the property of displacement con-
vexity of the interpolation between probability measures induced by the optimal
transport to deduce the following bound in Wasserstein distance.
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Proposition 6.1. Let p € [1,+oc] and (po, p1) € (LP N P(R?))2. Then
(64) llpo = pull -, 2z, < max(flpollzr, llp1llLr)= Wa(po, p1),

where W1 denotes the dual space of the space
Wwhr' = {@,ch el o — 0}.
|z|— 00

Proof. Let g = p’ be the Holder conjugate of p, T' be the optimal transport map for
the W, distance and ¢ € W29, Then the interpolant pg = ((1 — )z + 0T (z)) #po

verifies
/wez/ ¢(x)po(dr),
Rd Rd

where we denote by zg := (1 — 0)z + 0T (x). By differentiating with respect to ¢
and using Cauchy-Schwartz inequality, we get

% /]Rd vpo = /]Rd (T(x) = =) - Vep(xp) po(dx)

< ([ 1oy -spian) ([ o)

The first integral is nothing but the Wy distance between pg and p;. Thus, using
Holder’s inequality to bound the second integral, we get

d
—/wmamewmmmM?
40

By displacement convexity (see for example [53, Proposition 7.29]), the following
inequality holds

lpoll e < max({|po|ze, [|p1]lzr)-

Noticing that (2¢)" = 1)2%, an integration with respect to 6 on [0,1] gives the

expected result. O
As a consequence of Proposition 6.1 and the weak Young inequality, we get the
following inequality

Corollary 6.1. Let p € (1,+0|, s = (2p) and K be such that V2K € L.
Then, we have

1
(65) VK *(po = p1)llzz < [V2K|| Lo max(||poll e, [|p1]l e )2 Wa(po, p1)-

Ifp = 1, the same formula holds by replacing L*>* by L? and if p = oo by replacing
LY by L.
Moreover, if p= oo, |V2K| 1 can be replaced by IVK| 1 _.

Proof. Let r = 1%. We first write that for p := py — p1 and ¢ € L?,

(66) (95 <] < Mol IV sl

Then, as a consequence of the weak Young inequality (see [40, Chapter 4, (7)], we
have

(67) IVE % @l = V2K % o]l v <l 2| VK]

Ls:o0,
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with { =1+ ;5 — 3 =1 — 5. Combining (66) and (67), by duality, we deduce

IVE *pllrz < [lpllw-1.- I VK]

[s:00.

We then use Proposition 6.1 to conclude. When p = co and r = 2, we use the fact
that

(68) IVE ¢l g < ol 2 VE ] 1 s
which is proved in Appendix (see (87) in Proposition A.1). O

We can now prove the following key estimate in the modified Wasserstein distance
as defined by (4).

Proposition 6.2. Let (s,q) € (1,2) x [1,00] and assume
V2K € L5 N LY,

with L*> replaced by L? if s = 2. Let p;, € P be a solution of (Hartree) equation
and f be a solution of the (Vlasov) equation such that the spatial densities verify

o= [ Jnde 120,717 N L)
Rd

pi= [ Face 12(0.1)L7),
uniformly with respect to h. Then, for all t € [0,T], we have
Wan(f (1), p(1) < Wan(f™, pi)e® + Co(t)Vh,

where

1/2
)l

C1 = | V2K || ps 2 max(lpll orso, ol o /2) Il

C=1+C1+|pnll Lo | VK| La
Co(t) = C1Vd(C) 1 (7" — 1).

Proof. Let p= ¢ and p = s'/2. Asin [26, Section 4], we define the time dependent
coupling v(z) = v (¢, z) with z = (x,&) as the solution to the Cauchy problem

1
8157 = {H77} + %[Hh”)’]’

with initial condition 4™ € C(f™, pi"). As proved in [26, Lemma 4.2], v €
C(f(t), py(t)). We also define

£ = Enlt) = / Tr (e (2)7(2)) da.

R2d
By differentiating in time, we get
dé 1
dith = / Tr (({H, cu(2)} + = [Hp, ch]> 'y(z)> dz,
R2d ih

which, by a direct computation, as detailed in [26, Section 4.3], leads to
dé&r

(69) TS [T p)- (Baly) — B@)r() s

+ [ () - B@) - (€~ p() =
R2d
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Since v > 0, we use the fact that by Holder’s inequality for Schatten spaces
(see e.g. [55]) and cyclicity of the trace, we have for any operators (A4,B) €
L(L2, L3(R, )2

Tr(A*B'y) = Tr(~ 1/2A*B71/2)
< Tr(|y'2 A7) T (| By V2P
< Tr(AyA*) Tr(vY/2B* B~yY/?)
< Tr(|A*y) Te(|B[*y).

Thus, using this inequality for A = (£ — p) and B = Ejx(y) — E(z) for the first
integral in (69) and A = Ex(y) — E(z) and B = (£ — p) for the second integral, we
get by Cauchy-Schwartz inequality

(70)

LI (/}R Te(¢ — p*v(2)) dz) 2 </R (| Bn(y) - E@)P(2)) dz> :

The first integral is bounded by & and second integral by 2(I; + I) where
= [ T(En) - B@)P()d:
R2d
L= [ (B - Ea(@)Pr(2)
RQ

Then, since v € C(f, p;,), by corollary 6.1, we can control I; in the following way

I = / VK s (o p) @) Pl da
< V2K e max(llpll o, llonll o) Wa (o, pn)? l1p]l .

Moreover, since pp = [pa fn(t,x, €) d¢ is nothing but the projection of f; on the
space of positions, we have W (p, pr) < Wa(f, fr) (see Proposition B.1 for a more
detailed proof). Using Theorem 1 and the definition of Wy 5, we get

I < CYWa(f, fn)?
< CY(Wan(f. pp)* + dh)
(71) < Ci(Ex + dh).
In order to control I5, we remark that, from Young’s inequality, we get
IVEl| = = [IV2K * pallzee < llonllo V2K s,

which implies that Ej, € C%! uniformly with respect to &, and
<G [ Tolly - (e dz < e
R2d

where Cy = ||pn|| || V2K||La. By combining this estimate with (71), equation (70)
becomes

d‘sh < En+ V& (2(CF + C2 £ﬁ+2dhcl)
< (14 V2(C1 + C2) ) & + V2ARC1 V&,
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which leads to

dv/én

< (1+ Cy + Co) /Er + VdhCih.

dt
By Gronwall’s inequality, it leads to
eCt —1
Won(f, pn) < VE < VER0)eC! + C1VdR -
Minimizing the right hand side as " runs through C(f™,~}") gives the expected
result. (]

When VK € Bioo, which includes the Coulomb potential, previous proposition
becomes

Proposition 6.3. Assume
VK € Bf ..

Let py, € & be a solution of (Hartree) equation and f be a solution of the (Vlasov)
equation such that the respective spatial densities verify

Pn € Loo([07 T]7 LOO)
p € L*([0,T), L),
uniformly with respect to h. Then, for all t € [0,T], we have
. . t/V2 t/V2
Wan(F (1), pa(t)) < max (Vah, Wan(f™, o)™ M0,
where

A=CQA+ VK] s _(lpllzes + [lpallLe))-

Proof. The proof is similar to the proof of Proposition 6.2. With the same nota-
tions, we arrive at

(72) % < En+ V2En(1I + I)Y2,

Then by corollary 6.1, we obtain
L < VK| _max(llpllz=, loallz=)Wa(p, pn)* llpllz=-
As in the proof of Proposition 6.2, it leads to
I < C}(Ex + dh),

where C1 = [|[VK]||p1 _max(||p|| e, th”Loo)l/QHpHyi. In order to control Iy, we

use the fact that since VK € B%)oo, then, as proved in Appendix A (inequality (86)
of Proposition A.1), we have

(73) 1EnllBy, . = IVK *pnllsy, . < loalle< VK5 -

Then we use a result proved for example in [8, Chapter 2] which states that any

function in Béo,oo is log-Lipshitz in the sense that for any |« — y| < 1, we have
|En(z) — En()| < | Enlly, o=yl (14 [In(jz = y[)]) -

But for any r € (0,1), since By ,, C L, for any |z —y| > r, we get

.
1Bn(a) ~ Ba(w)] < 2Bl < ClLEnlp, 24
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Let introduce the kernel of ~;,, v(y1, y2, z) (which still depends on ¢t and %) and its
diagonal

(Y, 2) =Yy, 2)-
Then, we have

I = / / En(y) — En(z)*1(y, 2) dy dz.
R2d JRd

<czent / / Iy — 22 In(jz — y)*+ (v, >dydz>
R24 J|z—y|<r

1
(6 4 /RM /Iw—y<r F(ly — z)*)v(y, 2) dy dz) 7
+1)

where Cy = ( +1

F is concave on [0,e~

||ph||Loo||vK||Bl and F(z) = zln(z)?. As noticed in [43],
. Thus, by taklng r = e~ !, by Jensen’s inequality,

I, <C3 (5h + 4F(5h)> .
By combining this estimate with (73), equation (72) becomes
d(f: < Ep + V2ER((C? + C2)ER + CRdh+ F(Er)/4)'/?
< (14 V2(C1 + C2))& + C1v/2dRE, + E11n(Er) /V2

< AEp 4+ C1\/dh)2 + E,1n(ER) V2,

where A\ = 1+ /2(2C] + C3) and we used the inequalities va + b < \/a + Vb and
V2ab < a+b. Then, for any t such that A, > C1+/dh/2, we get
d ln(Eh)
dt
By Gronwall’s inequality, it leads to

<2\ +1In(&)/V2.

)

dh t 2 t 2
WQ,h(fa ph) S Sh S max <M gh(o)e /\Fe\/ix\(e /\fl)>

W2

which gives the expected result. ]

Combining the propagation of moments of Theorem 3 with the Proposition 6.2
which gives the semiclassical convergence as soon as p is sufficiently integrable, we
can now prove Theorem 4. Theorem 5 is proved in the same way using Proposi-
tion 6.3 and Propisition 5.3.

Proof of Theorem 4. Since VK € L*> + L®*, from Theorem 3, we obtain the
existence of T' € (0, 4+o0] and ® € C°([0,T)) such that for any ¢ € [0,7)

M, < ®(t).
Moreover, from Proposition 3.1 we know that

lpsller = ol < C.
By inequality (21), we deduce that

lpnllrn: < @(8)'°
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Moreover, by Proposition 3.1, we also deduce the propagation of the mass

[ on=Teon) = lle: = lofler = 1.

Remarking that

)

d
q>p,, eq>r+—n > -
ny —-Tr

we get that p := ¢’ € [1,p], ]. Moreover, since ¢’ > 2, it also implies that ¢'/2 €
1,p, |. By Hoélder’s inequality, it implies that for a given e < 1 — 0,
nq
ol < @(t)°
lpnll a2 < @ ()%,

and we can use Proposition 6.2 to get the result. O

7. SUPERPOSITIONS OF COHERENT STATES

We recall in this section some results about the approximation of measures on
the phase space by a superposition of coherent states and state some applications
in our case. See also Thirring [56], Lions and Paul [41], Golse et al [24]. Let p € L*
be a smooth function such that ||¢||rz = 1. Then the coherent states are defined

by
1 Y=T\ oinye/h
@w,f(y) = hd/4<p ( \/E ) e s

and we will denote the associated density operator by

Pye = |z,e)(Puc]-

We can then associate to a measure p € P(R??) of the phase space the following
operator

K= op,(p) = //RM P ci(dz dE).

It corresponds to the density operator defined in [41, Exemple II1.7]. Up to a
constant depending on f, this is also what is called a Toplitz operator in [24]. The
constant comes from the fact that we consider operators associated to measures with
finite mass on the semiclassical limit, while Toplitz operators describe operators
acting on these meausres.

As expected, the mass is the trace of the operator

//Rmu =Tr(p).

Moreover, we remark that p, . = op,,(dz¢) and as proved in [41], by defining the
Wigner transfrom 67 . := wp(p, ¢), the following holds

LN
5:1:,5 h—0 On
(74) wn(p) =050 * 1 = 1
—0
where the convergence holds in the sense of the duality with Co(R?"). An other
result proved in [26] is the comparison between the Wasserstein pseudo-distance

defined in (4) with the classical Wasserstein pseudo-distance, which completes The-
orem 1
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Proposition 7.1 (Golse and Paul [26]). Let (u,v) € P(R?%)?2 be two probability
measures such that Wa(v, ) < oo and p := op,(u) where ¢ is a Gaussian with
lellz = 1. Then

|Wan(v, p) — Walv, p)| < V2dh.

Finally, the following proposition justifies our definition (3) for the quantum
Lebesgue norm.

Proposition 7.2. Let u € P(R??) and p := op,,(1). Then for any r > 1, it holds

(75) iz , < Il
(76) lallzs, = lelle.
Moreover, in the particular case 5&0 > 0, we have for any r > 2
(77) lwn(p)ller , < llplle; = llpller
with equality in the first inequality if r = 2, as well as the following convergences
(79) A —
(79) wr(p) — wpin L7
h—0

Remark 7.1. The assumption 52{0 > 0 is verified for example when @(x) =

e‘”"”'z/g, since we can then compute explicitly
1 i 2 2
o wlz—zol +ly—yol®)
5Eo,§0 - hde " ° o

Proof. As proved in [56] or [41, Exemple IIL.7], for any convex mapping F > 0
such that F'(0) = 0, it holds

[ r et < (e (55)-

By taking F(x) = |z|" for r > 1, it implies in particular

Il < B4l = el o

which proves (75). As noticed in [24, Appendix B], this inequality also holds in
the other direction when r = co, which leads to (76). Then, as noticed in [41], we
deduce from (74) that if 65y > 0, we have

L Fe <[] Fo.

Taking again F'(z) = |z|" leads to the first part of (77)
lwn(p)llLr < |l

However, for r = 2, the following equality holds for any operator p

i < lluler

lwa()llzz = lleall 2

Thus, the above inequalities are equalities when r = 2

leon(en)llze , = lallee , = lpslco-

By complex interpolation, we deduce from the above equation and formula (76)
that for any r > 2, op,, € #(Lj, ¢, L") and

leller < ez
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which proves the equality in formula (77). Finally, from (74) and (77), we deduce
that wp(p) — pin L™ and

lelley < liminf lws ()l

which combined with (77) leads to (78) and then (79). O

Combining all these results, we can for example write a simplified version of
Theorem 4 for superposition of coherent states.

Theorem 7. Assume K wverifies (11) and (12) and let f be a solution of the
(Vlasov) equation and py be a solution of (Hartree) equation with respective initial
conditions

fePrn L3 wverifying (6) and (7)
o = opw(gi“) with g™ € PN L7,

where ¢ is a normalized Gaussian. Assume also that the initial quantum velocity
moment

. d
(80) M, < C for a given ny > 7
q—

Then there exists T > 0 such that for any t € (0,T),
Walf (), falt)) < Cr (Walf™,g™) + V),
where fy is the Husimi transform of Pr-

The advantage is that in the above results, the semiclassical estimate is stated
only in terms of the classical Wasserstein distance which is a true distance, and it
also allows to take fi* = g'®. We can do the same for Theorem 5. We state it here
for the Coulomb potential in dimension d = 3.

Theorem 8. Assume K = ﬁ and let f be a solution of the (Vlasov) equation and
pr be a solution of (Hartree) equation with respective initial conditions

fern L3 wverifying (6) and (7)
pr = opw(gin) with g™ € PN L%,
where @ is a normalized Gaussian. Moreover, assume that
vi e [1,3], pipp € L,
where p, == —ih0;. Assume also that the initial quantum velocity moment
(81) M <C.
Then there exists T > 0 such that
pr € L=([0,T], L),

uniformly in h, and there exists a constant Cr depending only on the intial condi-
tions and independent of h such that

Walf(2), fult)) < Cr (Walf",g™) + V).
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APPENDIX A. BESOV SPACES

We recall that a possible definition of Besov spaces (see e.g. [8]) can be done by
defining the following norm

(82) [l

5, = || @ 1Aul) ey

o’
where A; is defined by

Aju=0 when j < -2
A_qu=x*u
Aju= fy(ap(Z_jy)) *U when j > 0,

with
X € C2(B(0,4/3),[0,1])
¢ e (B(0,8/3)\B(0,3/4),[0,1])
(83) X+ e27) =1
Jj=0
We also define the space of Log-Lipshitz functions by defining the norm
|u(z) — u(y)|
lulle = sup ( ;
le—yle(0,1) \ |z = y| (1 + [In(|lz — y])[)

for measurable functions u vanishing at infinity. We have the following properties
of Besov spaces

Proposition A.1.
(84) Bl . CLL.
If K is the Coulomb potential such that AK = §y, then we get

c

Ifve L™ and u € Bf , then
(36) luxollss, . < ullg _ ol
(87) [wxvllgn < Cllullpr _[lv]lz2-

Proof. The proof of (84) and (85) can be found for example in [8, Chapter 2].
To prove (86), we remark that since A; is a convolution by a smooth and rapidly
decaying supported function, Aj;(u % v) = Aj(u) * v. By Holder’s inequality, we
deduce the following inequality

Jusvllpy = | @185 vl=) o

< ol || @ 1Auller) s = ullpg _l10loee-

To prove (87), we use the Fourier definition of H' and the fact the Fourier transform
is an isometry on L? to obtain

lux vl < Clllyla(y)oy)llez < Clllyla@)lzg lv] Lz
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Then by using the fact that ©(277y) > 0 < |y| € 27[3/4,8/3], we obtain the
existence of j, > —2 such that ¢(277y) = 0 for any j ¢ {j, — 1,4y, 4y + 1} (If
Jjy = —2, then it means that x(y) > 0). Then, by (83), we get

lya(y)ll -~ = H XW) + Y e(277y) | lylaly)
320 L
<O\ >0 YRR, 1w ()

k=-1 Lo

< Cswp (2 IF(By0) 1) < O [ (@ A50le0), .
J

Therefore, by the definition (82), we obtain (87). O

APPENDIX B. WASSERSTEIN DISTANCES

We recall the definition of the classical Wasserstein-(Monge-Kantorovich) dis-
tances between two probability measures (g, 1) € P(X)? on a given separable
Banach space X. We first define the notion of coupling by saying that v € P(X?)
is a coupling of ug and w1 when

(m1)gy = po and ()Y = 1,

where 7 and 7o are respectively the projection on the first and second variable and
w47y denotes the pushforward of the measure v by the map 7. In other words

Ve €Co(X). [ plontardy) = [ plalno(da)

We denote by II(ug, 1) the set of couplings of g and py. Then we define the
Wasserstein-(Monge-Kantorovich) distance in the following way

(59) Wylpau)i= (_int [ o= ylBtasan)
YEM(po,p1) J x2

The existence of a minimizer is well known and we refer for example to the books
[57] or [53] for more properties of these distances.

The following proposition may be classical but we prove it for the sake of com-
pleteness

Proposition B.1. Let (fo, f1) € P(R??)? and for i € {0,1}, let p; = (m1)ufi-
Then

Wa(po, p1) < Wa(fo, f1)-
Proof. Let v € P(R?? x R?9) be the optimal transport plan from fy to f; and
define vy, = (m1,3)%7 by

Vo € Co(R*), /RM o(z,y)yp(dzdy) := /RM o(x,y)y(de d§ dy dn).
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Then for any ¢ € Cy, since the first marginal of v is fo,

/ o(@)p(da dy) = / o(x)y(dz dé dy dn)
R2d R4d
- / (@) folde dé)
R2d
- / o(@)po(da).
R4

Hence, the first marginal of vy, is pg. In the same way, the second marginal of v, is
p1, and we deduce that v, € II(pg, p1). Next, let (¢n)nen € (Co(R*) N L (v,))N be

an

increasing sequence of nonnegative functions converging pointwise to (z,y) —

|z —y|?. By definition of v,, for any n € N, ¢ € L'(«). Therefore, by the monotone
convergence theorem,

|l =vPaeay) = [, (dedy

n—oo R2d

= lim on(2,y)y(dz d{dy dn)
N—00 JR4d

- / @ — ylPy(de dé dy dn)
]Rzld

< /HW(Ix —y> + 1€ = n|P)y(dz de dy dn) = Wa(fo, f1)2.

By definition (88), we deduce

Wa(po, p1)? < /

4 |‘T - y‘zvp(dxdy) S WQ(anfl)za
R2

which proves the result. O
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