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Abstract We propose a solution approach for the problem (P ) of minimiz-
ing an unconstrained binary polynomial optimization problem. We call this
method PQCR (Polynomial Quadratic Convex Reformulation). The resolu-
tion is based on a 3-phase method. The first phase consists in reformulating
(P ) into a quadratic program (QP ). For this, we recursively reduce the degree
of (P ) to two, by use of the standard substitution of the product of two vari-
ables by a new one. We then obtain a linearly constrained binary program. In
the second phase, we rewrite the quadratic objective function into an equivalent
and parametrized quadratic function using the equality x2

i = xi and new valid
quadratic equalities. Then, we focus on finding the best parameters to get a
quadratic convex program which continuous relaxation’s optimal value is max-
imized. For this, we build a semidefinite relaxation (SDP ) of (QP ). Then, we
prove that the standard linearization inequalities, used for the quadratization
step, are redundant in (SDP ) in presence of the new quadratic equalities. Next,
we deduce our optimal parameters from the dual optimal solution of (SDP ).
The third phase consists in solving (QP ∗), the optimal reformulated problem,
with a standard solver. In particular, at each node of the branch-and-bound, the
solver computes the optimal value of a continuous quadratic convex program.
We present computational results on instances of the image restoration problem
and of the low autocorrelation binary sequence problem. We compare PQCR with
other convexification methods, and with the general solver Baron 17.4.1 [39]. We
observe that most of the considered instances can be solved with our approach
combined with the use of Cplex [24].

Key words: Unconstrained binary polynomial programming, Global optimiza-
tion, Semidefinite programming, Quadratic convex reformulation, Experiments

1 Introduction

In this paper, we are interested in solving the unconstrained binary polynomial
optimization problem that can be stated as follows:
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(P )


min f(x) =

M∑
p=1

cp
∏
i∈Mp

xi

s.t.
xi ∈ {0, 1}, i ∈ I

where I = {1, .., n}, f(x) is an n−variable polynomial of degree d and m is
the number of monomials. For a monomial p,Mp is the subset of I containing
the indexes of the variables involved in p. It follows that d = maxp |Mp|.

Unconstrained binary polynomial optimization is a general model that al-
lows to formulate many important problems in optimization. The special case
where the polynomial objective function of (P ) is a quadratic function has been
widely studied. In this case, (P ) has many applications, including those from
financial analysis [31], cluster analysis [37], computer aided design [27] or ma-
chine scheduling [38]. Moreover, many graph combinatorial optimization prob-
lems such as determining maximum cliques, maximum cuts, maximum vertex
packing or maximum independent sets can be formulated as quadratic optimiza-
tion problem [6,14,36]. In the cubic case, the important class of satisfiability
problems known as 3-SAT, can be formulated as (P ) [26]. In the case where
d ≥ 3, there also exists many applications including, for example: the construc-
tion of binary sequences with low aperiodic correlation [8] that is one of the most
challenging problems in signal design theory, or the image restoration problem
in computer vision [17].

Because of the non-convexity of f(x) and of the integrality of its variables (P )
is NP-hard [20]. During the last decade, several algorithms that can handle (P )
were introduced. In particular, the methods that were designed to solve the more
general class of mixed-integer nonlinear programs. These methods are branch-
and-bound algorithms based on a convex relaxation of (P ). More precisely, in
a first step a convex relaxation is designed and then a branch-and-bound is
performed based on this relaxation. The most classical relaxation consists in
the complete linearisation of (P ), but quadratic convex relaxation can also be
used. For instance, the well known α−branch-and-bound [3] computes convex
underestimators of nonlinear functions by perturbing the diagonal of the Hessian
matrix of the objective function. Several implementations of these algorithms are
available, see for instance Baron [39], Antigone [35], SCIP [2] or Couenne [7].

In the case where the objective is a polynomial, but the variables are contin-
uous, Lasserre proposes in [29] an algorithm based on a hierarchy of semidefinite
relaxations of (P ). The idea is, at each rank of the hierarchy, to successively
tighten semidefinite relaxations of (P ) in order to reach its optimal solution
value. It is also proven in [29] that this hierarchy converges in a finite number of
iterations to the optimal solution of the considered problem. Further, this work
has been extended to hierarchies of second order conic programs [4,21,28], and of
sparse doubly nonnegative relaxation [25]. Although these algorithms were not
originally tailored for binary programming, they can handle (P ) by considering



Solving unconstrained 0-1 polynomial programs 3

the quadratic constraint x2
i = xi. Methods devoted to the binary polynomial

case were also proposed. In [15,30], the authors use separable or convex under-
estimators to approximate a given polynomial. Other methods based on linear
reformulations can be found in [17,18,40], in which linear equivalent formula-
tions to (P ) are proposed. Another approach proposed in [5] consists in building
a quadratic equivalent formulation to (P ) where the objective function is still
non-convex. The obtained reformulation is then solve by the solver Cplex [24].

In this paper, we focus on finding equivalent quadratic convex formulations of
(P ). QCR (Quadratic Convex Reformulation) methods [9,10] were introduced
for the specific case where d = 2. The idea of these approaches is to build tight
equivalent reformulations to (P ) that have a convex objective function. This
equivalent problem can be computed using the dual solution of a semidefinite
relaxation of (P ), and further solved by a branch-and-bound algorithm based
on quadratic convex relaxation. Here, we consider the more general case where
d ≥ 3, and we propose to compute an equivalent convex formulation to (P ).
Hence, we present an exact solution method for problem (P ) that can be split
in three phases. The first phase consists in building an equivalent formulation
to (P ) where both objective function and constraints are at most quadratic. For
this, we need to add some auxiliary variables. We then obtain problem (QP )
that has a quadratic objective function and linear inequalities. Following [5], we
call it quadratization. Then in the second phase, we focus on the convexification
of the obtained problem. As illustrated in the experimentations, the original
QCR and MIQCR method are not able to handle (QP ). Indeed, QCR leads to a
reformulation with a weak bound, and in method MIQCR the semidefinite program
that we have to solve is too large. This is why, in this paper we propose a tailored
convexification phase. For this, we need null quadratic functions on the domain
of (QP ) to perturb the Hessian matrix of the new objective function. One of
these functions is the classic binary identity, x2

i = xi. One contribution of this
paper is the introduction of new null quadratic functions on the domain of (QP ).
We thus get a family of convex equivalent formulations to (QP ) that depend on
four parameters α, β, δ and λ. We then want to choose α∗, β∗, δ∗ and λ∗ such
that the continuous relaxation bound of the convexified problem is maximized.
We show that these best parameters can be computed thanks to a semidefinite
program. Finally, the last phase consists in solving the convexified problem using
general-purpose optimization software.

The outline of the paper is the following. In Section 2, we define and present
our quadratizations of (P ). In Section 3, we introduce our family of convex
reformulations and we prove how we compute the best parameters. Then, in
Section 4, we present our computational results and we discuss about different
possible quadratizations of (P ). Section 5 draws a conclusion.

2 Phase 1: Quadratization of (P )

In this section, we present how we build equivalent quadratic formulations to
(P ). The basic idea is to reduce the degree of f to degree 2. For this, in each
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monomial of degree 3 or greater, we simply recursively replace each product of
two variables by an additional variable.

More formally, we define the set of indices of the additional variables J =
{n + 1, .., N}, where N is the total number of initial and additional variables.
We also define the subsets Ei for the initial or additional variable i as follows:

Definition 1. For all i ∈ I∪J , we define Ei as the set of indices of the variables
whose product is replaced by xi:

– If i ∈ I, i.e. xi is an initial variable, we set Ei = {i}
– If i ∈ J , i.e. xi is an additional variable, there exist (i1, i2) ∈ (I ∪ J)2 such

that xi replaces xi1xi2 and we set Ei = Ei1 ∪ Ei2
Using these sets, we define a valid quadratization as a reformulation with N

variables where any monomial of degree at least 3 is replaced by the product of
two variables.

Definition 2. The sets J = {n + 1, .., N} and {Ei, i ∈ I ∪ J} define a valid
quadratization with N variables if for any monomial p of degree greater than or
equal to 3, (i.e. |Mp| ≥ 3), there exist (j, k) ∈ (I ∪ J)2 such thatMp = Ej ∪ Ek
and

∏
i∈Mp

xi = xjxk. Then the monomial p is replaced by a quadratic term.

With this definition of a quadratization, we reformulate (P ) as a non-convex
quadratically constrained quadratic program (QCQP ) with N variables.

(QCQP )



min g(x) =
∑
|Mp|≥3
Mp=Ej∪Ek

cpxjxk +
∑
|Mp|≤2

cp
∏
i∈Mp

xi

s.t.
xi = xi1xi2 ∀(i, i1, i2) ∈ J × (I ∪ J)2 : Ei = Ei1 ∪ Ei2 (1)
x ∈ {0, 1}N

As the variables are binary, Constraints (1) are equivalent to the classical set
of Fortet inequalities [18]:

(Cii1,i2)


xi − xi1 ≤ 0,
xi − xi2 ≤ 0,
−xi + xi1 + xi2 ≤ 1,
−xi ≤ 0,

We now define set FE :

FE = {x ∈ {0, 1}N : Cii1,i2 is satisfied ∀(i, i1, i2) ∈ J × (I ∪ J)2 : Ei = Ei1 ∪ Ei2}.

We denote byM = 4(N−n) the number of constraints of FE . We thus obtain
the following linearly constrained quadratic formulation that is equivalent to (P )
and has N variables and M constraints:
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(QP )


min g(x) ≡ xTQx+ ctx

s.t.
x ∈ FE

where Q ∈ SN (the set of N ×N real symmetric matrices), and c ∈ RN .
An important remark is that several valid quadratizations can be applied

to (P ), each of them leading to different sets Ei. Different valid quadratizations
were introduced and compared in [5]. In our case the comparison criterion is
different, and we present a short experimental comparison from the continuous
relaxation bound point of view in Section 4.

Example 1 [Different valid quadratizations]
Let us consider the following problem:

(Ex)
{

min
x∈{0,1}4

2x1 + 3x2x3 − 2x2x3x4 − 3x1x2x3x4

For instance, we can build three different equivalent functions:

1. g1(x) = 2x1 + 3x2x3 − 2x2x4︸︷︷︸
x5

x3 − 3x1x4︸︷︷︸
x6

x2x3︸︷︷︸
x7

2. g2(x) = 2x1 + 3x2x3 − 2x3x4︸︷︷︸
x5

x2 − 3x1x2︸︷︷︸
x6

x3x4︸︷︷︸
x5

3. g3(x) = 2x1 + 3x2x3 − 2x2x4︸︷︷︸
x5

x3 − 3x1x2︸︷︷︸
x6

x3x4︸︷︷︸
x7

(QEx1)



min g1(x)
s.t.

(x2, x4, x5) ∈ C5
2,4

(x1, x4, x6) ∈ C6
1,4

(x2, x3, x7) ∈ C7
2,3

x ∈ {0, 1}7

(QEx2)


min g2(x)
s.t.

(x3, x4, x5) ∈ C5
3,4

(x1, x2, x6) ∈ C6
1,2

x ∈ {0, 1}6

(QEx3)



min g3(x)
s.t.

(x2, x4, x5) ∈ C5
2,4

(x1, x2, x6) ∈ C6
1,2

(x3, x4, x7) ∈ C7
3,4

x ∈ {0, 1}7

Here we obtain 3 different equivalent quadratic formulations to (Ex) with
different sets E. They are thus of different sizes: problems (QEx1) and (QEx3)
have 7 variables and 12 constraints, while problem (QEx2) has 6 variables and
8 constraints.

�

We have reduced the degree of the polynomial program (P ) by building an
equivalent quadratic program to (P ). However, the solution of (QP ) still has two
difficulties, the non-convexity of the objective function g(x) and the integrality
of the variables. We now consider the solution of problem (QP ).

In the state-of-the-art, some solvers can solve (QP ) to global optimality
(e.g. Cplex 12.7 [24]). Unfortunately, these solvers are not able to solve dense
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instances of (P ). Here, we propose to compute an equivalent quadratic convex
formulation to (QP ). There exists several convexification methods devoted to
quadratic programming (see, for example [10,12,16,22,34]). These approaches can
be directly applied to (QP ). For instance, one can use the QCR method, described
in [12], that consists in computing an equivalent convex formulation to (QP )
using semidefinite programming. The convexification is obtained thanks to a non
uniform perturbation of the diagonal of the Hessian matrix. The semidefinite
relaxation used can be easily solved due to its reasonable size. However, the
bound obtained by continuous relaxation of the reformulation is very weak. As
a consequence, the branch-and-bound used to solve the reformulation failed as
soon as n ≥ 20. Another alternative is to apply the MIQCR method [10]. In
this method, the perturbation is generalized to the whole Hessian matrix and
hence is more refined than the previous one. This leads to a reformulation with
a significantly sharper bound. Unfortunately, the semidefinite relaxation used
in this approach is too large and its computation failed even with instances
containing 10 variables. In the next section, we present a new convexification
that leads to sharper bounds than QCR but with a better tractability than MIQCR.

3 Phase 2: A quadratic convex reformulation of (QP )

In this section, we consider the problem of reformulating (QP ) by an equivalent
quadratic 0-1 program with a convex objective function. To do this, we define a
new convex function which value is equal to the value of g(x), but which Hessian
matrix is positive semidefinite. More precisely, we first add to g(x) a combination
of four sets of functions where each of these functions vanishes on the feasible
set FE . For each function we introduce a scalar parameter. Then we focus on
computing the best parameters that lead to a convex function and that maximize
the optimal value of the continuous relaxation of the obtained problem.

3.1 Valid quadratic equalities for (QP )

For a quadratization characterized by E , we introduce null quadratic functions
over the set FE .

Lemma 1 The following quadratic equalities characterize null functions over
FE : 

x2
i − xi = 0 i ∈ I ∪ J (2)
xi − xixj = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (3)
xi − xjxk = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (4)
xixj − xkxl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (5)

Proof. Constraints (2) trivially hold since xi ∈ {0, 1}. Constraints (4) come
from Definition 1. We then prove the validity of the Constraints (3) and (5).
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– Constraints (3): we have xi =
∏
i′∈Ei

xi′ and xj =
∏
j′∈Ej

xj′ , then:

xixj =
∏
i′∈Ei

xi′
∏
j′∈Ej

xj′

=
∏
j′∈Ej

x2
j′

∏
i′∈Ei\Ej

xi′ since Ej ⊂ Ei

=
∏
i′∈Ei

xi′ since x2
j′ = xj′ and Ej ∪ (Ei\Ej) = Ei

= xi

– Constraints (5): by definition we have:

xixj =
∏
i′∈Ei

x′i
∏
j′∈Ej

xj′

=
∏

i′∈Ei∪Ej

xi′
∏

j′∈Ei∩Ej

xj′

=
∏

i′∈(Ei∪Ej)\(Ei∩Ej)

xi′
∏

j′∈Ei∩Ej

x2
j′

=
∏

i′∈Ei∪Ej

xi′ since x2
j′ = xj′ and (Ei ∪ Ej)\(Ei ∩ Ej) ∪ (Ei ∩ Ej) = (Ei ∪ Ej)

=
∏

k′∈Ek∪El

xk′ since Ei ∪ Ej = Ek ∪ El

= xkxl

�

We can now define set SE :

SE = {x ∈ {0, 1}N : Constraints (2)–(5) are satisfied }.

3.2 An equivalent quadratic convex reformulation to (QP )

We now compute a quadratic convex reformulation of (QP ) and thus of (P ). For
this, we add to the objective function g(x) the equalities (2)–(5). For each, we
associate a real scalar parameter: αi for Constraints (2), βij for Constraints (3),
δijk for Constraints (4), and λijkl for Constraints (5). We get the following
parametrized function:

gα,β,δ,λ(x) = g(x) +
∑
i∈I∪J

αi(x2
i − xi) +

∑
(i,j)∈J×(I∪J)
Ej⊂Ei

βij(xi − xixj)

+
∑

(i,j,k)∈J×(I∪J)2

Ei=Ej∪Ek

δijk(xi − xjxk) +
∑

(i,j,k,l)∈(I∪J)4

Ei∪Ej=Ek∪El

λijkl(xixj − xkxl)
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Obviously gα,β,δ,λ(x) has the same optimal value as g(x). Moreover, there exist
vector parameters α, β, δ and λ such that gα,β,δ,λ(x) is a convex function. Take
for instance, α equals to the opposite of the smallest eigenvalue of Q, and β =
δ = λ = 0.

By replacing g(x) by the new function, we obtain the quadratic convex equiv-
alent formulation to (QP ):

(QPα,β,δ,λ)


min gα,β,δ,λ(x) ≡ xTQα,β,δ,λx+ cTα,β,δ,λx

s.t.
x ∈ FE

where Qα,β,δ,λ ∈ SN is the Hessian matrix of gα,β,δ,λ(x), and cα,β,δ,λ ∈ RN is
the vector of linear coefficients of gα,β,δ,λ(x).

In order to use (QPα,β,δ,λ) within a branch-and-bound procedure, we are
interested by parameters (α, β, δ, λ) such that gα,β,δ,λ(x) is a convex function.
Moreover, in order to have a good behavior of the branch-and-bound algorithm,
we want to find parameters that give the tightest continuous relaxation bound.
More formally, we want to solve the following optimization problem:

(CP ) : max
α∈RN ,β∈RT

1
,δ∈RT

2
,λ∈RT

3

Qα,β,δ,λ�0

{
min
x∈FE

gα,β,δ,λ(x)
}

where T 1, T 2 and T 3 are the number of Constraints (3), (4), and (5), respectively,
and FE is the set FE where the integrality constraints are relaxed, i.e. x ∈ [0, 1]N .

In the rest of the paper we will focus on solving (CP ). For this, we first build
a compact semidefinite relaxation that uses our new valid equalities and prove
that its optimal dual variables provide an optimal solution to (CP ).

3.3 Computing an optimal solution to (CP )

The following theorem shows that problem (CP ) is equivalent to the dual of a
semidefinite relaxation of (QP ).
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Theorem 1. The optimal value of (CP ) is equal to the optimal value of the
following semidefinite program (SDP ):

(SDP )



min < Q,X > +cTx
s.t.
Xii − xi = 0 i ∈ I ∪ J (6)
−Xij + xi = 0 (i, j) ∈ J × (I ∪ J) : Ej ⊂ Ei (7)
−Xjk + xi = 0 (i, j, k) ∈ J × (I ∪ J)2 : Ei = Ej ∪ Ek (8)
Xij −Xkl = 0 (i, j, k, l) ∈ (I ∪ J)4 : Ei ∪ Ej = Ek ∪ El (9)(

1 xT
x X

)
� 0 (10)

x ∈ RN , X ∈ SN (11)

The optimal values (α∗, β∗, δ∗, λ∗) of problem (CP ) are given by the optimal
values of the dual variables associated with constraints (6–9) respectively.

Proof. For simplicity, we rewrite FE and SE as follows: FE = {x ∈ {0, 1}N :
Ax ≤ b} where A is M × N -matrix, b ∈ RM , and SE = {x ∈ {0, 1}N :
xTQrx+ cTr x = 0, r = 1, . . . , T}, where T = N + T 1 + T 2 + T 3 is the number of
Constraints (2)–(5), and ∀r = 1, . . . , T , Qr ∈ SN and cr ∈ RN .

We start by observing that x ∈ [0, 1]N is equivalent to x2 ≤ x, thus, (CP ) is
equivalent to (Q1):

(Q1) : max
α∈RN ,β∈RT

1
,δ∈RT

2
,λ∈RT

3

Qα,β,δ,λ�0

{
min

x∈RN , x2≤x, Ax≤b
gα,β,δ,λ(x)

}

(Q1) is a convex optimization problem over a convex set. If we consider the
solution xi = 0.5 for all i ∈ I and xi = xjxk for all (i, j, k) ∈ J × (I ∪ J)2, Ei =
Ej ∪Ek , it is an interior point and the Slater’s conditions are satisfied. Then, by
Lagrangian duality, we have (Q1) equivalent to (Q2):

(Q2) : max
α∈RN ,β∈RT

1
,δ∈RT

2
,λ∈RT

3
,ω∈RN+ ,γ∈R

M
+

Qα,β,δ,λ�0

{
min
x∈RN

gα,β,δ,λ(x)+ωT (x2−x)+γT (Ax−b)
}

Due to Constraints (2), it holds that (Q2) is equivalent to (Q3):

(Q3) : max
α∈RN ,β∈RT

1
,δ∈RT

2
,λ∈RT

3
,γ∈RM+

Qα,β,δ,λ�0

{
min
x∈RN

gα,β,δ,λ(x) + γT (Ax− b)
}

It is well known that a necessary condition for the quadratic function gα,β,δ,λ,γ(x)+
γT (Ax−b) to have a minimum not equal to −∞ is that matrix Qα,β,δ,λ is positive
semidefinite. Therefore (Q3) is equivalent to (Q4):
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(Q4) : max
α∈RN ,β∈RT

1
,δ∈RT

2
,λ∈RT

3
,γ∈RM+

{
min
x∈RN

gα,β,δ,λ,γ(x) + γT (Ax− b)
}

We know from [32] that (Q4) is equivalent to problem (D):

(D)



max t
s.t.(

−γT b− t 1
2 (cTα,β,δ,λ + γTA)

1
2 (cα,β,δ,λ +AT γ) Qα,β,δ,λ

)
� 0

t ∈ R, α ∈ RN , β ∈ RT
1
, δ ∈ RT

2
, λ ∈ RT

3
, γ ∈ RM+

By semidefinite duality of program (D), we get (SDP ′):

(SDP ′)


min < Q,X > +cTx
s.t.

(6)− (11)
Ax ≤ b

We now prove that (SDP ′) and (SDP ) are equivalent, i.e. that Constraints
Ax ≤ b are redundant in (SDP ′).

Lemma 2 Due to Constraints (6)–(8), inequalities Ax ≤ b are redundant in
(SDP ′).

Proof. Recall that Ax ≤ b are the inequalities of (Cij,k), ∀(i, j, k) ∈ J × (I ∪
J)2 : Ei = Ej ∪ Ek, i.e xi ≥ 0, xi ≤ xj , xi ≤ xk, and xi ≥ xj + xk − 1.

The basic idea here is that
(

1 xT
x X

)
� 0 implies that all the symmetric

minors are nonnegative.

– xi ≥ 0: We consider the determinant
∣∣∣∣ 1 xi
xi Xii

∣∣∣∣, which implies Xii − x2
i ≥ 0.

By (6) we obtain xi − x2
i ≥ 0 and thus xi ≥ 0.

– xi ≤ xj : Considering the determinant of the symmetric minor
∣∣∣∣Xjj Xji

Xij Xii

∣∣∣∣
implies XiiXjj − X2

ij ≥ 0. By (6) we have xjxi − X2
ij ≥ 0 and by (7) we

obtain xixj − x2
i ≥ 0. We have either xi = 0 or xi ≤ xj and as xj ≥ 0, we

have xi ≤ xj .

– xi ≤ xk: Same as the previous case by considering
∣∣∣∣Xkk Xki

Xik Xii

∣∣∣∣
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– xi ≥ xj + xk − 1: X − xxT � 0 implies ∀z ∈ RN+1, zT
(

1 xT
x X

)
z ≥ 0. By

taking z̄ = (1, 0, .., 0, −1︸︷︷︸
j

, 0, .., 0, −1︸︷︷︸
k

, 0, .., 0, 1︸︷︷︸
i

, 0, .., 0), we have:

z̄T
(

1 xT
x X

)
z̄ = (xi + 1− xj − xk)− (xj −Xjj −Xjk +Xij)

−(xk −Xkk −Xjk +Xik) + (xi −Xij −Xik +Xii)

and using (6), (7) and (8), we have z̄T
(

1 xT
x X

)
z̄ = (xi + 1− xj − xk) ≥ 0,

and we get the result.

�

We finally prove that there is no duality gap between (D) and (SDP ′), which
holds since:

(1) The feasible domain of (SDP ′) is nonempty (as (QPα,β,δ,λ) contains 0 as a
feasible solution) and (D) is bounded

(2) (D) satisfies Slater’s condition. It is sufficient to take β, δ and λ equal to
0, α large enough so that Qα,β,δ,λ � 0 holds, and t a large negative number
that ensures the diagonal dominance of the first row and the first column of

matrix
(

−γT b− t 1
2 (cTα,β,δ,λ + γTA)

1
2 (cα,β,δ,λ +AT γ) Qα,β,δ,λ

)
.

�

To sum up, we obtain (QP ∗), the best equivalent convex formulation to (QP ):

(QP ∗)


min gα∗,β∗,δ∗,λ∗(x)
s.t.
x ∈ FE

From Theorem 1, we deduce the Algorithm 1 to solve (P ).

Algorithm 1 PQCR a global solution algorithm for (P )
Step 1: Apply a quadratization E to (P ) and then generate sets FE and SE .
Step 2: Solve (SDP ), deduce optimal values α∗, β∗, δ∗, λ∗, and build (QP ∗).
Step 3: Solve (QP ∗) by a standard quadratic convex programming solver.
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4 Numerical results

In this section, we evaluate PQCR on two applications: the image restoration prob-
lem, and the low autocorrelation binary sequence problem. For our experiments,
we have arbitrarily chosen a quadratization for Step 1 of our method that is
described in Algorithm 2. This choice impacts the number of constraints within
SE , and the associated continuous relaxation bound value can vary. We further
illustrate this variation on a toy instance.

Experimental environment

Our experiments were carried out on a server with 2 CPU Intel Xeon each of
them having 12 cores and 2 threads of 2.5 GHz and 4 ∗ 16 GB of RAM using a
Linux operating system. For all algorithms, we use the multi-threading version
of Cplex 12.7 with up to 48 threads.

For method PQCR, the quadratization is implemented in C, we used the solver
Csdp [13] together with the Conic Bundle algorithm [23] for solving semi-definite
programs (SDP ), as described in [11]. We used the Ampl [19] interface of the
solver Cplex 12.7 [24] for solving the quadratic convex problem (QP ∗).

Parameters and algorithms within PQCR

– Phase 1: we choose the quadratization described in Algorithm 2.

Algorithm 2 Quadratization(f)
Require: A polynomial f of degree d > 2
Ensure: A quadratic function f ′ verifying ∀x ∈ {0, 1}n, f ′(x) = f(x)

Sort all monomials by lexicographical order
for each monomial p from 1 to m do
deg ← deg(p)
while deg > 2 do
deg ← bdeg2 c
for i from 1 to deg do
Replace the ith disjointed product of two variables xjxk by a new vari-
able xi (if it does not already exist)
Ei ← Ej ∪ Ek

end for
end while

end for



Solving unconstrained 0-1 polynomial programs 13

– Phase 2: Parameters axtol, aytol of Csdp [13] are set to 10−3. The preci-
sion of the Conic Bundle [23] is set to 10−3. Parameter p (see [11]) is set to
0.2 ∗ T .

– Phase 3: we let the default parameters, except the parameter qptolin that
is set to 0.

Methods used for comparison
– Baron 17.4.1 [39] under Gams, that uses linear relaxations combined with

domain reduction strategies within a branch-and-bound. We let the default
parameters.

– Cplex 12.7 [24] under Ampl, that uses a mix of linear and quadratic convex
reformulations to solve (QP ) by a branch-and-bound. We let the default
parameters.

– QCR [9] we used the solver Csdp [13] for solving semi-definite programs and
Cplex 12.7 [24] for solving the quadratic convex problems.

– MIQCR [10] we used the solver Csdp [13] together with the Conic Bundle
algorithm [23] for solving semidefinite programs and Cplex 12.7 [24] for
solving the quadratic convex problems.

4.1 The image restoration problem
The vision instances are inspired from the image restoration problem, which
arises in computer vision. The goal is to reconstruct an original sharp base
image from a blurred image. An image is a rectangle containing l × h pixels.
This rectangle is modeled as a binary matrix of the same dimension. A complete
description of these instances can be found in [17]. The size of the considered
instances are n = 100, n = 150 and n = 225, with 15 instances of each size.

After Step 1 of our algorithm, several way are possible to solve the quadratic
non-convex program (QP ). For instance, the standard solver Cplex [24] can
directly handle it, or one can apply the QCR [9] or MIQCR [10] methods. We
compare PQCR with these three approaches, and with the direct submission of (P )
to the solver Baron 17.4.1. Our observations for these instances are summed
up in Table 1, where we compare, among all the instances of a given size, the
maximum solution CPU time. The time-limit is set to 1 hour.

The time is given in seconds, unsolved means that none of the instance
were solved within one hour, (3/15) means that only 3 instances out of 15
were solved within the time limit, and out of memory means that the method
was not able to start the computation. Clearly, the quadratization followed by
the direct submission to Cplex dominates the other considered methods. By
comparing PQCR with Baron, we observe that the solver Baron is faster on the
medium size instances, but it failed on most of the large instances, while PQCR is
able to solve all the considered instances within 335 seconds. Concerning the two
last methods, that consist in applying QCR and MIQCR after the quadratization
phase, both methods failed. QCR because of the weakness of its bound, and MIQCR
because of the size of the semidefinite problem considered for computing the best
reformulation.
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vision instances
Method n = 100 n = 150 n = 225
Baron 17.1.4 < 35s < 80s < 1238s (3/15)
Quadratization + Cplex < 18s < 51s < 125s
Quadratization + QCR unsolved unsolved unsolved
Quadratization + MIQCR out of memory out of memory out of memory
PQCR < 65s < 127 s < 335s

Table 1: Comparison of the maximum time on 5 solution methods for the vision
instances - time limit 3600 seconds

4.2 The Low Autocorrelation Binary Sequence problem

We consider the problem of binary sequences with low off-peak autocorrelations.
More formally, let S be a sequence S = (s1, . . . , sn) with s ∈ {−1, 1}n, and for
a given k = 0, . . . , n− 1, we define the autocorrelations Ck(S) of S:

Ck(S) =
n−k∑
i=1

sisi+k

The problem is to find a sequence S of length n that minimizes E(S):

E(S) =
n−1∑
K=1

C2
k(S)

This problem has numerous practical applications in communication engineering,
or theoretical physics [8]. For our experiments, we consider truncated instances,
i.e. sequences of length n where we compute low off-peak autocorrelation up to
a certain distance d ≤ n. These instances were introduced by [33] and can be
found on the polip website [1].

For these instances, we compare PQCR with the solver Baron 17.4.1 only, be-
cause none of the methods previously considered were able to solve any instances
within the time limit of one hour.

Legends of Table 2

– Name: Bernasconi.n.d is the instance corresponding to computing optimal
sequence of length n and with distance d.

– Opt: is the optimal solution value of the instance or the best known solution.

– Gap:
∣∣∣∣Opt− ContOpt

∣∣∣∣ ∗ 100, where Cont is the optimal value of the continuous

relaxation of (QP ∗), or the root relaxation value of Baron.
– Sdp: CPU time in seconds for solving (SDP ). The time limit is set to 2400

seconds.
– b&b : CPU time in seconds for solving (QP ∗) by a branch-and-bound.
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– Tot (Total Time) : Sdp + b&b for PQCR, and total time branch-and-bound time
for Baron. The time limit is set to 1 hour, and - means that the optimum is
not found within the time limit.

– Nodes: Number of nodes visited by the branch-and-bound algorithm.

We present the results for the Low Autocorrelation Binary Sequence problem
in Table 2. We observe that the solver Baron solves 9 instances out of 45 in 381
seconds on average, while PQCR solves 14 instances out of 45 in 1270 seconds
on average. We set the time limit of Step 2 to 2400 seconds, because a feasible
solution to (SDP ) is sufficient to get parameters that convexify gα,β,δ,λ(x). We
put in bold the best known solutions that PQCR improves in comparison to the
solutions available on [1]. Indeed, PQCR is able to improve the best know solutions
of 13 instances out of 45.
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Instance PQCR Baron
Name Opt Gap Sdp b&b Tot Nodes Gap Tot Nodes
Bernasconi.20.10 -2936 7.5 837 9 846 31087 2918.0 59 7
Bernasconi.20.15 -5960 6.0 1228 14 1242 48252 3202.0 739 9
Bernasconi.20.3 -72 0.0 1 1 2 0 100.0 1 1
Bernasconi.20.5 -416 29.1 22 1 23 7621 1838.5 1 1
Bernasconi.25.13 -8148 4.6 1552 51 1603 99271 3109.4 - 68
Bernasconi.25.19 -14644 5.3 2400 233 2633 912383 3355.7 - 7
Bernasconi.25.25 -10664 6.7 2400 195 2595 432323 3404.7 - 5
Bernasconi.25.3 -92 0.0 1 1 2 6 100.0 5 1
Bernasconi.25.6 -960 21.4 461 8 469 132817 2306.7 17 27
Bernasconi.30.15 -15744 5.6 2400 325 2725 1834016 3220.5 - 6
Bernasconi.30.23 -30460 9.3 2400 1200 - 1278362 3449.7 - 1
Bernasconi.30.30 -22888 11.6 2400 1200 - 1469104 3469.7 - 1
Bernasconi.30.4 -324 63.6 58 20 78 511871 1346.9 2 7
Bernasconi.30.8 -2952 10.4 1940 100 2040 1562457 2696.2 2565 237
Bernasconi.35.18 -31168 12.2 2400 1200 - 2116286 3355.0 - 2
Bernasconi.35.26 -55232 45.6 2400 1200 - 92179 3511.2 - 1
Bernasconi.35.35 -40708 63.8 2400 1200 - 23907 3530.4 - 1
Bernasconi.35.4 -384 59.1 135 32 167 925225 1350.0 36 13
Bernasconi.35.9 -5108 11.1 2245 1108 3353 16425073 2826.2 - 38
Bernasconi.40.10 -8248 10.9 2400 1200 - 8578180 2953.0 - 16
Bernasconi.40.20 -50576 32.3 2400 1200 - 174108 3405.5 - 1
Bernasconi.40.30 -94776 156.7 2400 1200 - 18764 3564.7 - 1
Bernasconi.40.40 -67372 263.9 2400 1200 - 12330 3568.4 - 1
Bernasconi.40.5 -936 37.0 430 3170 - 24602867 1855.6 - 980
Bernasconi.45.11 -12748 12.3 2400 1200 - 4964503 3018.4 - 4
Bernasconi.45.23 -85016 147.7 2400 1200 - 25953 3487.3 - 1
Bernasconi.45.34 -151144 303.1 2400 1200 - 10438 3633.7 - 1
Bernasconi.45.45 -107984 487.1 2400 1200 - 7785 3720.8 - 1
Bernasconi.45.5 -1068 31.6 1384 2216 - 16951373 1853.6 - 600
Bernasconi.50.13 -23792 18.5 2400 1200 - 2559292 3130.9 - 2
Bernasconi.50.25 -123692 250.3 2400 1200 - 15649 3541.5 - 1
Bernasconi.50.38 -231128 650.9 2400 1200 - 20453 3667.9 - 1
Bernasconi.50.50 -162400 1518.7 2400 1200 - 9300 3671.2 - 1
Bernasconi.50.6 -2160 25.2 1130 2470 - 11641486 2321.5 - 76
Bernasconi.55.14 -33272 34.2 2400 1200 - 739121 3186.1 - 3
Bernasconi.55.28 -189004 383.1 2400 1200 - 16444 3581.5 - 1
Bernasconi.55.41 -332940 997.7 2400 1200 - 6122 3703.9 - 1
Bernasconi.55.55 -232828 2003.2 2400 1200 - 3857 3718.8 - 1
Bernasconi.55.6 -2400 24.6 2400 1200 - 10174973 2322.7 - 19
Bernasconi.60.15 -44476 82.7 2400 1200 - 45286 3292.7 - 1
Bernasconi.60.30 -258152 552.3 2400 1200 - 78118 3618.8 - 1
Bernasconi.60.45 -473116 1282.4 2400 1200 - 5196 713.5 - 1
Bernasconi.60.60 -334240 2096.0 2400 1200 - 3795 no bound - 1
Bernasconi.60.8 -6788 18.2 2400 1200 - 6478048 2714.1 - 1
Table 2: Results of PQCR and Baron for the 45 polip instances. Time limit 1
hour.
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4.3 A short discussion on the impact of the chosen quadratization

In this section, we shortly explore the impact of the chosen quadratization on the
tightness of the associated continuous relaxation bound. In Table 3, we sum up
the continuous relaxation bound values obtained by convexification PQCR, QCR,
and MIQCR for the three quadratizations of (Ex) presented in Example 1.

Method (QEx1) (QEx2) (QEx3)
Opt Cont Cont Cont

Quadratization + QCR 0 -3 -3 -3
Quadratization + MIQCR 0 0 0 0

PQCR 0 -0.125 -0.625 -0.375
Table 3: Comparison of continuous relaxation bound for (Ex) with convexifica-
tions PQCR, QCR, and MIQCR

We observe that for this example, MIQCR and QCR are robust to the quadra-
tization step. This is due to the fact that MIQCR considers all the possible per-
turbations of the Hessian matrix. This is the same for QCR, but only for the
diagonal terms. On the contrary, method PQCR gets different bounds for each
quadratization. An interesting question for a future research would thus be to
determine which quadratizations lead to sharper bounds for method PQCR.

5 Conclusion

We consider the general problem (P ) of minimizing a polynomial function where
the variables are binary. In this paper, we present PQCR a solution approach for
(P ). PQCR can be split in 3 phases. We called the first phase quadratization,
where we rewrite (P ) as an equivalent quadratic program (QP ). For this we
have to add new variables and linear constraints. We get a linearly constrained
quadratic program that still have a non-convex objective function and binary
variables. Moreover, even for small instances of (P ), the existing convexification
methods failed for solving the associate (QP ). This is why, we present a family
of tailored quadratic convex reformulations of (QP ) that exploits its specific
structure. For this, we introduce new valid quadratic equalities that vanish on
the feasible domain of (QP ). Then, we focus on finding, within this family, the
equivalent convex formulation that maximizes the continuous relaxation bound
value. Then, we show that we can compute this "best" convex reformulation using
a semidefinite relaxation of (QP ). Finally, we solve our optimal reformulation
with a standard solver.

We present computational results on two applications and compare our al-
gorithm with other convexification methods and the general solver Baron. In
particular, we show that for the low autocorrelation binary sequence problem,
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PQCR is able to improve the best known solution of 13 instances out of 45. A
future research would be to characterize which quadratization best fit with our
convexification phase from the continuous relaxation value point of view.

References

1. Polip, library for polynomially constrained mixed-integer programming, 2014.
2. T. Achterberg. Scip : solving constraint integer programs. Mathematical Program-

ming Computation, (1):1–41, 2009.
3. C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimiza-

tion method, αbb, for general twice-differentiable constrained nlps—i. theoretical
advances. Computers and Chemical Engineering, 22(9):1137–1158, 1998.

4. A. A. Ahmadi and A. Majumdar. Dsos and sdsos optimization: Lp and socp-based
alternatives to sum of squares optimization. In 2014 48th Annual Conference on
Information Sciences and Systems (CISS), pages 1–5, March 2014.

5. M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of
nonlinear binary optimization problems. Mathematical Programming, 162:115–144,
2017.

6. B. Balasundaram and A.0. Prokopyev. On characterization of maximal indepen-
dent sets via quadratic optimization. 19, 06 2011.

7. P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Br anching and bounds
tightening techniques for non-convex minlp. Optimization Methods and Software,
4–5(24):597–634, 2009.

8. J. Bernasconi. Low autocorrelation binary sequences: statistical mechanics and
configuration space analysis. J. Physique, 141(48):559–567, 1987.

9. A. Billionnet and S. Elloumi. Using a mixed integer quadratic programming
solver for the unconstrained quadratic 0-1 problem. Mathematical Programming,
109(1):55–68, 2007.

10. A. Billionnet, S. Elloumi, and A. Lambert. Exact quadratic convex reformulations
of mixed-integer quadratically constrained problems. Mathematical Programming,
158(1):235–266, 2016.

11. A. Billionnet, S. Elloumi, A. Lambert, and A. Wiegele. Using a Conic Bundle
method to accelerate both phases of a Quadratic Convex Reformulation. IN-
FORMS Journal on Computing, 29(2):318–331, 2017.

12. A. Billionnet, S. Elloumi, and M. C. Plateau. Improving the performance of stan-
dard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR
method. Discrete Applied Mathematics, 157(6):1185 – 1197, 2009. Reformulation
Techniques and Mathematical Programming.

13. B. Borchers. CSDP, A C Library for Semidefinite Programming. Optimization
Methods and Software, 11(1):613–623, 1999.

14. E. Boros, P.L. Hammer, and X. Sun. Network flows and minimization of quadratic
pseudo-boolean functions. Technical Report TR: 1991-17, RUTCOR, 1991.

15. C. Buchheim and C. D’Ambrosio. Monomial-wise optimal separable underestima-
tors for mixed-integer polynomial optimization. Journal of Global Optimization,
pages 1–28, 2016.

16. M.W. Carter. The indefinite zero-one quadratic problem. Discrete Applied Math-
ematics, pages 23–44, 1984.

17. Y. Crama and E. Rodriguez-Heck. A class of valid inequalities for multilinear 0-1
optimization problems. Discrete Optimization, pages 28–47, 2017.



Solving unconstrained 0-1 polynomial programs 19

18. R. Fortet. L’algèbre de Boole et ses Applications en Recherche Opérationnelle.
Cahiers du Centre d’Etudes de Recherche Opérationnelle, 4:5–36, 1959.

19. R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. The Scientific Press (now an imprint of Boyd & Fraser
Publishing Co.), Danvers, MA, USA, 1993.

20. M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory
of NP-Completness. W.H. Freeman, San Francisco, CA, 1979.

21. Bissan Ghaddar, Juan C. Vera, and Miguel F. Anjos. A dynamic inequality genera-
tion scheme for polynomial programming. Mathematical Programming, 156(1):21–
57, Mar 2016.

22. P.L. Hammer and A.A. Rubin. Some remarks on quadratic programming with 0-1
variables. Revue Française d’Informatique et de Recherche Opérationnelle, 4:67–79,
1970.

23. C. Helmberg. Conic Bundle v0.3.10, 2011.
24. IBM-ILOG. IBM ILOG CPLEX 12.7 Reference Manual. "http:

//www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.
studio.help/Optimization_Studio/topics/COS_home.html", 2017.

25. N. Ito, S. Kim, and M. Kojima nad A.Takeda K.C. Toh. BBCPOP: A Sparse Dou-
bly Nonnegative Relaxation of Polynomial Optimization Problems with Binary,
Box and Complementarity Constraints. ArXiv e-prints, April 2018.

26. R.M. Karp. Reducibility among combinatorial problems. pages 85–103, 1972.
27. J. Krarup and P.M. Pruzan. Computer-aided layout design. pages 75–94, 1978.
28. X. Kuang, , B. Ghaddar, J . Naoum-Sawaya, and L.F. Zuluaga. Alternative SDP

and SOCP Approximations for Polynomial Optimization. ArXiv e-prints, October
2015.

29. J.B. Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization.
Cambridge University Press, Cambridge, 2015.

30. J.B. Lasserre and T.P. Thanh. Convex underestimators of polynomials. Journal
of Global Optimization, pages 1–25, 2013.

31. J.D. Laughhunn. Quadratic binary programming with applications to capital bud-
geting problems. 18:454–461, 06 1970.

32. C. Lemarechal and F. Oustry. Semidefinite relaxations and lagrangian duality
with application to combinatorial optimization. Technical report, RR-3710, INRIA
Rhones-Alpes, 1999.

33. F. Liers, E. Marinari, U. Pagacz, F. Ricci-Tersenghi, and V. Schmitz. A non-
disordered glassy model with a tunable interaction range. Journal of Statistical
Mechanics: Theory and Experiment, page L05003, 2010.

34. R.D. McBride and J.S. Yormark. An implicit enumeration algorithm for quadratic
integer programming. Management Science, 1980.

35. R. Misener and C.A. Floudas. Antigone: algorithms for continuous/integer global
optimization of nonlinear equations. Journal of Global Optimization, 59(2-3):503–
526, 2014.

36. P.M Pardalos and J. Xue. The maximum clique problem. Journal of Global Opti-
mization, 4(3):301–328, Apr 1994.

37. M.R. Rao. Cluster analysis and mathematical programming. Journal of the Amer-
ican Statistical Association, 66(335):622–626, 1971.

38. J.M.W. Rhys. A selection problem of shared fixed costs and network flows. Man-
agement Science, 17(3):200–207, 1970.

39. N.V. Sahinidis and M. Tawarmalani. Baron 9.0.4: Global optimization of mixed-
integer nonlinear programs. User’s Manual, 2010.

http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html


20 Sourour Elloumi, Amélie Lambert and Arnaud Lazare

40. H.D. Sherali and C.H. Tuncbilek. A global optimization algorithm for polynomial
programming using a reformulation-linearization technique. Journal of Global Op-
timization, 2:101–112, 1992.


	Solving unconstrained 0-1 polynomial programs
	Sourour Elloumi, Amélie Lambert and Arnaud Lazare

