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A numerical and experimental investigation of
stability of natural convective flows within a

horizontal annulus

By MARK P. DYKO1, KAMBIZ VAFAI1

and A. KADER MOJTABI2

�Department of Mechanical Engineering, The Ohio State University, Columbus, OH 43210, USA

� IMFT-CNRS-INP�Universite Paul Sabatier, UMR 5502, 118 Route de Narbonne 31062,
Toulouse Cedex, France

A numerical and experimental study of buoyancy-driven flow in the annulus between
two horizontal coaxial cylinders at Rayleigh numbers approaching and exceeding the
critical values is presented. The stability of the flow is investigated using linear theory
and the energy method. Theoretical predictions of the critical Rayleigh number for
onset of secondary flows are obtained for a wide range of radius ratio R and are verified
by comparison with results of previous experimental studies. A subcritical Rayleigh
number which provides a necessary condition for global flow stability is also
determined. The three-dimensional transient equations of fluid flow and heat transfer
are solved to study the manifestation of instabilities within annuli having impermeable
endwalls, which are encountered in various applications. For the first time, a thorough
examination of the development of spiral vortex secondary flow within a moderate gap
annulus and its interaction with the primary flow is performed for air. Simulations are
conducted to investigate factors influencing the size and number of post-transitional
vortex cells. The evolution of stable three-dimensional flow and temperature fields with
increasing Rayleigh number in a large gap annulus is also studied. The distinct flow
structures which coexist in the large gap annulus at high Rayleigh numbers preceding
transition to oscillatory flow, including transverse vortices at the end walls which have
not been previously identified, are established numerically and experimentally. The
solutions for the large-gap annulus are compared to those for the moderate-gap case
to clarify fundamental differences in behaviour. Heat transfer results in the form of
local Nusselt number distributions are presented for both the moderate- and large-gap
cases. Results from a series of experiments performed with air to obtain data for
validation of the numerical scheme and further information on the flow stability are
presented. Additionally, the change from a crescent-shaped flow pattern to a
unicellular pattern with centre of rotation at the top of the annulus is investigated
numerically and experimentally for a Prandtl number of 100. Excellent agreement
between the numerical and experimental results is shown for both Prandtl numbers
studied. The present work provides, for the first time, quantitative three-dimensional
descriptions of spiral convection within a moderate-gap annulus containing air, flow
structures preceding oscillation in a large-gap annulus for air, and unicellular flow
development in a large-gap annulus for large Prandtl number fluids.



1. Introduction

Linear and nonlinear stability of the Rayleigh–Be�nard problem have been the
subject of numerous publications. Owing to the difficulty in solving the natural
convection equations in an annular layer, however, only a few stability studies have
been performed. Mojtabi & Caltagirone (1979) studied the stability of the two-
dimensional flow using a perturbation method. The solution was restricted to the upper
part of the annular layer and to small values of Rayleigh number and R owing to the
approximation of the real solution by a power series expansion of Rayleigh number up
to the second order. Walton (1980) conducted a stability analysis of natural convection
flow in an annulus of small R by employing a WKB formulation for the perturbed
solution. He showed that for a Prandtl number greater than 0.24 the onset of instability
occurs at the top of the annulus and is therefore thermal in nature, whereas for a
Prandtl number below 0.24 the instability can occur elsewhere, indicating that it
originates in part owing to hydrodynamic influences. Choi & Kim (1993) conducted a
linear stability analysis of two-dimensional flow of air between horizontal cylinders.
For other than very small Prandtl numbers, only a few numerical studies of post-
transitional flow in a horizontal annulus have been published. In nearly all of these
studies, a two-dimensional model was employed (Powe, Carley & Carruth 1971; Fant,
Rothmayer & Prusa 1991; Cheddadi et al. 1992; Yoo 1996) and therefore neither the
spiral secondary flows which are observed experimentally in annuli of moderate R nor
the influence of solid endwalls which bound a finite-length annulus could be analysed.
Rao et al. (1985) carried out steady three-dimensional calculations for a case of
moderate R. However, only a fluid with Prandtl number of 5000 was studied which
limits the range of practical applicability of their results. It was therefore of interest to
extend the previous studies of linear and nonlinear stability by using numerical models
to explore both critical and subcritical instabilities over a wide range of R, and to
investigate secondary flow and thermal fields within an air filled annulus of moderate
R including the effects of the solid endwalls, which requires a three-dimensional model.

While the topic of natural convection between horizontal coaxial cylinders has been
widely studied owing to its many practical applications, most of the previous
numerical work has dealt with two-dimensional flow in a long annulus. Three-
dimensional laminar flow within a horizontal annulus of large R which arises owing to
the presence of impermeable endwalls has only recently been investigated. Takata et al.
(1984) studied the effects of annulus inclination for a fluid with Prandtl number of
5000. Their results revealed the existence of a coaxial double helical flow pattern
adjacent to each endwall caused by the viscous shearing effects of the endwalls. For the
horizontal case, the flow had a relatively small component of axial velocity. Fusegi &
Farouk (1986) analysed three-dimensional natural convection in an air filled annulus
of small axial length. Double helical flow patterns qualitatively similar to those
reported by Takata et al. (1984) were calculated. Vafai & Ettefagh (1991) conducted
a transient numerical analysis of the formation of three-dimensional flow and
temperature fields. Their results showed that in the mid-axial region of the annulus the
temperature distribution remains unchanged and the flow is nearly two-dimensional,
provided the length to outer radius ratio is sufficiently large. A numerical investigation
of two- and three-dimensional turbulent natural convection in a horizontal annulus
was conducted by Desai & Vafai (1994). In the present work, the development and
structure of three-dimensional laminar flows which precede transition to oscillatory
instability in an annulus of large R are examined for the first time. Similarities and
differences compared to convection in an annulus of moderate R are illustrated for a



Prandtl number of 0.7. In addition, experimental and numerical results are presented
showing the unicellular flow development leading up to transition to turbulence in an
annulus of large R for large Prandtl numbers, for which a three-dimensional analysis
has not been previously conducted.

Numerous experimental studies have been carried out to obtain quantitative
information about the global heat transfer within a horizontal annulus. The results
were presented by a correlation between the Nusselt number and the Rayleigh number,
Prandtl number, and R (Liu, Mueller & Landis 1961). Other studies revealed different
convective regimes, especially that of Grigull & Hauf (1966), who used a
Mach–Zehnder interferometer for their visualizations. Powe et al. (1969) showed the
existence of four convective regimes in an annulus containing air : a unicellular two-
dimensional steady regime for small Rayleigh number and any value of R, a
multicellular regime for higher Rayleigh numbers and R� 1.24, a spiral flow regime
for R between 1.24 and 1.71, and an oscillating regime for very high Rayleigh number
and R� 1.71. A multicellular regime was previously observed for R� 1.15 by Liu et
al. (1961). According to these authors, the onset of this regime is due to the fact that
the critical Rayleigh number of 1708 was exceeded in the horizontal layer formed
locally by the upper part of the annulus. This interpretation is confirmed here by a
stability study. All of the experimental studies carried out by various authors clearly
demonstrate the onset of secondary flows accompanying the primary unicellular flow
for relatively high Rayleigh numbers.

In the present study, the linear stability of this steady two-dimensional flow and the
nonlinear stability, using the energy method, are investigated. The basic two-
dimensional flow is determined by a numerical model using the ADI method. In the
three-dimensional numerical investigation, the governing equations are formulated in
terms of vorticity and vector potential. The parabolic equations are solved by a three-
dimensional ADI method and the elliptic equations are solved by the extrapolated
Jacobi scheme. The two-dimensional numerical results and, for the case of a long
annulus in which the characteristics of two-dimensional flow are present at the mid-
axis, the three-dimensional numerical results closely agree with those obtained by
Kuehn & Goldstein (1976). Excellent agreement of the three-dimensional numerical
solutions with results of the current experimental studies is shown. The stability study
enables us to define criteria for the onset of the secondary flows observed
experimentally. Through the numerical computations and experiments, the mani-
festation of thermal instability as a transition from two- to three-dimensional flow and
the effects of Rayleigh number and annulus geometry on the flow and thermal fields
are elucidated.

2. Formulation and solution

2.1. Three-dimensional flow

The horizontal coaxial cylinders with inner and outer radii r
i
and r

o
are maintained at

temperatures T
i
and T

o
, respectively, with T

i
�T

o
. The annulus is of length l and the two

axial ends are impermeable and adiabatic. The geometrical configuration, characterized
by the radius ratio R� r

o
�r

i
, is shown in figure 1. The dimensionless length is defined

as L� l�r
i
. As observed experimentally in the present work and in previous studies

such as that by Grigull & Hauf (1966), the flow is symmetric about the vertical plane
passing through the axis of the cylinders (angular symmetry plane) for the various
combinations of R and Rayleigh number considered in the present numerical study.
The computational domain was therefore chosen to encompass 0�φ�π. This point
was also confirmed through numerical experimentation.
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Figure 1. Schematic diagram of the horizontal annulus.

The three-dimensional, transient, laminar, buoyancy-induced flow of an in-
compressible fluid is governed by the equations of conservation of mass, momentum,
and energy, which are simplified using the Boussinesq approximation. The components
of the gravitational vector in the r, φ, and z directions are �g cosφe

�
, g sinφe

�
, and 0,

respectively, where g is the acceleration due to gravity and the unit vectors in
cylindrical coordinates are e

�
, e

�
, and e

�
. By taking the curl of the momentum

equation, the pressure term is eliminated, yielding the vorticity transport equations
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where the vorticity vector is defined as

Ω���V. (4)

To calculate the velocity field from the vorticity field, the vector potential Ψ is
introduced

V���Ψ. (5)

Note that the equation of continuity is satisfied automatically by this expression. From
equations (4) and (5) and assuming a solenoidal solution of Ψ, i.e. ��Ψ� 0, the
following equation relating vector potential and vorticity is obtained

�Ω���Ψ. (6)
Equation (6) is written as
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 From equation (5), the components of dimensionless velocity are
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Equations (1)–(3) and (7)–(12), along with the energy equation (13), are the final form
of the non-dimensional governing equations.

�Θ
�t

�(V��)Θ���Θ. (13)

The reference quantities used in non-dimensionalization of the conservation equations
are r

i
for length, α�r

i
for velocity, r�

i
�α for time and ρα��r�

i
for pressure, with α and

ρ denoting the thermal diffusivity and density, respectively. The dimensionless
temperature is defined by Θ� (T�T

o
)�ΔT, where ΔT�T

i
�T

o
, and the dimensionless

parameters Rayleigh number Ra
r
and Prandtl number Pr are defined as
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r
�

gβr�
i
ΔT

αν
, Pr�

ν

α
, (14)

where β is the coefficient of thermal expansion and ν the kinematic viscosity.
The annulus inner and outer cylinders are maintained at dimensionless temperatures

Θ� 1 and Θ� 0, respectively. At the surfaces of the cylinders, the components of
velocity are zero and the components of vorticity follow from equation (4). The vector
potential boundary conditions are in accordance with the work of Hirasaki & Hellums
(1968), with the normal gradient of the normal component of vector potential specified
as zero and the components of vector potential tangential to the surface also being
zero. The dimensionless boundary conditions at r� 1 and r�R are therefore
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Θ� 1 at r� 1, (18)

Θ� 0 at r�R. (19)

Since there is no fluid flow or heat conduction across the angular symmetry plane, the
normal component of velocity and the normal gradient of temperature are zero. The
normal gradients of the tangential velocity components are also zero. At φ� 0 and
φ�π
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The three components of velocity and the normal gradient of temperature are zero at
the impermeable, adiabatic endwalls of the annulus. Therefore, at z� 0 and z�L
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The system of nonlinear governing equations (1)–(3), (7)–(12), and (13) is solved by
first advancing the energy equation (13) and vorticity equations (1)–(3) in time using
a modified form of the three-dimensional alternating direction implicit (ADI) method
developed by Brian (1961). The vector potential equations (7)–(9) are then iterated to
convergence using the extrapolated Jacobi method with optimum over-relaxation
parameter. Velocities are subsequently calculated via central difference approximations
to equations (10)–(12). The updated values are used in the next timestep and the entire
sequence is repeated. At each time level, convergence to steady state is checked by
calculating the relative changes of the temperature, vorticity components, and vector
potential components at every mesh point and comparing these to a prescribed
constant, which was set to 10−�. Steady state is assumed to have been achieved when

ξn+�
i,j,k

�ξn
i,j,k

ξn
i,j,k

� 10−�, (28)

where n is a particular time level and ξ is any one of the dependent variables.
In the numerical simulations the inner and outer cylinders, adiabatic endwalls, and

fluid between the cylinders are assumed to be initially at the same uniform temperature
of Θ� 0, and the fluid is assumed to be initially stationary throughout the annular
space. The temperature of the inner cylinder is suddenly increased to Θ� 1 at t� 0,
and the flow patterns which subsequently develop do so naturally as a result of
transient heating of the fluid. Aside from being quite basic, these conditions are
representative of actual applications. One of the primary objectives of the numerical
investigation was to analyse three-dimensional flow and temperature distributions in
moderate-gap annuli at Rayleigh numbers above and below the critical value for onset
of secondary flows. Another was to study the evolution of three-dimensional flow and
temperature distributions with increasing Rayleigh number in larger-gap annuli, for
which the present stability analysis is not valid. For the cases studied, steady flow
behaviour was calculated to occur after a sufficient period of time had elapsed, which
is in agreement with experimental results.



The mean Nusselt number is defined as the angular average of the local Nusselt
number at the mid-axial plane, where the local Nusselt number is the ratio of the actual
to conduction heat transfer. The expressions for the inner and outer cylinder mean
Nusselt numbers Nu

i
and Nu

o
, respectively, are

Nu
i
�

�1

π &
π

�

ln (R)
�Θ
�r )

r=�

dφ, (29)
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o
�

�1

π &
π

�

R ln (R)
�Θ
�r )

r=R

dφ. (30)

2.2. Two-dimensional reference state

In order to investigate the stability of the basic solution and define the critical
conditions for onset of three-dimensional phenomena, it is necessary to define the
reference state by the temperature and velocity fields. For small values of Rayleigh
number a steady two-dimensional regime sets in with a vertical symmetry plane.
Consequently, for computational efficiency the reference state was obtained by solving
the two-dimensional vorticity, stream function, and energy equations. These are
reduced from the full three-dimensional equations by setting the z-velocity and
gradients of the variables in the z-direction equal to zero, thereby eliminating the axial
dependency. The system of equations was solved by the ADI method. For small
Rayleigh numbers and for air, the flow regime observed experimentally and calculated
by the two- and three-dimensional numerical models is a symmetric unicellular one. In
what follows, the stability of this flow is analysed.

3. Linear stability

The stability study is based on the Galerkin method. The results of the numerical
model are successively used to define the initial state on which infinitely small
temperature, pressure, and velocity perturbations are superposed. The purpose here is
to determine the critical values of the Rayleigh number as a function of the radius ratio,
at which this two-dimensional basic flow becomes three-dimensional.

3.1. Linear stability with regard to axisymmetrical perturbations near φ� 0

The velocity, temperature, and pressure fields V*, Θ*, and P* are decomposed as

V*�V��,

Θ*�Θ�θ,

P*�P�p,

where V, Θ, and P represent the basic two-dimensional flow and �, θ, and p represent
the disturbance fields. According to previous experimental studies, the assumption that
the perturbations appear only in the upper part of the annular layer is made. Thus the
two-dimensional perturbations are developed in a periodical form in z

�� [�
r
(r, t) e

�
��

z
(r, t) e

�
] exp (isz), (31)

θ� θ(r, t) exp (isz), (32)

where s�mπr
i
�l is the wavenumber and m the number of cells developed over the

length l. Setting the perturbed fields to satisfy the governing mass, momentum, and



N� 1 N� 2 N� 3

R Ra
c

S
c

Ra
c

S
c

Ra
c

S
c

Linear theory
1.2 1769.86 3.131 1728.22 3.132 1727.47 3.132
2�/� 1848.26 3.171 1804.87 3.173 1804.21 3.173
2 2095.71 3.171 2046.98 3.322 2047.02 3.322

Energy method
1.2 1753.72 3.122 1712.16 3.122 1711.38 3.122
2�/� 1788.7 3.137 1746.66 3.137 1745.94 3.137
2 1826.54 3.183 1783.77 3.184 1783.12 3.184

Table 1. Critical Rayleigh number and wavenumber obtained by the linear theory and energy
method for R� 1.2, 2�/�, and 2 with Pr� 0.7 and with approximations N� 1, 2, 3

energy equations, neglecting the second-order terms, and taking the curl of the
momentum equation results in the equations of the marginal state
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where the operator � is defined by
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and where the perturbations used for θ and �
r
are
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It is difficult to calculate various integrals in equations (33) and (34) involving V
r
, Vφ,

and Θ and their partial derivatives, thus the polynomial giving the best approximation
for each expression of the basic flow is obtained before calculating the integrals for
φ� 0. Equations (33) and (34) represent an algebraic system with 2N equations and 2N
variables made up of the terms a

k
and b

k
where k � [1,N ].
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The numerical calculation based on setting the corresponding determinant to zero is
carried out with an arbitrarily chosen wavenumber and a value of the radius ratio R
for which the critical conditions appear. By varying s and calculating the corresponding
Ra

r
, the values of the linear critical Rayleigh number Ra

L
and the linear critical number

S
cL

are calculated. In table 1 and figures 2–4, Ra
L

and S
cL

are based on the annular



thickness. In figures 2(a) and 2(b), the values of Ra
L

and S
cL

obtained by the numerical
model are plotted as a function of (R�1). When R tends to unity, i.e. when the upper
part of the annulus approaches a horizontal plane, Ra

L
tends to 1708 and S

cL
to 3.12.

This result corresponds to the onset of convection in a horizontal fluid layer and
represents a classical result. Figure 3 shows the variation of Ra

L
with R and

experimental values of Ra
c
obtained by various authors with air as the working fluid.

In general, the agreement is very good considering there is scatter in the previous
results owing to difficulty in the experimental determination of the point of transition.
The comparison is restricted to R� 2. Above this value, the consideration of only
axisymmetrical perturbations for φ� 0 does not lead to realistic conclusions.
Introducing V

r
, Vφ, and Θ and their partial derivates, the preceding calculation is

repeated near φ� �

��
π. The value of Ra

L
obtained for φ� �

��
π is then slightly higher

than the one found for φ� 0 (Ra
L
� 1804.45 instead of 1804.21 for R� 2�/�).

3.2. Linear stability for any �alue of φ

Here a finite volume Q of the cell defined by two concentric cylinders and by two cross-
sections at a distance l from one another (figure 1) is considered. These two fictitious
cross-sections are assumed to be adiabatic. The boundary conditions are

�� θ� 0 at r� 1,R �φ � [0, 2π], �z � [0,L], �t, (35)
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The formulation of the Galerkin method is applied by inserting θ and � as follows:
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By multiplying the perturbed momentum equation by �
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and the perturbed energy
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and integrating each of these two equations over the volume Q, we

obtain, using the perturbed continuity equation and Green’s theorem
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By replacing θ and � by the values defined in equation (37) and considering the
marginal state corresponding to da

k
�dt�db

k
�dt� 0, where k � [1,N ], the following

equations are obtained
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In these calculations, the perturbations �
r
(r,φ, z), �

z
(r,φ, z), and θ(r,φ, z) are defined by

�
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θ
k
� h

k
(r) cos (kφ) cos (sz), (44)

where the functions in r are similar to the trial functions used previously. Moreover,
instead of integrating directly between 0 and 2π, integrations are carried out between
0 and φ. After a formal calculation of the various integrals, it is noted that near φ� 0
the homogeneous linear algebraic system of equations (40) and (41) is independent of
φ (φ can be factored out of the system when only the first term in the development of
the sine and cosine functions is considered). These results show that near φ� 0 the
critical Rayleigh number and wavenumber vary slightly. The variations of Ra

L
and S

cL
,

as a function of φ varying between 0 and 2π, are also determined. The corresponding
curves are plotted in figure 4(a) for R� 1.2. The calculation is carried out for R� 1.2
using the perturbation method. The results show a good approximation of the basic
flow only for small R and Rayleigh number. This method permits us to calculate easily
the various integrals including the characteristic quantities of the basic flow. Thus, the
assumption that the flow stability can only be investigated at the top of the annular
layer is justified. Furthermore, when the flow is studied in the whole annular layer, Ra

L

is approximately double that of the critical Rayleigh number obtained for φ� 0 (figure
4(a)). Figure 4(b) illustrates the variation of the critical Rayleigh number as a function
of L for R� 1.2 and for a number of cells chosen such that the Rayleigh number is a
minimum.

4. Energy method

For the considered geometry, the basic flow is taken to be a function of r and φ and
subcritical instabilities are taken into consideration. When the temperature gradient
and gravity vary in the same direction, the energy method and the linear theory
coincide and the principle of stability exchange is verified. Here, the energy method is
applied in order to study the stability of basic flow previously defined by the
perturbation method and by the numerical model.

Starting with the perturbed governing momentum and energy equations but not
neglecting the second-order terms, multiplying the momentum equation by � and the
energy equation by θ, integrating each term of these equations over the whole volume
filled by the fluid, and using Green’s theorem and the perturbed continuity equation
results in

1
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where
L(V )� �

�
[�V�(�V )T].

Combining equations (45) and (46) and setting Φ� (λRa
r
)�/�θ gives the energy

equation
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where λ is a positive coupling parameter. Now setting

H��Pr	��	��	�Φ	��� 1, (48)
and
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we obtain
d
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r
�ρλ), (50)

where E�����Φ�� is the ‘energy’ term. For Ra�/�
r

� ρλ the global asymptotic
stability of the basic flow is ensured. In this case, we have indeed dE�dt� 0 and the
perturbation energy decreases. The problem of optimization of ρλ �Φ and � �A leads
to the following variational problem,
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1

ρλ
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where 2p�ρλ is the Lagrange’s multiplier for ���� 0 and 1�ρλ relative to the equation
H� 1. Under these conditions we deduce the Euler–Lagrange’s equations for this
variational problem, with Ra�/�

r
� ρλ �Rλ as
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�

�
Rλ(λ�/��Θ�Prλ−�/�k)�����Φ. (52)

To solve this problem we use the hypothesis justified in §3.2 that φ� 0, and again
consider axisymmetrical two-dimensional perturbations
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] exp (isz), (53)

Φ� θ(r) exp (isz). (54)

By eliminating �p in equation (51) and replacing � and Φ by their values given in
equations (53) and (54), respectively, we obtain, taking account of the perturbed
continuity equation the following equations:
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where �, ��, and D are operators defined in §3. The Galerkin method described in
§3 gives
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This leads to the condition for the global flow stability

F(Rλ, s�,λ�/�)� 0. (59)

For a given radius ratio R, a critical Rayleigh number exists for which the global
stability is ensured. This number is defined by

Ra
E

�min
s
(maxλ Rλ). (60)

Equations (57) and (58) establish the curve of global stability and the critical values
Ra

E
and S

cE
for each value of R and several degrees of approximation (table 1). In

figures 2(a) and 2(b) Ra
L

and S
cL

are found to tend respectively to 1708 and 3.12 as R
approaches unity, i.e. as the layer approaches a plane layer. Moreover, the Ra

L
(R)

curve always lies above the Ra
E
(R) curve and the S

cL
(R) curve always above the S

cE
(R)

one.
The study of the nonlinear stability based on the energy method gives us a necessary

criteria for the global stability of a flow due to natural convection in an annular fluid
layer. We thus have found two critical Rayleigh numbers. At Ra�Ra

E
the basic flow

is globally stable for any perturbation regardless of the amplitude. For Ra�Ra
L

the
two-dimensional flow is unstable. For Ra

E
�Ra�Ra

L
, the two-dimensional flow is

stable for infinitely small perturbations but it may be unstable for perturbations of a
given amplitude. As Ra increases to Ra

L
, the amplitude of the perturbations able to

destabilize the flow approaches zero. For this reason the experimental determination
of Ra

L
is difficult and some differences are observed between our theoretical results on

determination of Ra
L

and other experimental results.

5. Numerical results and discussion

The effect on the flow field and thermal structure of varying Rayleigh number is
presented for cases of moderate- and large-gap annuli with air as the fluid medium. For
the moderate-gap case, comparisons between results of the stability study and
numerical analysis are made and factors influencing the size and number of vortical
cells which arise owing to thermal instability are investigated. Prandtl number effects
are also investigated by analysing a large-gap annulus containing a large Prandtl
number fluid. All of the numerical simulations were performed over the entire length
of the annulus. Symmetry of the results relative to the annulus mid-axial plane was
demonstrated for each case that was studied. In the following discussion of results and
in all of the figures, Ra refers to the Rayleigh number based on thickness of the annular
layer.

The classification of the annulus geometry considered in the present study as either
moderate gap or large gap, depending on the radius ratio R, is based on the flow map
of Powe, Carley & Bishop (1969) for air. Their experiments and compilation of
experimental results from other investigators indicate that flow in large-gap annuli
(R� 1.71) remains stable up to much higher Rayleigh numbers than in moderate gap
annuli (1.24�R� 1.71). In the present numerical studies, the annulus radius ratios
were selected to permit comparison of the numerical solutions with experimental
results. The value of R� 1.6 employed in the moderate gap numerical study was also
used in the experiments by Powe et al. (1969). The radius ratio R� 2.2 was chosen for
investigation of a large-gap annulus since it is close to the values R� 2.18 and R�
2.3 at which benchmark comparisons of the numerical solutions and experimental
results are made. For the case of a large-gap annulus containing a large Prandtl
number fluid, the numerical simulations and experiments were both conducted using



R� 2.1. Results of the comparisons are provided in §5.2 for moderate-gap annuli and
in §6 for large-gap annuli.

Temperature distributions are presented as isotherms at selected axial planes and the
upper angular symmetry plane. Flow patterns at the mid-axial plane and the upper
angular symmetry plane are presented in terms of streamlines since the normal velocity
and the normal gradients of the tangential velocity components are zero at these planes
owing to flow symmetry. The z-component of vector potential corresponds to the two-
dimensional stream function at the mid-axial plane and the φ component of vector
potential corresponds to the two-dimensional stream function at the angular symmetry
plane. Inner and outer cylinder heat transfer results are presented as three-dimensional
surface plots of local Nusselt number. To be consistent with previous studies, the
results here are all presented in terms of r

o
non-dimensionalization.

To ensure the numerical results were not dependent on grid size, a mesh refinement
procedure was adopted in which results for different grid distributions were compared.
In this procedure, the number of grid points in the radial direction was first successively
increased while the angular and axial grid points were held constant. Keeping the
number of axial grid points the same, the number of angular grid points was then
successively increased using the grid size in the radial direction obtained from the
previous step. With the angular and radial grid sizes thus established, the number of
grids in the axial direction was then successively increased. Finally, the number of grids
in all three directions were increased to determine the grid size which yielded grid
independent results. The grid refinement procedure was conducted for each of the cases
studied. Using this procedure, it was determined that up to 31, 61, and 225 grid points
were required in the radial, angular, and axial directions, respectively, to achieve grid
independence.

Sufficiently small timesteps in the range of 10−� to 10−� were used to obtain timestep-
independent solutions. In separate numerical runs, the timestep was initially set to a
large value and then progressively decreased until the transient solution no longer
changed. In this manner, the step size which yielded timestep-independent results was
determined for each case studied.

5.1. Large-gap annulus with air

Numerical simulations were conducted for annuli having a radius ratio of R� 2.2,
which falls in the large-gap category. The Rayleigh number was successively increased
from 10� to 10�, which enabled the evolution of steady state three-dimensional flow
structures to be analysed. The results presented in this section are for an annulus of
dimensionless length L� 10, in which temperatures at the mid-axial region are shown
to correspond closely to those associated with two-dimensional flow. In §5.2, the
results are compared to those for a moderate-gap annulus and similarities and
differences in the flow fields and temperature distributions are presented.

At the lowest Rayleigh number studied of 100, crescent-shaped flow patterns centred
on φ�	�

�
π are present in the axial planes of the annulus. The velocity of the

recirculating flow is very small and does not affect the shape of the isotherms, which
are concentric circles in all of the axial planes indicating heat transfer occurs essentially
by conduction only. The effect of the endwalls on the isotherms is not discernible. As
the Rayleigh number is increased to 10�, the influence of the flow on the temperature
field within the annulus becomes more noticeable. This is seen in figure 5(a), where the
isotherms and streamlines at the mid-axial plane are plotted on the right- and left-hand
sides, respectively. The isotherms take on the appearance of eccentric circles, and the
centre of flow rotation is shifted slightly upward from φ���

�
π. Heat transfer still
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Figure 5. Effect of Ra on convection at the mid-axial plane for R� 2.2, L� 10, Pr� 0.7 with
streamlines on the left and isotherms on the right : (a) Ra� 10� ; (b) Ra� 4�10� ; (c) Ra� 10�.

occurs mostly by conduction, as evidenced by the calculated steady state mean Nusselt
number at the mid-axial plane of 1.042. For Ra� 10�, the isotherms do not vary with
respect to axial position within the range �

�
L� z� 	

�
L. At z� 0 and z�L, the

isotherms are more evenly spaced between the inner and outer cylinders near φ� 0 as
compared to the other axial locations.

With further increase in Rayleigh number to 4�10�, the effects seen at lower
Rayleigh number are significantly amplified owing to the increased strength of the flow
as shown in figure 5(b). The centre of rotation of the flow has shifted upward compared
to Ra� 10� and the isotherms are now distorted and grouped more closely against the
bottom of the inner cylinder and top of the outer cylinder, where the inner and
outer cylinder thermal boundary layers are respectively thinnest. The overall heat
transfer has departed significantly from that of conduction, with the mean Nusselt
number at the mid-axial plane increasing to 1.486. The influence of the endwalls
becomes more pronounced and extends further into the annulus. The core region in
which temperatures are essentially independent of axial position now extends from
roughly z� �

�
L to z� �

�
L.

For an even higher Rayleigh number of 10�, the shape of the isotherms at the mid-
axial plane presented in figure 5(c) clearly shows the highest extraction of heat from the
lower portion of the inner cylinder, upward flow of heated fluid from the top of the
inner cylinder, and locally increased heating of the top of the outer cylinder by the
buoyant fluid. The subsequent reduction in fluid temperature as the flow moves
downward along the outer cylinder surface is apparent. The isotherms are inverted
indicating that separation of the inner and outer cylinder thermal boundary layers has
occurred, which is due to the strong recirculation of the flow field. The overall heat
transfer has increased to almost twice that of conduction, with a mean Nusselt number
at the mid-axial plane of 1.965. The trend of increased height of the centre of flow
rotation with higher Rayleigh number is seen by comparison of figures 5(a), 5(b), and
5(c). Three-dimensional effects become more prominent and of greater axial extent for
Rayleigh number of 10�. The isotherms are now substantially distorted in the top of the
annulus at z� 0 and the core region encompasses a smaller zone extending from
approximately z� �

�
L to z� 


�
L.

To better illustrate the flow mechanisms responsible for the significant change in the
temperature field near the endwalls with increasing Rayleigh number, which is most
prominent at the uppermost angular position, streamlines and isotherms in the upper
angular symmetry plane are plotted in figures 6(a) and 6(b), respectively. For Ra�
10�, it is seen in figure 6(a) that a rotational cell is present next to each endwall in the
upper region of the annulus. The cells rotate clockwise on the right-hand end of the
annulus and counterclockwise on the left as indicated. The strength of the cells is very
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Figure 6. Effect of Ra on convection at the upper angular symmetry plane for a large gap
annulus for R� 2.2, L� 10, Pr� 0.7: (a) streamlines ; (b) isotherms.

weak at this Rayleigh number which results in only slight distortion of the isotherms
in the vicinity of the endwalls, as seen in figure 6(b). The maximum value of the
dimensionless stream function associated with the cells is 0.17. Between the two cells,
axial velocities of the flow are very small compared to radial velocities and circulation
in the (r, z)-plane is not appreciable. As a result, the isotherms are seen as horizontal
lines.

When the Rayleigh number is increased to 4�10�, the end cells gain considerable
strength with the maximum value of the stream function increasing to 2.01. Owing to
increased viscous shear forces, a weak counter-rotating secondary flow pattern is
produced next to each end cell, as seen in figure 6(a). The isotherms clearly reflect the
presence of the rotating cell and secondary pattern at each end of the annulus, as seen
in figure 6(b). Between the secondary patterns, only very weak (r, z)-plane circulation
is present. Within the core region of the annulus, the isotherms appear as approximately
horizontal lines.

At the highest Rayleigh number of 10�, the maximum value of the stream function
associated with the end cells has increased to 7.52 and the size of the cells has grown,
as seen in figure 6(a). Accordingly, their influence on the isotherms has moved further
toward the centre of the annulus which reduces the size of the core region to
�

�
L� z� 


�
L as previously mentioned. Owing to the greater rotational strength of the

cells, the isotherms in the end regions are now inverted and the depression in isotherms
associated with each secondary pattern is larger than for Ra� 4�10�, as seen in figure
6(b). As in this lower Rayleigh number case, between the secondary patterns the flow
remains stable and only very weak circulation occurs in the (r, z)-plane.
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Figure 7. Fluid particle paths in a large gap annulus for Ra� 10�, R� 2.2, L� 10, Pr� 0.7:
(a) side view; (b) perspective view; (c) side view of end cell region; (d ) end view of end cell region.

Fluid particle path plots for Ra� 10� are presented in figure 7 to provide additional
insight into the flow structure. The pathlines seen in figures 7(a) and 7(b) represent the
trajectories of seven massless particles injected into the flow field. In order to illustrate
the flow-field characteristics over the length of the annulus, a single particle is released
into each of the rotating end cells in the upper part of the annulus (A

�
and A

	
) and the

remaining five particles are released at axial positions of z� 0.22L (A
�
), 0.4L (A

�
), 0.5L

(A
�
), 0.6L (A



), and 0.78L (A

�
) near the centre of rotation of the primary flow. The

paths of the five particles released between the endwall regions reflect the two-
dimensional nature of the flow near the mid-axial plane and the departure from two-
dimensional flow outside the core region. The symmetry of flow about the mid-axial
plane is seen in the movement of the particle released at z� 0.5L (A

�
), which traces a

series of increasingly larger crescent-shaped patterns with no axial movement. As
particles are released at positions further from the mid-axial plane, the component of
axial velocity increases, as seen by the further axial progression of particles introduced
at z� 0.22L and 0.78L compared to 0.4L and 0.6L, respectively (A

�
versus A

�
and A

�
versus A



). These particles trace a series of increasingly larger crescent patterns as they

slowly proceed axially inward. Upon reaching the bottom part of the annulus near the
outer cylinder, the particles reverse axial direction and begin to move in the direction
of the endwalls within the lower region of the annulus (locations B

�
, B

�
, B



, B

�
). This

indicates that a relatively low-speed secondary global circulation occurs on each side of
the mid-axial plane, with flow closer to the centre of rotation of the main flow moving
toward the mid-axial plane and flow in the lower part of the annulus that is close to
the outer cylinder wall moving in the opposite direction.

Enlarged views of the particle path associated with the left-hand end cell region,
which is the reflection of that in the right-hand end cell region owing to symmetry
about the mid-axial plane, are provided in figures 7(c) and 7(d ). After release of the
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Figure 8. Local Nusselt number distribution for Ra� 10�, R� 2.2, L� 10, Pr� 0.7:
(a) inner cylinder; (b) outer cylinder.

particle into the end cell, it is seen to follow an angled spiral path (location C ) in the
direction transverse to the angular symmetry plane. At approximately φ���

�
π, the

particle becomes entrained in the main annulus flow (location D) and subsequently
traces a series of crescent patterns (region E ) as it moves axially away from the endwall.
Upon reaching the axial extent of the end cell region, it reverses direction and proceeds
back toward the endwall in a larger crescent that surrounds the previous smaller ones.
After reaching the lower part of the annulus (location F ), it rises along the inner
cylinder surface (starting at location G) and re-enters the rotating end cell at the top
at approximately the same position as its release point, thereby closing a three-
dimensional circuit.

A plot of the local Nusselt number distribution on the inner and outer cylinders is
given in figures 8(a) and 8(b), respectively, for Ra� 10�. As seen in figure 8(a), the
inner cylinder Nusselt number shows little variation in the axial direction over most of
the annulus. The inner cylinder Nusselt number is highest at the bottom (φ�π) where
the associated thermal boundary layer is thinnest. As the fluid rises along the hot inner
cylinder surface the boundary-layer thickness increases and the Nusselt number



decreases, reaching a minimum value at the top of the cylinder (φ� 0) except near
z� 0 and z�L. At these locations, there are localized peaks owing to the presence of
the end vortices in the annulus, which transport fluid cooled by the outer cylinder
surface directly to the inner cylinder surface resulting in locally increased heat flux from
the inner cylinder. In the lower regions of the annulus (φ� �

�
π), there is a localized

reduction in the inner cylinder Nusselt number at z� 0 and z�L owing to the
endwalls which retard the adjacent flow.

The outer cylinder Nusselt number shown in figure 8(b) exhibits the opposite trend
of decreasing magnitude with increased angular position. This occurs since the outer
cylinder thermal boundary layer is thinnest at the top of the annulus and increases in
thickness as the flow proceeds downward, with the outer cylinder Nusselt number
reaching a minimum at the bottom of the annulus. The end vortices at the top are seen
to have a profound effect on the local heat transfer, with large peak outer cylinder
Nusselt numbers occurring at φ� 0 where heated fluid entrained in the vortices
impinges on the outer cylinder at relatively high velocity. At z� 0 and z�L, the fluid
entrained in the vortices leaves the outer cylinder surface resulting in local minima. The
effects of the circulation adjacent to the end vortices (see figure 6(a)) are seen as local
reductions in the outer cylinder Nusselt number near φ� 0 where the fluid moves away
from the outer cylinder toward the inner cylinder. The outer cylinder Nusselt number
is seen to be essentially independent of axial position over a reduced central core region
covering approximately �

�
of the axial length.

From the numerical results, it is concluded that at higher Rayleigh numbers which
precede transition to oscillatory flow (which was observed to occur at Ra� 6.6�10�

in the present experimental study) the steady flow field in a sufficiently long closed
annulus of R� 2.2 is comprised of several distinct regions, each of which is symmetric
about the mid-axial plane. In the core region of the annulus, the axial velocities are very
small and the temperature distribution corresponds to that of two-dimensional flow.
Adjacent to each endwall, a region exists in which a complex three-dimensional
recirculating flow consisting of a transverse vortex in the upper portion of the annulus
and a double helical flow structure in the lower part occurs. Here, the buoyant upward
flow is retarded owing to the viscous shearing effect of the walls which produces a
transverse vortical cell. Fluid rising along the inner cylinder becomes entrained in this
cell and is transported along a spiral path back to the primary flow. It then traces an
inner crescent-shaped helix away from the endwall followed by an outer helical loop
back toward the wall before re-entering the vortex. Between the end region and the
core region, a third region is present in which the primary flow circulation occurs in the
(r,φ)-plane and a much lower speed axial movement is also present. Within this region,
there is noticeable displacement of the isotherms in the upper part of the annulus owing
to lower-strength circulation next to the end cell region.

5.2. Moderate-gap annulus with air

Three-dimensional buoyancy-driven flow and heat transfer within concentric hori-
zontal cylinders having a radius ratio of R� 1.6 were investigated numerically for air
(Pr� 0.7). The simulations were performed over a range of Rayleigh numbers between
10� and 4.5�10�, which permitted investigation of stable flow structures occurring at
lower Rayleigh numbers and post-transitional flow structures which arise at Rayleigh
numbers exceeding the critical value for instability. The investigation was conducted
for an annulus with dimensionless length L� 4. To illustrate the effects of annulus
length on the secondary flow and associated temperature fields, results are also
presented for L� 4.5, 5, and 5.5.



Similar to the large-gap annulus case, at Rayleigh number of 100 symmetric
crescent-shaped flow patterns centred on φ�	�

�
π are present in the axial planes of the

moderate gap annulus and the isotherms at each axial plane appear as concentric
circles. In each (r, z)-plane, the isotherms are viewed as horizontal lines without any
noticeable distortion in the vicinity of the end walls. At Rayleigh number of 10�,
however, the influence of the natural convection flow on the temperature field within
the annulus becomes more noticeable. The isotherms at the axial planes within the
annulus appear as eccentric circles while at the endwalls they are slightly more evenly
spaced between the inner and outer cylinders at φ� 0. In this pseudoconduction
regime, heat transfer takes place almost entirely by conduction with a mean Nusselt
number at the mid-axial plane of 1.021. Within the range of approximately �

�
L� z�

	

�
L, the temperature distribution is invariant with respect to axial position.
The next highest Rayleigh number studied was 2�10�, which exceeds the linear

critical Rayleigh number of Ra
L
� 1.9�10� for R� 1.6 determined from the stability

analysis. At Ra� 2�10�, the isotherms within the annulus are grouped closer to the
bottom of the inner cylinder and the top of the outer cylinder where heat transfer is
highest at the inner and outer cylinders, respectively. At the endwalls, the isotherms are
nearly evenly spaced between the inner and outer cylinders at φ� 0. The mean Nusselt
number at the mid-axial plane has increased to 1.100 indicating the heat transfer has
begun to depart from that of purely conduction. In contrast to the lower Rayleigh
number results and also the large-gap annulus results presented in §5.1, the temperature
distribution near φ� 0 varies over the entire length of the annulus and there is no
longer a distinct core region centred on the mid-axial plane. As shown later, this is an
indication of the onset of secondary flows within the annulus owing to instability
phenomena. The lack of a core region at Ra� 2�10� was also established for longer
annuli, confirming this is not simply the result of insufficient annulus length.

As the Rayleigh number is increased further to 2.8�10� dramatic changes in the
temperature field arise which reflect the more complete development of secondary flows
resulting from the thermal instabilities. The isotherms are essentially unchanging with
respect to axial position at angular positions between approximately �

�
π and π, and are

spaced closer to the bottom of the inner cylinder. However, in the upper part of the
annulus there are significant differences in the spacing and shape of isotherms from one
axial plane to another.

Plots of streamlines and isotherms in the upper angular symmetry plane, where the
greatest changes occur with increased Rayleigh number, are provided in figures 9(a)
and 9(b), respectively. At Ra� 10�, a rotational cell is seen to be present next to each
endwall. The cells rotate in opposite directions, clockwise on the right-hand end of the
annulus and counterclockwise on the left. Their strength is very low with a maximum
value of stream function at the upper angular symmetry plane of 0.12, which produces
only a slight distortion of the otherwise horizontal isotherms in the vicinity of the
endwalls. As previously mentioned, the core region in which temperatures are
independent of axial position lies within approximately �

�
L� z� 	

�
L. The axial

velocities of the flow are relatively small in the region between the end cells and
circulation in the angular symmetry plane is weak there. At this low Rayleigh number,
the stable flow patterns and isotherms bear a resemblance to those in a large-gap
annulus as seen by comparison between figures 6 and 9 at Ra� 10�.

When the Rayleigh number is increased beyond Ra
L
� 1.9�10� to Ra� 2�10�, the

end cells become much stronger, with the maximum value of the stream function at the
upper angular symmetry plane increasing to 1.04. The region between the end cells is
now filled by two pairs of counter-rotating cells symmetric about the mid-axial plane,
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Figure 9. Effect of Ra on convection at the upper angular symmetry plane for a moderate gap
annulus for R� 1.6, L� 4, Pr� 0.7: (a) streamlines ; (b) isotherms.

as seen in figure 9(a). Although the inner cells are weaker than the end cells, they are
nonetheless strong enough to markedly influence the temperature distribution. The
alternating elevation and depression of the isotherms along the length of the annulus
corresponding to the opposing direction of rotation of adjacent cells is seen in figure
9(b). Owing to the presence of the inner cells in the upper portion of the annulus, a core
region no longer exists. As seen in figure 9(a), at Ra� 2�10� the two cells adjacent to
the mid-axial plane occupy approximately the same space as the end cells. As the
Rayleigh number is increased further, the strength of the inner cells increases faster
than that of the end cells and becomes slightly greater prior to reaching Ra� 2.8�10�.
The two end cells increase in size and the two innermost cells decrease in size until
approximately Ra� 2.8�10�, at which point the cell sizes change relatively little with
further increase in Rayleigh number. The value of Ra
 2.8�10� obtained from the
present numerical studies, which marks the full transition to three-dimensional
secondary flows in the upper portion of the annulus, is in excellent agreement with the
transition flow map of Powe et al. (1969) derived from experimental results of several
investigators.

Streamlines in the upper angular symmetry plane for a Rayleigh number of 2.8�10�

are shown in figure 9(a). At this Rayleigh number, the maximum value of the stream
function at the upper angular symmetry plane is 3.01 and is associated with the inner



ΔΨ = 0.82

(a)

ΔΘ = 0.1

(b)

Figure 10. Streamlines and isotherms at the upper angular symmetry plane for a moderate gap
annulus for Ra� 4.5�10�, R� 1.6, L� 4, Pr� 0.7: (a) streamlines ; (b) isotherms.

cells that arise owing to thermal instability. The end cells which existed previous to
transition are slightly weaker than the inner cells owing to the viscous shearing effect
of the endwalls. The axial dimension of the two centre cells is smallest and the
dimension of the end cells is largest. A comparison of the axial wavenumber based on
annular thickness s� with S

cL
, the critical wavenumber for an infinitely long annulus

obtained from the linear stability analysis, can be made using s��mπ(r
o
�r

i
)�l where

l is based on the size of cells adjacent to the mid-axial plane (since these are least
influenced by the slower rotating end cells). This yields s�� 3.14 which compares very
well with S

cL
� 3.21. The variation of isotherms in the upper part of the annulus for

Ra� 2.8�10� is shown in figure 9(b). The S-shaped appearance of isotherms within
each cell owing to the high rotational strength is clearly seen. The spacing of isotherms
reflects the direction of cell rotation, with closer spacing at the cylinder surfaces
corresponding to where the flow cooled by the outer cylinder and heated by the inner
cylinder impinges on the inner and outer cylinders, respectively.

An example of higher Rayleigh number results is presented in figures 10(a) and
10(b), where plots of the streamlines and temperature distribution, respectively, at the
upper angular symmetry plane for Ra� 4.5�10� are displayed. The maximum value
of the stream function associated with the inner cells is 4.91 compared to 3.01 for
Ra� 2.8�10�. Comparison of the streamlines in figures 9(a) and 10(a) shows the
tendency of the two innermost vortical cells to become smaller with increased Rayleigh
number until, at Ra� 2.8�10�, they approximately attain the natural size predicted by
the stability theory for an infinitely long annulus, and then remain essentially constant
in size as the Rayleigh number is increased further.

The three-dimensional nature of the flow at high Rayleigh numbers is illustrated by
the fluid particle path plots presented in figure 11 for Ra� 2.8�10�. In these plots, a
particle is introduced into each of the six rotational cells present at the top of the
annulus (locations A

�
–A

�
). The ensuing pathlines show the primary flow features

present in the moderate-gap annulus including similarities and differences between the
end cells and inner cells. In figures 11(a) and 11(b) all six pathlines are shown, whereas
in figures 11(c) and 11(d ) views of the end cell region pathlines and the inner cell pair
pathlines, respectively, are shown.

As seen in figure 11(c), a particle injected into an end cell follows a spirally rotating
path transverse to the angular symmetry plane (location C ) until becoming entrained
in the primary flow at approximately φ���

�
π (location D). It then proceeds axially

inward in an increasingly larger crescent-shaped helical pattern (region E seen in
figures 11(a) and 11(c)) until reaching the axial limit of the end cell region. At this
point, it loops over the original spiral path and follows an even larger crescent-
shaped route downward along the outer cylinder wall to the bottom of the annulus
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Figure 11. Fluid particle paths in a moderate gap annulus for Ra� 2.8�10�, R� 1.6, L� 4, Pr�
0.7: (a) side view; (b) perspective view; (c) end view of end cell region only; (d ) end view of inner cell
pair.

(location F ) and back up along the inner cylinder surface (starting at location G) until
it re-enters the spiral vortex at the top of the annulus. The overall movement of
particles in the end cells is therefore similar to that in the end cell region of a large-gap
annulus shown in figure 7. A particle injected into one of the inner cells of the moderate
gap annulus (figure 11(d )) follows approximately the same initial spiral trajectory into
the primary flow as in the end cell. After this, it proceeds somewhat differently making
a single crescent loop with much less change in axial position, first moving downward
near the outer cylinder surface (H ) and then upward adjacent to the surface of the
inner cylinder (I ). Upon reaching the upper part of the annulus it is briefly entrained
in the spiral vortex before starting another single crescent circuit in the main flow. The
particle continues tracing a number of such circuits within the axial boundaries of that
particular cell. The motions described above for particles introduced into the inner cells
qualitatively match the sketch of experimental results provided by Grigull & Hauf
(1966) for spiral convection in an air filled annulus.

The inner and outer cylinder local Nusselt number distributions are plotted in figures
12(a) and 12(b), respectively, for Ra� 2.8�10�. Between φ� �

�
π and φ�π the inner

cylinder Nusselt number is independent of axial position over most of the annulus with
a small reduction adjacent to the end walls. Also within this angular range, the basic
trend of higher inner cylinder Nusselt number with increasing angular position is
consistent with that in a large-gap annulus shown in figure 8(a). In the range φ� 0 to
φ� �

�
π, however, there are substantial differences compared to the large-gap results in

the region between the end vortices. These are, of course, a result of the inner vortex
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Figure 12. Local Nusselt number distribution for Ra� 2.8�10�, R� 1.6, L� 4, Pr� 0.7:
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pairs present in the moderate gap annulus which result from instability. As seen in
figure 12(a), there are two large peaks in inner cylinder Nusselt number corresponding
to where fluid entrained in the inner vortex pairs is first cooled by the outer cylinder
and then impinges on the inner cylinder (Nu

iMAX
in figures 9(a) and 9(b)). Owing to

the greater strength of the inner vortex pairs, these are larger than the local peaks at
z� 0 and z�L associated with the end vortices. The inner cylinder Nusselt number
at φ� 0 varies by a factor of 6.45 over the length of the annulus.

As shown in figure 12(b), in the lower portion of the annulus the outer cylinder
Nusselt number is essentially independent of axial position, becomes smaller with
increased angular position, and is a minimum at φ�π which are the same trends seen
in the larger-gap annulus results in figure 8(b). However, in the upper part of the
annulus the moderate gap outer cylinder Nusselt number shows a dramatic variation
in the axial direction resulting from the inner vortex pairs. There are three local
maxima occurring at φ� 0 which are associated with the flow entrained by the vortices
moving upward from the hot inner cylinder and meeting the cool outer cylinder
(Nu

oMAX
in figures 9(a) and 9(b)). There are also four local minima at φ� 0
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Figure 13. Effect of annulus length on convection at the upper angular symmetry plane for
Ra� 2.8�10�, R� 1.6, Pr� 0.7: (a) streamlines ; (b) isotherms.

Annulus length L Number of cells
Mid-axial cell size
(dimensionless)

4 6 0.60
4.5 8 0.53
5 8 0.60
5.5 10 0.55

Table 2. Number and size of vortical cells in the annulus

corresponding to the locations of downward movement of fluid away from the outer
cylinder, even though the perspective in figure 12(b) does not clearly show all four
minima. The outer cylinder Nusselt number at φ� 0 varies by a factor of 2.85 over the
length of the annulus.

The effect of annulus length on the spiral vortex cells was examined by comparing
results at Ra� 2.8�10� for the cases of L� 4, L� 4.5, L� 5, and L� 5.5. A plot of
the upper angular symmetry plane streamlines and isotherms for each case is provided
in figures 13(a) and 13(b), respectively. Successively increasing annulus length from
L� 4 to L� 5.5 in increments of ΔL� 0.5 is seen to result in either expansion of the
existing cells or the addition of more inner cells, always one counter-rotating cell pair
at a time. The cell sizes vary somewhat in order to accommodate an integral number
of pairs between the end cells as shown in table 2. The dimensionless mid-axial cell
sizes given in table 2 are within �2% and �10% of the cell size of 0.59 calculated for



an infinitely long annulus, which is obtained from l�mπ(r
o
�r

i
)�S

cL
with m� 1. Our

results have shown that cell size is dependent not only on the natural size predicted by
the stability theory for an infinitely long annulus and the increase in Rayleigh number
above the critical value, but also on the length of the annulus with solid endwalls into
which an integral number of vortex pairs must fit in the space between end vortices.

The transverse vortices which form in the upper part of the moderate gap annulus
behave similarly in some aspects to the natural convection rolls which arise in a three-
dimensional rectangular box heated from below. Using a Galerkin procedure, Davis
(1967) investigated the linear stability of quiescent fluid in the latter configuration
including the influence of the lateral walls. He found that the rolls always form parallel
to the shorter walls of the box, and when the gap thickness is less than the other
dimensions of the box the rolls are of nearly square cross-section. These results were
confirmed experimentally by Stork & Muller (1972). It was found in our studies that,
in a manner similar to the three-dimensional box, the transverse vortices in the upper
part of the moderate-gap annulus set-up parallel to the endwalls which form the
shorter sides of the upper region of the annulus. The cross-section of the vortices is
similarly nearly square.

Stork & Muller (1972) observed experimentally that an even or odd number of rolls
can form in the rectangular box, but an even number is preferred. In the moderate-gap
annulus, however, our numerical results indicate that only an even number of vortical
cells form between the cells located at the endwalls. This is believed to be due to the
presence of these end cells, which are in place prior to the onset of instabilities. The end
cells are driven by the primary natural convective flow in the annulus, and their
directions of rotation are opposite to each other. Owing to viscous shearing effects, the
end cells determine the directions of rotation of the adjacent vortical cells which form
owing to instability. Since all of the cells are counter-rotating, it can be shown that only
an even number can fill the space between the opposite rotating end cells. In the
rectangular box, there are no pre-existing end rolls and therefore an even number of
rolls does not necessarily occur.

From our numerical results, it is seen that changes in the temperature field in the
upper portion of the moderate-gap annulus as the Rayleigh number is increased above
the critical value for instability are due to the emergence of three-dimensional flows.
The flows are comprised of an integral number of transverse vortex pairs located
between the annulus end vortices, all of which are symmetric about the mid-axial plane.
The end vortices result from the viscous shear imposed by the solid endwalls and are
in place prior to the formation of the inner vortex pairs which arise owing to thermal
instability. Flow within the end vortex zones follows a closed loop in which fluid inside
the vortex is transported spirally in the angular direction into the primary flow and
then follows a helical path axially away from the endwall. At the inner axial boundary
of the zone the fluid reverses axial direction and moves along a larger helical loop
until eventually re-entering the vortex. Within the inner vortex zones, the flow initially
proceeds from the vortex into the primary flow in the same spirally rotating manner,
but subsequently behaves differently. After completing one crescent circuit within the
annulus it becomes briefly entrained in the spiral vortex prior to initiating another
single circuit. Within the inner vortex zones the flow is three-dimensional above
approximately φ� �

�
π and more nearly two-dimensional below this. In the end vortex

zone the flow is also three-dimensional above φ� �

�
π, but below this there is a

significant component of axial velocity.
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Figure 14. Experimental flow patterns at the mid-axial plane for R� 2.1, L� 8.95, Pr� 100:
(a) Ra� 8.725�10� ; (b) Ra� 2.52�10� ; (c) Ra� 4.36�10� ; (d ) Ra� 1.09�10
.

5.3. Large-gap annulus, large Prandtl number fluid

Experiments were conducted to investigate flow patterns within an annulus of radius
ratio R� 2.1 containing a silicone fluid with Prandtl number of 100. The Rayleigh
number was successively increased from 8.725�10� to 1.09�10
, which encompasses
the range over which the stable crescent-shaped flow first changes to a steady
unicellular pattern with rotational centre near φ� 0, and then experiences transition
to turbulence. Three-dimensional numerical simulations were performed to study the
development of the corresponding temperature fields and obtain additional insight into
the high Rayleigh number flow structure. The experimental and numerical investi-
gations were both conducted for an annulus with a length of L� 8.95. A description
of the experimental set-up is provided in §6.

A photograph of the steady state flow pattern at the mid-axial plane of the annulus
for Ra� 8.725�10� is presented in figure 14(a). In this view, a counter-clockwise
rotating crescent-shaped recirculating flow is seen to be present. As the Rayleigh
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Figure 15. Temporal development of isotherms at the mid-axial plane for Ra� 2.52�10�, R� 2.1,
L� 8.95, Pr� 100: (a) t� 0.005; (b) t� 0.01; (c) t� 0.015; (d ) t� 0.02; (e) t� 0.025; ( f ) t� 0.05;
(g) t� 0.1; (h) t� 0.15. Contours incremented by 0.1.

number is increased to 2.52�10�, the flow changes to a steady unicellular pattern with
the centre of rotation located within close proximity of the angular symmetry plane, as
shown in figure 14(b). A small, elliptically shaped recirculation cell is located at the
centre of rotation. Beneath this cell, a distinct boundary between the upward flow
adjacent to the heated inner cylinder and the downward flow next to the cooled outer
cylinder extends in the angular direction to approximately the location of the centre of
rotation previously seen in figure 14(a) for Ra� 8.725�10�. With further increase in
the Rayleigh number to 4.36�10� (figure 14c), the recirculation cell increases in size
and a separation of streamlines appears immediately below the cell. This separation
has not been reported in any previous investigation. The flow remains stable while the
cell size continues to increase with Rayleigh number up to Ra
 1�10
, at which point
the onset of turbulence is observed near the inner cylinder, as seen in figure 14(d ),
corresponding to a Rayleigh number of 1.09�10
.

Three-dimensional numerical simulations were performed for Ra� 8.725�10� and
Ra� 2.52�10�. Comparison plots which illustrate the excellent agreement of
experimental and numerical results are provided later on in figures 20 and 21. The
calculated mean Nusselt numbers at the mid-axial plane corresponding to Ra�
8.725�10� and Ra� 2.52�10� are 2.20 and 2.92, respectively. At Ra� 8.725�10�,
the isotherms within the approximate range of �

�
L� z� 	

�
L are constant with respect

to axial position. At Ra� 2.52�10�, the temperature distribution is essentially
invariant with respect to axial position over this same region except for minor changes
in the vicinity of the recirculation cell which result from a slight weakening of the cell
with closer proximity to the endwalls. These results indicate that the recirculation cell



in the top of the annulus is a cross-section of a longitudinal roll cell which extends over
most of the annulus length. This was confirmed by examining the distribution of the
z-component of vector potential at various axial planes. There is a total of two roll cells
at the top of the annulus which are symmetric to each other about the vertical plane
passing through the axis of the cylinders, and which rotate in the same directions as the
symmetric main flow which surrounds each of them.

The temporal development of isotherms at the mid-axial plane resulting from sudden
heating of the inner cylinder is shown in figure 15 for Ra� 2.52�10�. Up to the
dimensionless time of t� 0.005, the isotherms appear as eccentric circles indicating
that the strength of the flow is relatively weak and heat transfer is mainly by
conduction. The streamline pattern shown in figure 21 becomes established at t� 0.01
which is reflected by the swirling pattern of isotherms in the top of the annulus (figure
15). The maximum value of the stream function at the mid-axial plane is attained at
this time and remains constant as steady state conditions are achieved. The recirculating
flow is strong enough to produce the inversion of isotherms seen in figures 15(b)–15(h)
as the remaining fluid in the annulus is heated.

6. Comparison with experimental and previous numerical results

In addition to the previously described studies performed to ensure grid- and
timestep-independent solutions, steady state numerical results for an annulus of R�
2.6 with air as the fluid medium were compared to those of Kuehn & Goldstein (1976)
to verify the accuracy of the numerical scheme. Comparisons were made for Rayleigh
numbers of Ra� 10� and Ra� 10�. In both cases the streamlines, centre of flow
rotation, and isotherms from our numerical model were found to be in excellent
agreement with their results. The inner and outer cylinder Nusselt numbers reported
by Kuehn & Goldstein (1976) were also compared with mid-axial plane Nusselt
numbers from the present study, and the maximum difference was found to be less than
2%. In the present three-dimensional models, annuli of length L� 10.4 and L� 20.8
were modelled for the Ra� 10� and Ra� 10� cases, respectively, which resulted in
two-dimensional flow at the mid-axis.

To further validate the three-dimensional numerical scheme and obtain additional
information on flow stability, three sets of experiments were conducted, two with air
and one with silicone fluid. Silicone fluid was used to obtain a high Prandtl number
comparison. There is also no significant variation of thermophysical properties for
temperatures between 10 �C and 100 �C. A brief description of each experimental set-
up along with comparisons of the flow field photographic images and interferometer
fringes to numerically calculated flow patterns and isotherms, respectively, are
presented. In comparing the numerical results with the experimental data, the results
are plotted to scale to cover the same display area as that of the experiment.

In the first experimental set-up using air, the inner and outer cylinder radii were
20 mm and 46 mm, respectively, resulting in a radius ratio of R� 2.3. The length of
the test cell was 161 mm or a dimensionless length of L� 8.05. The inner and outer
cylinders were maintained at hot and cold uniform temperatures, respectively, by
means of heating and cooling jackets. Each of the endwalls was constructed of two
layers of glass separated by a thin air space to simulate adiabatic boundaries. A thin
transparent section was built into the annulus at the mid-axial position. To visualize
the fluid motion, smoke was introduced into the annulus. The smoke particles were
entrained by the fluid and were made visible by illuminating either the mid-axial plane
or the upper angular symmetry plane with a thin sheet of light from a helium–neon



Numerical Experimental

Figure 16. Comparison of flow patterns at the mid-axial plane for Ra� 3.32�10�, R� 2.3,
Pr� 0.7.

Numerical Experimental

Figure 17. Comparison of flow patterns at the upper angular symmetry plane for
Ra � 3.32�10�, R� 2.3, Pr� 0.7.

laser. A comparison of the steady mid-axial plane flow pattern with computed results
from the three-dimensional transient numerical simulation is given in figure 16 for
Ra� 3.32�10�. The calculated streamlines in the left-half of the plot are seen to be in
excellent agreement with the experimental flow visualization results on the right. The



Numerical Experimental

Figure 18. Comparison of isotherms at the mid-axial plane for Ra� 7.1�10�, R� 2.18,
Pr� 0.7.

calculated angular position of the centre of flow rotation is within 2% of the
experimentally observed position. A perspective view of the smoke pattern in the upper
angular symmetry plane of the annulus near the endwall is shown next to a plot of the
calculated streamlines in figure 17. The primary flow feature in evidence in both the
experimental and numerical results is a transverse vortex structure next to the endwall.
The computed size and position of the vortex and the location of the vortex centre are
seen to be in very good agreement with the experimental flow image. For both cases,
the direction of rotation is counterclockwise.

The second experimental set-up using air was constructed so that a Mach–Zehnder
interferometer could be used. The cell was 250 mm in length and the inner and outer
radii were 11 mm and 24 mm, respectively, for R� 2.18 and L� 22.7. These sizes were
chosen based on the dimensions of the interferometer. The light source was a
helium–neon laser. Interferograms are shown in the right-halves of figures 18 and 19
for Ra� 7.1�10� and Ra� 1.1�10�, respectively. The fringes can be considered as
isotherms since the number of refraction is only a function of temperature. Steady state
isotherms from the three-dimensional transient numerical simulation are plotted in the
left-halves of the figures. For both Rayleigh numbers, the calculated isotherms are seen
to compare very well with the experimental results. In these experiments, the
investigated flow was found to be steady with no oscillations being observed until Ra
� 6.6�10�, which is in good agreement with Kuehn & Goldstein (1976) and Powe et
al. (1969).

In the third set of experiments, silicone fluid with a Prandtl number of 100 was
employed. Flow visualization of the annular space was accomplished by transverse
illumination of a single 5 mm wide cross-sectional plane, which was viewed from a
longitudinal position through a glass end plate. The length of the cell was 340 mm and
the inner and outer radii were 38 mm and 80 mm, respectively, for R� 2.1 and L�
8.95. The streamlines, made visible by seeding the fluid with alumine powder, are



Numerical Experimental

Figure 19. Comparison of isotherms at the mid-axial plane for Ra� 1.1�10�, R� 2.18,
Pr� 0.7.

NumericalExperimental

Figure 20. Comparison of flow patterns at the mid-axial plane for Ra� 8.725�10�, R� 2.1,
Pr� 100.

shown on the left-halves of figures 20 and 21 for Ra� 8.725�10� and Ra� 2.52�10�,
respectively. In the right-halves of these figures, steady-state streamlines at the mid-
axial plane computed by the three-dimensional transient simulation are plotted. The
agreement between experimental and numerical results is seen to be excellent. The



NumericalExperimental

Figure 21. Comparison of flow patterns at the mid-axial plane for Ra� 2.52�10�, R� 2.1,
Pr� 100.

movement of the rotational centre of the flow into the upper part of the annulus, the
recirculating cell located at the centre of rotation, and the boundary between upward
and downward fluid movement extending below this cell in the angular direction are
captured by the numerical model. The calculated angular positions of the centre of flow
rotation for Ra� 8.725�10� and Ra� 2.52�10� are within 2� and 4�, respectively, of
the experimentally observed positions. The flow remained steady as the Rayleigh
number was increased up to approximately 1�10
, at which point the onset of
turbulence was observed near the inner cylinder surface.

7. Conclusions

A numerical investigation of the development of three-dimensional buoyancy-
induced fluid flow and temperature fields with increasing Rayleigh number in
moderate- and large-gap closed horizontal annuli has been conducted. The numerical
results were shown to be in excellent agreement with results of the present experimental
study. It has been shown for the first time that in a sufficiently long large-gap annulus
containing air, three stable flow regions coexist at high Rayleigh numbers preceding
transition to oscillatory flow. A three-dimensional recirculating flow consisting of a
transverse vortex in the upper portion of the annulus and a double helical flow
structure below this sets up next to each endwall. These end vortices, which were
observed in the present numerical and experimental investigation, have not been
identified in previous numerical or experimental studies. In the core region of the large-
gap annulus centred on the mid-axial plane, the z-component of velocity is small and
the thermal field retains the characteristics of that associated with two-dimensional
flow. Between the endwall and core zones, a third region is distinguishable in which the
primary flow circulation takes place in the (r,φ)-plane in conjunction with much lower



speed axial movement of fluid. These results confirm that in a large-gap annulus
containing air, secondary flows do not arise in the core region of the annulus at
Rayleigh numbers below that at which transition to oscillatory flow occurs.

A thorough three-dimensional study of buoyancy-driven flow in an air filled
moderate-gap annulus has also been performed for the first time. It was shown that at
low Rayleigh numbers the flow is very similar to that in a large-gap annulus, with two-
dimensional crescent-type patterns present in the core region and a rotating end cell
located in the upper portion of the annulus at each endwall. As the Rayleigh number
is increased above Ra

L
, however, an integral number of transverse spiral vortex pairs

forms between the end vortices owing to thermal instability. The basic structure of the
spiral flow and the Rayleigh number at which the full transition to spiral flow was
calculated to occur agree very well with previous experimental results. The axial
boundaries of the vortex structures define individual recirculating zones in which
complex interactions between the primary and secondary flows take place. Fluid
movement in the end vortex and inner vortex zones, which are distinctly different from
each other in some respects, was described. The size of the inner vortical cells was
shown to depend on the natural size predicted by the stability theory for an infinitely
long annulus, the increase in Rayleigh number above the critical value, and the length
of the annulus with solid endwalls into which an integral number of vortex pairs must
fit in the space between end vortices. The temperature field and Nusselt number
distribution in the upper portion of the annulus were shown to be significantly
influenced by the presence of the vortex structures.

Results of a combined numerical and experimental investigation of natural
convection within a large-gap annulus filled with a large Prandtl number fluid have
been presented. It was shown that the crescent-shaped flow patterns present at low
Rayleigh numbers progress to symmetric unicellular structures with centres of rotation
near the top of the annulus as the Rayleigh number is increased. Longitudinal roll cells
are positioned at the top of the annulus along the axial direction for higher Rayleigh
number flows. As the Rayleigh number is increased further, a separation of streamlines
appears below the cells. This result is presented for the first time. At an even higher
Rayleigh number, transition to turbulence was observed to occur. Excellent agreement
between the numerical results and those from the present experimental studies was
shown, thereby verifying the accuracy of the numerical scheme.

The stability of two-dimensional buoyancy-induced flow between concentric
horizontal cylinders was investigated using both linear theory and the energy method.
A critical Rayleigh number Ra

L
(R) above which the flow is unstable was determined

from the linear stability analysis. A subcritical Rayleigh number Ra
E
(R) which defines

a necessary condition for global flow stability was obtained using the energy method.
Below Ra

E
, the two-dimensional flow is stable regardless of the perturbation amplitude.

In the range Ra
E

�Ra�Ra
L
, the flow is stable for infinitely small perturbations and

may be unstable for perturbations of a given amplitude. It was shown that both Ra
L
(R)

and Ra
E
(R) tend to the value of 1708 as R approaches unity, which corresponds to the

onset of natural convection in a horizontal layer, and that the Ra
L
(R) curve always lies

above the Ra
E
(R) curve. The values of Ra

L
obtained from the present study were

shown to agree well with previously published results that are based on experimental
observation.
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