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Abstract We propose a method called Polynomial Quadratic Convex Reformulation
(PQCR) to solve exactly unconstrained binary polynomial problems (UBP) through
quadratic convex reformulation. First, we quadratize the problem by adding new bi-
nary variables and reformulating (UBP) into a non-convex quadratic program with
linear constraints (MIQP). We then consider the solution of (MIQP) with a specially-
tailored quadratic convex reformulation method. In particular, this method relies,
in a pre-processing step, on the resolution of a semi-definite programming problem
where the link between initial and additional variables is used. We present computa-
tional results where we compare PQCR with the solvers Baron and Scip. We evaluate
PQCR on instances of the image restoration problem and the low auto-correlation
binary sequence problem from MINLPLib. For this last problem, 33 instances were
unsolved in MINLPLib. We solve to optimality 10 of them, and for the 23 others we
significantly improve the dual bounds. We also improve the best known solutions of
many instances.

Keywords Unconstrained binary polynomial programming, Global optimization,
Semi-definite programming, Quadratic convex reformulation

1 Introduction

In this paper, we are interested in solving the unconstrained binary polynomial
optimization problem that can be stated as follows:
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(UBP) p=1 €M,

2 €{0,1}, iel

where I = {1,..,n}, F(z) is an n—variable multi-linear function of degree d and m
is the number of monomials. For a monomial p, M,, is the subset of I containing the
indexes of the variables involved in p. It follows that d = max, |M,|.

Unconstrained binary polynomial optimization is a general model that allows
to formulate many important problems in optimization. The special case where the
polynomial objective function of (UBP) is a quadratic function (i.e. d = 2) has been
widely studied. In this case, (UBP) has many applications, including those from
financial analysis [28], cluster analysis [35], computer aided design [24] or machine
scheduling [36]. Moreover, many graph combinatorial optimization problems such as
determining maximum cliques, maximum cuts, maximum vertex packing or maxi-
mum independent sets can be formulated as quadratic optimization problems [5[T3]
34]. In the cubic case (i.e. d = 3), the important class of satisfiability problems known
as 3-SAT, can be formulated as (UBP) [23]. In the case where d > 3, there also exists
many applications including, for example: the construction of binary sequences with
low aperiodic correlation [7] that is one of the most challenging problems in signal
design theory, or the image restoration problem in computer vision [I6].

Problem (UBP) is NP-hard in general [18]. Practical difficulties come from the
non-convexity of F' and the integrality of its variables. Several algorithms can handle
(UBP). In particular, methods were designed to solve the more general class of
mixed-integer nonlinear programs. These methods are branch-and-bound algorithms
based on a convex relaxation of (UBP). The most classical relaxation consists in the
complete linearization of (UBP), but quadratic convex relaxations can also be used.
For instance, the well known a—branch-and-bound algorithm [2] computes, at each
node, convex under-estimators of nonlinear functions by perturbing the diagonal
of the Hessian matrix of the objective function. Several implementations of these
algorithms are available, see for instance Baron [37], Antigone [32], SCIP [I] or
Couenne [6].

In the case where the objective function is a polynomial, but the variables are con-
tinuous, Lasserre proposes in [26] an algorithm based on a hierarchy of semi-definite
relaxations. The idea is, at each rank of the hierarchy, to successively tighten semi-
definite relaxations in order to reach its optimal solution value. It is also proven
in [26] that this hierarchy converges in a finite number of iterations. Further, this
work has been extended to hierarchies of second order conic programs [3,[19,25], and
of sparse doubly non-negative relaxation [22]. Although these algorithms were not
originally tailored for binary programming, they can handle (UBP) by considering
the quadratic constraint z? = z;. Methods devoted to the binary polynomial case
were also proposed. In [I4127], the authors use separable or convex under-estimators
to approximate a given polynomial. Other methods based on linear reformulations
can be found in [I6l[38], in which linear equivalent formulations to (UBP) are pro-
posed and then improved. In [I5], the authors focus on a polyhedral description of
the linearization of a binary polynomial program. Finally, the work in [4] considers
quadratizations with a minimal number of additional variables.
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In the quadratic case (d = 2), (UBP) can be exactly solved by quadratic convex
reformulation. This general approach allows to reformulate any non-convex mixed
integer quadratic problem into a convex mixed-integer quadratic problem. An equiva-
lent convex formulation, with the sharpest continuous relaxation bound, is obtained
from the solution of a semi-definite programming relaxation, in a pre-processing
phase of the whole method. An initial version, named QCR, was introduced in [8|
12]. An improved version, named MIQCR, was further proposed in [9I0,I7]. MIQCR
relies on the solution of a heavier SDP program than QCR in order to reach sharper
reformulated problems.

Our contribution in this paper:

We extend quadratic convex reformulation to polynomial problems like (UBP). We
start by adding some auxiliary variables in order to reformulate (UBP) into an equiv-
alent mixed integer quadratic problem having a quadratic objective function, linear
constraints, and binary variables. To the best of our knowledge, this quadratiza-
tion is original. Then, we experimentally observe that QCR and MIQCR methods are
not able to solve our equivalent quadratic formulation. We hence devise a specific
quadratic convex reformulation that uses the links between the original and auxiliary
variables. This new quadratic convex reformulation, that we call PQCR (Polynomial
Quadratic Convex Reformulation), relies on an SDP relaxation which is stronger
than QCR, but weaker than MIQCR. We show that PQCR computationally outperforms
both, and is moreover competitive with state-of-the-art exact methods for (UBP).

The outline of the paper is the following. In Section 2, we define and present our
quadratizations of (UBP). In Section 3, we introduce our family of convex reformu-
lations and we prove how we compute the best parameters. Then, in Section 4, we
present our computational results on polynomial instances of degree 4 coming from
the literature. Section 5 draws a conclusion.

2 Phase 1: Quadratization of (UBP)

In this section, we present how we build equivalent quadratic formulations to (UBP).
For this, in each monomial of degree 3 or greater, we iteratively replace each product
of two variables by an additional variable. Hence, any additional variable is the
product of two other initial or additional variables.

More formally, we define the set of indexes of the additional variables A = {n +
1,..,N}, where N is the total number of initial and additional variables. We also
define the subsets &; for both initial and additional variables, and the mapping f
and s defining any additional variable as the product of two other variables as follows:

Definition 1 Quadratization Z = (A, &, f,s)
We define &; Vi € I U A and mappings f: A — TUAand s: A— IU.A as follows:

— If i € I, i.e. x; is an initial variable, then we set & = {i}
— Ifi € A, ie. x; is an additional variable, then there exist two indexes (f (i), s(i)) €
(I'U.A)? such that

Ti = Tp(i)Ts(s) (1)
and we set & = ;) U Ey(s)
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O

It follows from Definition 1 that, Vi € U A, &; is the subset of indexes from I whose
product is equal to x;, precisely:

vi= T )

i €E;

We now define a valid quadratization as a reformulation with N variables where
any monomial of degree at least three is replaced by the product of two variables.

Definition 2 Valid quadratization

A quadratization Z = (A, &, f, s) is a valid quadratization with N = |TU.A| variables

if, for any monomial p of degree greater than or equal to 3 (i.e. |M,,| > 3), there exist

(j,k) € (I UA)? such that M, = & U&; and [] x; = zjzy. Then the monomial
iEM,

p is replaced by a quadratic term. 0O

In Section 3 (see Algorithm 2), we present an algorithm that allows to build
a valid quadratization, and that we use in our experiments. Now, we are rather
interested in the reformulation that one can deduce from a given quadratization.

Given a valid quadratization Z = (A, &, f, s) and with a slight misuse of notation,
we will consider that x is a vector of NV variables and that the objective function F
of (UBP) can be applied to this N-dimensional vector. We derive from Definition 2
the following reformulation of F(z) into a quadratic form g% (x):

gz(m): Z apT;T) + Z ap H T;

p:[Mp|>3 p:Mp|<2 ieM,

M,p=E;UE,
and by splitting ¢Z into its quadratic and linear parts and introducing the symmetric
N x N matrix @ and the N-vector ¢ with the right entries deduced from coefficients
ap, we will below adopt the following notation for function gZ:

dZ (@) =2TQx+ Tz

From Definitions 1 and 2, it holds that ¢ (z) = F(x) for any z satisfying ().
Our reformulation of (UBP) into a non-convex mixed-integer quadratic program
(MIQP?) follows from all this.

min g% () = 27 Qx + 'z
s.t.
z; < T (i) ieA (3)
(MIQP?) S  z; < zy ieA (4)
i 2 Ty + sy — 1 i1eA (5)
2 >0 ieA (6)
z; € {0,1} ielUA (7)
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Where Constraints —@ are the standard linearization inequalities that, to-
gether with , enforce the identity . In the following we denote by FZ the set
of solutions defined by Constraints —@.

We now focus on the solution of problem (MTQP#) in order to solve our original
problem (UBP). The quadratic reformulation (MIQPZ) still has two difficulties: the
non-convexity of its objective function gZ and the integrality of its variables. Some
state-of-the-art solvers can solve (MIQP?) to global optimality. These solvers may
not be enough efficient for solving dense instances. In the next section, we present
method PQCR, a new algorithm tailored for binary polynomial optimisation. The key
idea is that the convexification phase can take advantage of the quadratization Z to
compute an equivalent convex formulation to (MIQPZ?).

3 Phase 2: A quadratic convex reformulation of (MIQPZ%)

In this section, we consider the problem of reformulating (M IQP?) by an equivalent
quadratic 0-1 program with a convex objective function. To do this, we define a new
convex function whose value is equal to the value of g2 (z), but whose Hessian matrix
is positive semi-definite. More precisely, we first add to gZ(x) a combination of four
sets of functions that vanish on the feasible set FZ. Then we focus on computing
the best combination that leads to a convex function and that maximize the optimal
value of the continuous relaxation of the reformulated problem.

3.1 Valid quadratic equalities on the set FZ

Given a quadratization Z = (A, €&, f,s), we introduce null quadratic functions over
the set FZ.
Lemma 1 The following quadratic forms vanish over the set FZ:

B icTUA (®)
(52)0 T =0 1E€A ©)
@ — wm; =0 (,j) EAX (TUA): & C& (10)
wiw; — wpr; =0 (g k) € TUA: EUE =EUE (11)

Proof.  Constraints trivially hold since z € {0,1}"V. Constraints @ come from
Equality . For proving the validity of Constraints and , we start by
observing that by definition and since z € {0,1}, we have:

i'eE  jIEE, i E€E;UE;
— Constraints @) since z € {0,1}", and &; C &;, we have:
ZZ,’Z'CL’J' = H Ty — T4
i'eE;
— Constraints : since € {0,1}, and & U &; = & U &, we have:

Tilj = I | Xy = H T = Ty

i’ €E;UE; k'e&ERLUE,
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3.2 An equivalent quadratic convex formulation to (MIQP?#)

We now compute a quadratic convex reformulation of (MIQP#) and thus of (UBP).
For this, we add to the objective function g% the null quadratic forms in @
For each of them, we associate a real scalar parameter: «; for Constraints (8)), 5;;
for Constraints 7 i1 for Constraints @[), and A;jx; for Constraints . We get
the following parameterized function:

92 poa@) = g7 @) + D i@ — @) + Y Silwi — wpiTae)

i€TUA i€ A
+ Z Bq;j(xi - .Til‘j) + Z Aijkl (CLHIJ — Tk71)
(3,§)EAx (TUA) (4,4,k,1) €(TUA)*
i CE Siué‘j:é‘kué‘l

It follows from Lemma 1 that gZ 5 5 () has the same value as g% () for any = € FZ.
Moreover, there exist vector parameters «, 8, 6 and A such that gazy 5.6, 1S a convex
function. Take for instance, a equals to the opposite of the smallest eigenvalue of )
(the Hessian matrix of g%), and 3 =0 = A = 0.

By replacing g% by the new function, we obtain the following family of convex
mixed-integer quadratic equivalent formulations to (MIQP?):

min ga,5,5 () = 27 Qa,p,5AT + 4 g 52T
(MIQPaZ,ﬁ,a,A) s.t.
reF?
where Qq 551 € Sy is the Hessian matrix of g2 55, (2), and capsx € RY is the

vector of linear coefficients of g2 g ().

We are interested in parameters («, 8, §, A) such that:

i) 95575)\ is a convex function,
ii) the continuous relaxation of (M1 QPO% 5.5.1) gives the the tightest bound.

More formally, we want to solve the following optimization problem:

. z
(CP): arrgag(/\ { min 9o 8.5 () }
Qa0 "€

—=Z
where F is the set 72 where Constraints are relaxed, i.e. z € [0, 1]V.

In the rest of this section, we will focus on solving (C'P).

3.3 Computing an optimal solution to (CP)

The following theorem shows that problem (CP) is equivalent to the dual of a semi-
definite relaxation of (MIQP?#).
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Theorem 1 The optimal value of (CP) is equal to the optimal value of the following
semi-definite program (SDPZ):

min < Q, X > +c’x
s.t.
Xy —x; =0 ielTUA (12)
wi — Xfysn =0 i€A (13)
(SDP*) z;— Xi; =0 (b)) EAXTUA): & C& (14)
Xij— X =0 (4,5, k) € JUA)Y: &UE =EUE (15)
(; ’f;) =0 (16)
zeRY, X eSy (17)

Proof.  For simplicity, we rewrite FZ as follows: 72 = {x € {0,1} : Az < b}
where A is a M x N-matrix, b € R™, and we introduce T = N + Ty + T + T3 the
number of Constraints 7 respectively. We also introduce (o, 3,0, A) the dual
variables associated with constraints f respectively.

We start by observing that = € [0,1]V is equivalent to z? < =, thus, (CP) is
equivalent to:

max { min 9o 8,01 (2) } (18)
aeRN BeRT1§cRT2 \eRT3 zeRY, z2<z, Az<b
Qa,p,6,270

is a convex optimization problem over a convex set. If we consider the solution
Z; = 0.5 Vi € I and &; = T5(;)Ts(s), Vi € A, the obtained & is an interior point
and the Slater’s conditions are satisfied for the minimization sub-problem. Then, by
Lagrangian duality, is equivalent to :

max { min  ga g6 () + wl'(z? — x) + 77 (Az — b) } (19)
acR BeRT1 5cRT2 zeRY
AeRTBweRY yeRY
Qa,p,56,220

where 7 are the dual variables associated to Constraints Az < b. It holds that
is equivalent to:

max { min ga g5 (z) +v7 (Az — b) } (20)
aerRN gerT1 5erT2 RT3 ,wemf zerN
Qa,,8,220

Indeed, if (a*, B*, 0%, A\*,w*,v*) is an optimal solution of , the solution (o =
a* + w*, 5%, 8%, A\*,v*) is also feasible to with the same value. Moreover, a
necessary condition for the quadratic function g7 5 ;5 \ () + 7" (Az — b) to have a
finite minimum is that matrix Qa g, is positive semi-definite. Therefore is
equivalent to:

: T
max min salx) + Az —b } 21
s B e 0 g2 (0) 97 (A2 1) (21)

We know from [29] that is equivalent to problem (D):
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max —y7b—t
s.t.
(D) t 5l gsa+7TA) -0
1 T =
3(Capar+ A7) Qa5
teR, a €RY, peR™, §c R, AR y e RY
By semi-definite duality of program (D), and with «, 8, d, A being the dual variables

associated with Constraints 7 respectively, we get the following program
(SDPZ):

min < Q, X > +c’'x

(SDPZ,) s.t.
@ - @
Ax <b

We check that there is no duality gap between (SDPZ') and (D). For this,
following [33], we verify that the two following conditions hold.

(i) The primal (SDPZ") has a non empty feasible region since the solution z = 0,
X = 0 is feasible, and then (D) is bounded.

(ii) (D) has a non empty-interior, take 3, d, A, and ¥ equal to 0, we get Q 555 =
Q + diag(a), and c; 5 5 5 = ¢ — @. By Schur complement, we have:

t Le—a)T o _
2 - 0= Q+d = 0andt — (c —a)T

(;(ca) Q + diag() Q + diag(a) an (c—a)'(Q +

diag(@))(c — @) > 0. Take for all i a positive a; > Z|qij\ — ¢i; so that the

J#i
diagonal dominance holds for matrix @ + diag(a) and t large enough.

From these equivalences, we know that we can build an optimal solution of (CP)
from the optimal dual variables of (SDPZ"). However, we show that constraints
Az < b are redundant in (SDPZ") and we thus prove that (SDPZ") and (SDP?Z)
are equivalent.

Claim Due to Constraints f and 1' Az < b are redundant in (SDPZ').

Proof.

Recall that Az < b correspond to Constraints f@. The basic idea used here
T

is that, since matrix (m b

) is positive semi-definite, all its symmetric minors are
non-negative.

z;
Xii — wf > 0. By (12) we obtain z; — :1:12 > 0 and thus z; > 0.

— Constraint :x; > 0. We consider the determinant , which implies
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— Constraint : x; < x4(;)- Considering the determinant of the symmetric minor

K@i Xy and Y10 T = (20 — 2:) > 0, and since 2; > 0, we
Xiray X z | = TiEre @) 20, . >0,
get x; < Ty(i)-

— Constraint 1' x; < T(;)- By symmetry, i.e. considering the determinant
‘Xs(i)s(i) Xs(liv)i , the inequality holds.

is(1) il

T
— Constraint : X; > T f(3)+Ts(;)—1. By definition implies 27 (; S;( ) z> 0,

Vz € RN+ By taking z = (1,0,..,0, —=1,0,..,0, —1,0,..,0, 1 ,0,..,0), we
~—~ ~— ~—~

f@@) s(1) L
have:

_T 1 ‘TT _
z (m v )7 =@l —re) —zn) = (@ — Xraro — Xsaro + Xige)

—(@s(i) = Xsiysti) — Xfeysti) + Xisti)) + (21 — Xpiyi — Xs(ayi + Xis)
= (@i +1 = @) = 2p) = 0 by ([12), ([4) and (13).

o
We now conclude the proof of Theorem 1 since:
(i) v(CP) =v(D),
(i) there is no duality gap between (D) and (SDPZ'), then we have v(D) =
v(SDPZ"),
(iii) finally, by Claim 1, we get v(CP) = v(D) = v(SDPZ?") = v(SDP?%).
O

From the proof of Theorem 1, we state Corollary 1 that shows that from an
optimal dual solution to (SDP#) we can build an optimal solution to (CP).

Corollary 1 By Theorem 1, we have v(CP) = v(SDP?), where v(.) is the optimal
value of problem (.). Moreover, an optimal solution (a*,*,0%*, \*) of (CP) corre-
sponds to the optimal values of the dual variables associated with constraints (@)7

of (SDPZ) respectively.

To sum up, we obtain (MIQP*), the best equivalent convex formulation to
(MIQP?):

min go- g« 5+ 2= ()
(MIQP*)< s.t.
r € F?
Corollary 1 also says that the continuous relaxation bound of (MIQP*) is equal to

the optimal value of (SDP?), i.e. v(SDP?) = v(MIQP*). From Theorem 1, we
deduce the following Algorithm 1 to solve (UBP).
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Algorithm 1 PQCR an exact solution method for (UBP)

Step 1: Apply a quadratization Z = (A, €&, f,s) to (UBP). In our experiments,
we use the Lex quadratization described in Algorithm 2.

Step 2: Solve (SDPZ?), deduce optimal values o*, 8*, 6*, \*, and build (M IQP*).
Step 3: Solve (MIQP*) by a branch-and-bound based on continuous relaxation.

Algorithm 2 Lex quadratization (F')

Require: A polynomial F' of degree d > 2
Ensure: (A4,€&,f,s), a valid quadratization of F (cf. Definition 2)

Initialization : A =0 and & = {i} Vie I
for each monomial p from 1 to m do
Sort p by lexicographical order
d < deg(p)
while d > 2 do
for ¢ from 1 to | <] do
Consider the 6’% consecutive pair of variables x;xy,
if there is no ¢ € A, with f(i) = j and s(i) = k then
Create an additional variable x; and add it to A
set f(i) =j and s(i) = k
set & gf(i) U 53(1)
end if
Replace zjzy by x;
end for
d 4]
end while
end for

4 Numerical results

In this section, we evaluate PQCR on two applications. The first one is the image
restoration problem [I6], which results are presented in Section 4.1. The instances
of this application are quite sparse with an average ratio % of about 7. Then, in
Section 4.2, we present the results of the second application, the Low Auto-correlation
Binary Sequence (LABS) problem [7] which instances are much denser (average ratio
m

™ of about 212). These instances are available on the MINLPLib website [31], and
are very hard to solve. For most of them, the optimal solution value is not known.

In our experiments, we compare several algorithms/solvers:

i) PQCR: the Lex quadratization is implemented in C. For solving (SDPZ), we
used a tailored semi-definite solver that combines csdp together with the Conic
Bundle library [20], see [LI] for more details. Then, we used the C interface of
the solver Cplex 12.9 to solve (MIQP*).

ii) Lex + QCR and Lex + MIQCR: we used the Lex quadratization, followed by the
original QCR [I2] or MIQCR [9[10]
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iii) Baron 17.4.1 [37] and Scip 6.0.2 [I] both with sub-solver Cplex 12.9, and
the gams interface. We also tried to run the instances with Gloptipoly [21I], but
the it fails even for the smaller /sparser considered instances.

Our experiments were carried out on a server with 2 CPU Intel Xeon each of
them having 12 cores and 2 threads of 2.5 GHz and 4% 16 GB of RAM using a Linux
operating system.

4.1 The image restoration problem

The goal of the image restoration problem is to reconstruct an original sharp base
image from a blurred image. An image is a rectangle containing n = [ x h pixels. This
rectangle is modeled as a binary matrix of the same dimension. The problem can be
written as the minimization of a degree 4 polynomial of binary variables where each
variable represents a pixel. The coefficients of the monomials are indicative of how
likely a configuration is to appear on the sharp base image. The size of the considered
instances are [ x h = 10 x 10, 10 x 15, and 15 x 15, or in the polynomial formulation
n = 100,150 and 225, with a number of monomials of m = 668, 1033, and 1598
respectively. In our experiments, 15 instances of each size are considered obtaining
a total of 45 instances. Observe that the 15 instances of the same size have identical
monomials with different coefficients. The name of each image restoration instance
describes its characteristics im.1.h.r: 1 is the number of lines, h is the number of
columns and r is the index of the instance with the same characteristics.

We run these instances with the solvers Baron 17.4.1 and Scip 6.0.2 and show
that, only PQCR is able to solve the whole set of 45 instances within the time limit of
one hour. We report the results in Table[I] Column Gap; is the initial gap of method

PQCR, i.e. Gap; = |ZEY —LPi| 4100, where BK N is the optimal solution value, and

LB; is the root bound value (from Theorem 1 it is also v(SDP?)). Column Time
reports the CPU time in seconds or the final gap (Gapy) if the time limit of one

BKN — LB

hour is reached, where Gapy :‘W %100, with LB the final lower bound.

Column Nodes is the number of nodes visited by the branch-and-bound algorithm.
We observe that the solvers Baron and Scip are significantly faster than PQCR on
the medium size instances (n = 100 or 150), but fail in solving most of the larger
instances within the time limit. Indeed, for n = 225, Baron solves 7 instances, and
Scip 9 instances out of 15. The final gaps (after one hour of computation) of Baron
and Scip are about 193 and 1631, respectively, times larger than the initial gap
of PQCR equals to 0.27% on average. We mention that the reformulation time that
corresponds to the solution of (SDP?#) represents most of the CPU time, since the
CPU time for solving (MIQP*) is always smaller than 600 seconds.

We now focus on the comparison with convexifications QCR or MIQCR applied
to (MIQP*). Our observations are summed up in Tables [2| and [3] where each line
corresponds to the average of the instances with the same sizes. In Column #var
QP we report the number of variables of the equivalent convex reformulations of
each method, and Column #cont SDP the number of constraints considered in the
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Instance PQCR Baron 17.4.1 Scip 6.0.2
Name n Gap; Time Nodes Time Nodes Time Nodes
im.10.10.1 100 0.84 122 272 1 1 98 2800
im.10.10.2 100 0.47 125 65 1 1 73 2825

im.10.10.3 100 0.13 84 0 1 1 35 961
im.10.10.4 100 0.33 89 6 1 1 28 759
im.10.10.5 100 0.40 91 8 1 1 38 1046
im.10.10.6 100 0.12 120 57 1 1 72 2007
im.10.10.7 100 0.05 115 32 1 1 76 1580
im.10.10.8 100 1.69 103 45 1 1 37 1067
im.10.10.9 100 3.34 111 108 1 1 35 1084
im.10.10.10 100 4.04 134 151 1 1 36 1074
im.10.10.11 100 0.79 127 106 3 1 83 3548
im.10.10.12 100 0.21 131 76 2 1 135 6325
im.10.10.13 | 100 0.00 79 0 1 1 28 954
im.10.10.14 | 100 0.04 79 0 1 1 25 722
im.10.10.15 | 100 0.06 83 0 1 1 28 807
Average 0.83 106.2 62 1.0 1 55.2 1837
im.10.15.1 150 0.55 536 492 3 1 318 6349
im.10.15.2 150 0.13 502 8 4 1 311 4565
im.10.15.3 150 0.02 406 0 1 1 226 5538
im.10.15.4 150 0.71 439 53 2 1 135 2566
im.10.15.5 150 0.06 408 10 1 1 163 3291
im.10.15.6 150 0.83 567 649 5 1 665 13927
im.10.15.7 150 0.07 511 33 4 1 396 5884
im.10.15.8 150 1.85 458 70 1 1 197 3894
im.10.15.9 150 2.24 421 50 2 1 167 4835
im.10.15.10 150 2.09 432 53 2 1 155 2643
im.10.15.11 150 0.12 552 73 5 1 357 8045
im.10.15.12 150 0.62 520 111 21 1 388 9784
im.10.15.13 150 0.06 367 0 1 1 103 1924
im.10.15.14 150 0.13 392 0 1 1 118 2397
im.10.15.15 | 150 0.01 370 0 1 1 91 1757
Average 0.63 458.7 107 3.6 1 252.6 5160
im.15.15.1 225 0.32 2622 1046 (42.50%) 39 (149.03%) 75251
im.15.15.2 225 0.61 2661 2586 (70.75%) 42 (235.98%) 107023
im.15.15.3 225 0.09 1928 16 (6.68%) 45 404 5001
im.15.15.4 225 0.01 1886 13 (34.08%) 39 738 6688
im.15.15.5 225 0.04 1874 13 736 7 294 2915
im.15.15.6 225 0.30 2263 597 (51.78%) 44 131.61%) 76508
im.15.15.7 225 0.46 2235 1458 (73.19%) 49 (825.55%) 339448
im.15.15.8 225 0.52 2017 38 2437 35 566 5357
im.15.15.9 225 0.44 2008 33 1868 27 575 7444
im.15.15.10 | 225 0.48 1972 33 909 13 393 4159
im.15.15.11 | 225 0.36 2180 150 (64.96%) 49 (1133.55%) 522819
im.15.15.12 | 225 0.34 2256 560 (74.77%) 53 (162.00%) 131142
im.15.15.13 | 225 0.05 1700 0 213 3 364 4136
im.15.15.14 | 225 0.08 1834 0 750 11 505 5113
im.15.15.15 225 0.02 1750 0 16 1 249 3117
Average 0.27 | 2079.1 | 436 989.8 (7) | 14 (7) || 454.2 (9) | 4881 (9)

Table 1: Comparison of PCR, Scip 6.0.2 and Baron 17.4.1 for the image restora-

tion instances. Time limit 1 hour.

semi-definite program solved to compute the best reformulation. Column Gap; is the
initial gap, and Column Time is the total CPU times in seconds necessary to solve
the instances. If the time limit of one hour is reached, we report the final gap (Gapy).
The most striking observation is that MIQCR is unable to handle these instances. We
also remark that QCR has a very poor bound at the root node of the branch-and-
bound. The weakness of this bound leads to combinatorial explosion and makes it
impracticable to resolve these instances with QCR.
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Instance PQCR Lex+QCR Lex+ MIQCR
Name n N #var QP #cont SDP #var QP #cont SDP #var QP #cont SDP
im.10.10 | 100 | 352 352 3550 352 352 62128 496672
im.10.15 150 542 542 5610 542 542 147153 1176682
im.15.15 | 225 | 827 827 8740 827 827 342378 2738197

Table 2: Comparison of the number of variables of the equivalent formulation, and
of the number of constraints of the associated semi-definite relaxation for 3 methods
PQCR, Lez+{CR, and Lez+MIQCR on the image restoration instances.

Instance PQCR Lex+QCR
Name n N Gap; Time Gap; Time
im.10.10 100 | 352 0.83 106 812.13 | (477%)
im.10.15 150 | 542 0.63 459 794.6 (602%)
im.15.15 | 225 | 827 0.27 2079 717.07 | (616%)

Table 3: Comparison of the 2 methods PGQCR and Lez+{CR for the image restoration
instances: initial gaps and time criterion - time limit 1 hour. Lex+MIQCR cannot
handle these instances.

4.2 The Low Auto-correlation Binary Sequence problem

The problem is to find binary sequences with low off-peak auto-correlations. More
formally, let S be a sequence S = (s1,...,8,) with s; € {—1,1}, and for a given
k=1,...,n—1, we define the auto-correlation C(S) of S:

n—k

Ck(S) = Z S$iSi+k

i=1

The problem is to find a sequence S of length n that minimizes E(S), a degree 4
polynomial:

This problem has numerous practical applications in communication engineering,
or theoretical physics [7]. For our experiments, we consider truncated instances, i.e.
sequences of length n where we compute low off-peak auto-correlation up to a certain
distance ng < n, i.e. we consider the following function to minimize:

no—1

Eny(S) =Y C(S)
k=1

In order to apply PQCR, we convert the variables from {—1,1} to {0,1} using the
standard transformation x = # This problem admits a lot of symmetries. In
particular the correlations Cy are identical for a sequence S and its complement.
We exploited this symmetry by fixing to 0 the variable that appears the most. Each
instance is labeled b.n.ng. These instances were introduced by [30] and can be found
on the MINLPLib [31] website.



14 S. Elloumi et al.

Performance Pofile for the polip instances: Total time
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Fig. 1: Performance profile of the CPU times between PYCR, Baron 17.4.1 and Scip
6.0.2 for the LABS instances - Time limit 3 hours

We do not report the results for methods Lex+QCR and Lex+MIQCR since they
have failed to solve all the considered instances.

In Figure[l} we present the performance profile of the CPU times for PQCR, Baron
17.4.1 and Scip 6.0.2 over the 19 LABS instances solved within the time limit
of 3 hours by at least one method. The detailed results are reported in Table
(Appendix). In this profile we can see that PQCR outperforms the two solvers both in
terms of the total CPU time and of the number of instances solved. We observe that
Baron solves 10 instances, Scip solves 6 instances, while PQCR solves 19 instances out
of 45 within the time limit of 3 hours. We mention that the number of valid equalities
generated by PQCR in (SDP?) can be more than one million for the largest/densest
instances (1484800 for b.60.60). Moreover, the average final gaps of Baron and Scip
have the same order of magnitude (842% and 881%, respectively), while the one of
PQCR is much smaller (3.62% on average).

Last, we increase the time limit for PQCR and compare our results to the best
lower bounds and the best known solution values reported in MINLPLib. We present
in Table [4| the values of the best solutions (BKN) and of the final lower bounds
(BestLB) obtained by PQCR, and those available on the MINLPLib website. Each
line corresponds to one instance stated as unsolved on MINLPLib. For MINLPLib,
Columns BKN and BestLB are the best upper and lower bounds, respectively, among
the results of the solvers Antigone, Baron, Couenne, Lindo, and Scip. We also report

the final gaps in Column Gapy = ‘M‘*IOO. In the MINLPLib website,

BKN

the time limit is not reported. For method PQCR, we limit the time for steps 2 and 3
of Algorithm 1 to 5 hours each. We mention that the time for the generation of the
valid equalities of (SDPZ) can be significant for the larger/denser instances. We
observe that PQCR solves to optimality 10 unsolved instances (labeled as **). It also
improves the best known solution values of 13 instances (labeled as #), and improves
the final dual bounds of all the unsolved instances (labeled as *). Column Imp is the
improvement factor of PQCR.
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Instance MINLPLib[31] PQCR
Name BKN BestLB | Gapy BKN BestLB Gapy || Imp.
b.25.19%* -14644 -16108 10.00 -14644 | -14644.00
b.25.25%* -10664 -12494 17.16 -10664 | -10664.00
b.30.15** -15744 -19780 25.64 || -15744 | -15744.00
b.30.23** -30420 -72030 136.79 || -30460 | -30460.00
b.30.30** -22888 -54014 | 135.99 || -22888 | -22888.00
b.35.09** -5108 -6312 23.57 -5108 | -5108.00
b.35.18** -31160 -74586 139.36 || -31168 | -31168.00
b.35.267* || -55184 | -191466 | 246.96 || -55288 | -55484.64 | 0.36 694
b.35.357* || -41068 | -290424 | 607.18 || -41068 | -41730.96 1.61 376
b.40.10** -8240 -14618 77.40 -8248 | -8248.00
b.40.207* || -50516 | -162365 | 221.41 || -50576 | -51248.66 1.33 166
b.40.307* || -94768 | -398617 | 320.62 || -94952 | -102375.97 | 7.82 41
b.40.40* -67964 | -302028 | 344.39 || -67928 | -78364.82 | 15.36 22
b.45.11** -12740 -30771 141.53 || -12748 | -12748.00
b.45.237* || -85248 | -320397 | 275.84 || -85424 | -88547.05 | 3.66 75
b.45.34* -152368 | -752427 | 393.82 || -152248 | -164316.84 | 7.93 50
b.45.45* -112764 | -685911 | 508.27 || -112568 | -142414.81 | 26.51 19
b.50.067* -2160 -2921 35.23 -2160 -2199.87 1.85 19
b.50.13** -23772 -74768 | 214.52 || -23792 | -23792.00
b.50.25%* || -124748 | -562446 | 350.87 || -124948 | -138994.51 | 11.24 31
b.50.38%* || -232496 | -1318325 | 467.03 || -232664 | -270363.98 | 16.20 29
b.50.50* -168216 | -1173058 | 597.35 || -167824 | -246094.07 | 46.64 13
b.55.067* -2400 -3439 43.29 -2400 -2460.02 2.50 17
b.55.147* || -33168 | -116748 | 251.99 || -33272 | -33717.52 1.34 188
b.55.287* |[ -190472 | -989145 | 419.31 || -190696 | -214840.20 | 12.66 33
b.55.41* -337388 | -2494477 | 639.35 || -335840 | -474910.72 | 41.41 15
b.55.55% -241912 | -1947633 | 705.10 || -241780 | -302301.26 | 25.03 28
b.60.08%* -6792 -13915 | 104.87 -6792 -7008.60 3.19 33
b.60.157* || -44896 | -169767 | 278.13 || -45232 | -46160.31 2.05 136
b.60.30* -261048 | -1491016 | 471.17 || -260304 | -324244.90 | 24.56 19
b.60.45% -478528 | -3687344 | 670.56 || -476664 | -951320.31 | 99.58 7
b.60.60* -350312 | -3021077 | 762.40 || -349560 | -496399.25 | 42.01 18

Table 4: Comparison of

the best known solution and best lower bound values of

PQCR and of MINLPL<b for the unsolved LABS instances. xx: solved for the first

time, #: best known solution improved, and *: best known lower bound improved

5 Conclusion

We consider the general problem (UBP) of minimizing a multi-linear function where
the variables are binary. In this paper, we present PQCR a solution approach for
(UBP). We start by a quadratization Z, where we rewrite (UBP) as an equivalent
quadratic program (MIQP?). Then, by introducing new valid quadratic equalities,
we build a family of tailored quadratic convex reformulations of (MIQP?Z) that
exploits its specific structure. We further focus on finding, within this family, the
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best equivalent convex formulation (MIQP*) from the continuous relaxation point
of view. We show that it can be computed by solving a semi-definite relaxation of
(MIQP?). Finally, we solve (MIQP*) with a quadratic convex programming solver.
A future research direction would be to characterize which quadratization best fit
with our convexification phase from the continuous relaxation value point of view.
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