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Pseudo-random binary injection of levitons for electron quantum optics

D. C. Glattli and P. Roulleau
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IRAMIS, CEA-Saclay, F-91191 Gif-Sur-Yvette, France.

(Dated: March 12, 2018)

The recent realization of single electron sources lets envision performing electron quantum optics
experiments, where electrons can be viewed as flying qubits propagating in a ballistic conductor. To
date, all electron sources operate in a periodic electron injection mode leading to energy spectrum
singularities in various physical observables which sometime hide the bare nature of physical effects.
To go beyond, we propose a spread-spectrum approach where electron flying qubits are injected
in a non-periodic manner following a pseudo-random binary bit pattern. Extending the Floquet
scattering theory approach from periodic to spread-spectrum drive, the shot noise of pseudo-random
binary sequences of single electron injection can be calculated for leviton and non-leviton sources.
Our new approach allows to disentangle the physics of the manipulated excitations from that of
the injection protocol. In particular, the spread spectrum approach is shown to provide a better
knowledge of electronic Hong Ou Mandel correlations and to clarify the nature of the pulse train
coherence and the role of the dynamical orthogonality catastrophe for non-integer charge injection.

PACS numbers: 73.23.-b,73.50.Td,42.50.-p,42.50.Ar

I. INTRODUCTION

The goal of Electron quantum optics is to perform with
electrons quantum operations similar to those done with
photons in quantum optics. Here we consider ballistic
quantum conductors where electrons can propagate with
no backscattering along electronic quantum modes in a
way similar to photons propagating along electromag-
netic modes. Many tools commonly encountered in op-
tics are already available in ballistic quantum conductors.
The analog of photon beam-splitters are obtained with
electron beam-splitters using Quantum Point Contacts
(QPC) which form a local artificial scatterer partitioning
a single electron propagating on single quantum channel
into transmitted and reflected channels. Combining two
QPC beam-splitters in series provide electron analogs of
optical Mach-Zehnder [1, 2] and Fabry-Pérot interferom-
eters. Such intereferometers have been useful to evidence
electronic interference and to quantify the degree of co-
herence of electronic wave-packets in the quantum con-
ductor. To go further in the electron/photon analogy, a
full Electron Quantum Optics requires the analog of a
single photon source. One appealing perspective is that
the time control of single electrons let envisage their use
as flying qubits [3, 4] where the information is encoded
in the presence or absence of an electron in a quantum
channel or encoded in the spin of the itinerant electron
(to mimic photonic flying qubits encoded in the photon
polarisation). Several approaches have been used for re-
alizing the on-demand coherent injection of single elec-
trons [5–11]. Here, we consider the voltage pulse source
[11, 12] which is simpler to built and operate. It is based
on voltage pulses applied on a contact to inject a sin-
gle charge in the ballistic conductor. It was theoretically
and experimentally shown that for voltage pulses hav-

ing a Lorentzian time variation, electrons are injected in
the form of a remarkable minimal excitation state [13–
17] which has been called a leviton [11]. Synchroniz-
ing the injection of single electrons from different sources
[18, 19] and letting them interfere in a quantum conduc-
tor lets envisage flying qubit operation in a simple way.
This approach has already lead to new quantum exper-
iments where single electron partitioning [11, 22], elec-
tronic Hong Ou Mandel interference [11, 23], or single
electron quantum tomography [12] have been shown.

For practical ease of operation and calculation, only
periodic electron injection have been considered to date.
However periodic driving is not mandatory. What is usu-
ally needed is a large number of single electron injec-
tions to perform with high enough accuracy the statis-
tical measurements giving the average value of the cur-
rent or of its fluctuations (current noise) when perform-
ing Hong Ou Mandel correlations or Quantum State To-
mography. Periodic driving leads to peculiar dependence
to the observables studied. For example, the electron
injection at frequency ν = 1/T introduces stepwise dis-
continuities in the electron energy distribution of levi-
tons, also imprinted in their electronic Wigner function
[12, 32, 33], at energies multiple of hν [28]. These dis-
continuities manifest by singularities in the shot noise of
electrons partitioned by a QPC. They may prevent to un-
derstand if some observed phenomenon results from peri-
odicity or from the nature of the injected charge. This is
unfortunate as understanding the nature the single elec-
tron state when many electrons are injected is a key issue
and a theoretical challenge [24, 27]. The ideal situation
would be to inject just a single electron and look at the
result. This is however impossible due to the present lack
of reliable single electron detectors.

We consider here the non-periodic injection of elec-
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trons following a pseudo-random binary bit pattern {bk}
where at each time t = kT , k integer, one (or no) elec-
tron is injected if bk = 1 (or 0), see figure 1(a). This
provides a situation intermediate between the periodic
and the single electron injection. Also a binary injection
is what we have to be prepared to do for flying qubit op-
eration in electron quantum optics. This is thus a field
of investigation that it may be worth to develop. Re-
garding pure Physics concerns, a direct result of random
injection is to spread the energy spectrum and remove
the hν singularities. We will show that the electron en-
ergy spectrum is made from a continuous part directly
related to the statistics of the bit ensemble {bk} while
weaker spectral discontinuities remains which are directly
related to the regular bit sequence. Looking at the off-
diagonal element of the energy density matrix we will
show that this spectral peaks are related to long range
phase coherence. Comparing periodic and random injec-
tion provides a knob to better disentangle the physics
of injected electrons from the injection physics. In the
present work we will show that this enable us to bet-
ter characterize the dynamical orthogonality catastrophe
predicted in [13] for non integer charge injection and to
quantify the amount of electron-hole pairs created when
injecting electrons with non-Lorentzian pulses. Another
advantage of non-periodic injection is found in the case of
electronic Hong Ou Mandel (HOM) interferometry which
gives the time correlation function of the electron wave-
function |〈ψ(τ)|ψ(0)〉|2 . As we will later show, this allows
for a better exploration of the tails of the single electron
(leviton) wavefunction while periodicity limits this infor-
mation to a half period time-scale: τ ≤ T/2.
In a broader perspective, non-periodic injection be-

longs to the class of spread-spectrum techniques used
in communications and the problem provides a bridge
between quantum physics and telecommunication prob-
lems. Indeed some of the theoretical results derived here
are directly imported and adapted from the field of digital
communications [43]. Considering the rapid development
of periodically or quasi-periodically driven Hamiltonian
[36, 37], the study of the response of quantum systems to
non-periodic spread spectrum excitations is only starting
[34]. It may be viewed as a new field which, except in
quantum communication, has not yet been explored and
which could shed a new (white) light on quantum effects.

II. BACKGROUND

A. Floquet scattering approach

Before presenting our approach to deal with this new
situation, we recall the main results of the Floquet scat-
tering approach [35] for periodic excitation. The next
section will extend the Floquet approach to non-periodic
drive.

We consider a periodic voltage VL(t) applied to, say
the left, contact of a ballistic conductor while the oppo-
site (right) contact is kept to ground (VR = 0). For sim-
plicity spin is disregarded and the conductor is made of a
single quantum channel (for example the edge channel of
the integer quantum Hall effect as sketched in Fig.1(a)).
Later including the spin and generalizing to several elec-
tronic modes are straightforward.
According to the scattering approach developed by

Moskalets and Büttiker [35], an electron emitted at en-
ergy E below the Fermi energy µL from the left con-
tact and experiencing the ac excitation has its phase φ(t)
modulated by the voltage, with

φ(t) =

∫ t

−∞

eV (t′)dt′/h (1)

The time dependence breaking energy conservation, the
emitted electron is scattered into a superposition of quan-
tum states at energies E+ lhν, where l is an integer. The
scattering amplitudes connecting initial and final ener-
gies are the photo-absorption (emission) amplitudes pl
which form the elements of the so-called unitary Floquet
scattering matrix, where positive (negative) l means an
electron being absorbing (emitting) l photons. The pl are
given by the Fourier transform of the phase term:

pl =
1

T

∫ T

0

exp(−iφ(t)) exp(i2πlνt)dt (2)

From unitarity, the pl obey the following useful iden-
tity

∑
l p

∗
l+kpl = δk,0,where

∗ denotes the complex con-
jugate. To calculate transport properties, the stan-
dard annihilation fermionic operators âL(E) which op-
erate on the equilibrium states of the left contact are
replaced by new annihilation fermion operators ˆ̃aL(E),
with ˆ̃aL(E) =

∑
l plâL(E − lhν). This substitution on

transport formula provides direct expression for the mean
photo-assisted current Ĩ and mean photo-assisted shot
noise S̃I related to the dc transport expressions I and
SI . Defining Pl = |pl|

2 the probability to absorb or emit
l photons and, anticipating later the case of non-periodic
drive, we define the density of probability per unit energy
as

P (ε) =
∑

l

Plδ(ε− lhν) (3)

We can rewrite the known expression for the average cur-
rent, the average current noise [38, 39] and the electron
energy distribution under ac excitation as follows:

Ĩ(Vdc) =

∫ +∞

−∞

P (ε)I(Vdc + ε)dε (4)

S̃I(Vdc) =

∫ +∞

−∞

P (ε)SI(Vdc + ε)dε (5)
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f̃(ε) =

∫ +∞

−∞

P (ε′)f(ε− ε′ − eVdc)dε
′ (6)

where f(ε) is the equilibrium Fermi distribution with
energies referred to the right contact Fermi energy and
we have added an extra dc voltage Vdc to the ac volt-
age V (t) for generality. A typical application is a single
channel conductor with a QPC in its middle transmit-
ting electrons with transmission probability D. For en-
ergy independent transmission, giving linear I-V charac-
teristics, and for V (t) having zero mean value, remark-
ably Ĩ(Vdc) = I(Vdc) where I(Vdc) = D(e2/h)Vdc is, ac-
cording to the Landauer formula, the dc current that
we would measure when only a dc bias Vdc was applied
on the left contact. Indeed from unitarity

∑
l Pl = 1,

while
∑

l lPl = 0. By contrast, the shot noise shows a
non-linear (rectification like) variation with current (or
voltage). Indeed, the zero temperature shot noise is

SI = 2e e
2

h |Vdc|D(1 − D) [29–31] where the D(1 − D)
factor encodes the partitioning of electron between trans-
mitted and reflected states with binomial statistics. From
Eq.(5), the singular P (ε) for periodic drive, gives replica
of the zero bias singularity in the photo-assisted shot
noise S̃I each time Vdc = lhν [38–42]. The singularities
result from stepwise variations of the energy distribution
f̃(ε) of the periodically driven Fermi sea given by:

f̃(ε) =
∑

l

Plf(ε− lhν − eVdc) (7)

where f(ε) = 1/(1+exp(β(ε−µ)) is the Fermi Dirac dis-
tribution of electrons at electronic temperature kBTe =
1/β µ, the right contact Fermi energy taken as energy
reference. Terms with positive (negative) l describe elec-
tron (hole) like excitations.
As shown in [13, 14, 16] and detailed in [28], a partic-

ular situation arises when the voltage V(t) is a sum of
periodic Lorentzian pulses

V (t) =
h

πeT

+∞∑

k=−∞

1

1 + (t− kT )2/W 2
(8)

each introducing a single electron in the conductor. Here
Pl remarkably vanish for l < 0 and f̃(ε) describes a pure
electron excitation population with no holes. This defines
a minimal excitation states [16] made of a periodic train
of levitons [11]. When partitioning the leviton train, the
shot noise being proportional to the total number of exci-
tations [28] is minimal due to the absence of holes. In gen-
eral, arbitrary shape (non Lorentzian) voltage pulses give
non-zero Pl for negative l and thus generate a mixture of
electron and hole excitations. This is for example the case
for sine-wave voltage pulses V (t) = (hν/e)(1−cos(2πνt))
injecting single electrons. The qualitative difference be-
tween Lorentzian voltage pulses and other pulse shapes
is that the modulated phase gives a Single Side Band

(b)

1 0 1 1 0 1

QPC(a)

V(t)
I(t)

IR (t)

FIG. 1: (a) chiral ballistic conductor with a Quantum Point
Contact in its middle playing the role of a beam-plitter of
transmission D. The voltage V (t) injects levitons by a se-
ries of Lorentzian voltage pulses following a pseudo-random
binary bit sequence.(b) The probability P (ε) to shift by ε the
energy of electrons experiencing a pseudo random binary se-
quence of Lorentzian voltage pulses is computed from the F.T.
of Eq. (18). The single-side band energy spectrum (P (ε) = 0
for ε < 0) is characteristic of Lorentzian voltage pulses. It
warranties that only electron like excitations are generated
by the pulses as expected for leviton generation. This gener-
alizes to random emission results found for periodic injection.
W = 0.1T here.

(SSB) energy spectrum (only positive (negative) ener-
gies for electron(hole)-like levitons). All other kind of
modulation gives a double side band spectrum. To have
SSB spectrum property with positive (negative) energy
requires that exp(iφ(t)) has no poles in the upper (lower)
half complex plane. This is the case for the periodic in-
jection of levitons where

exp(iφ(t)) =
sin(π(t+ iW )/T )

sin(π(t− iW )/T )
(9)

shows periodically spaced poles in the upper complex
plane.
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B. Non-periodic Floquet scattering

We now address non periodic excitations leading to
spread spectrum property. As the term ’Floquet’ is as-
sociated with purely periodic phenomena, ’non-periodic
Floquet scattering’ may appear as an oxymoron. How-
ever the Floquet concept has been already extended be-
yond periodicity. Recently there has been a considerable
activity regarding topological phase transitions where,
using incommensurate frequencies, the bi-harmonic driv-
ing of Hamiltonian leads to new topological Floquet lat-
tices and energy bands [36, 37]. In fact, for quantum sys-
tems the Floquet approach is essentially a way to describe
scattering in energy. This is why, for quantum conduc-
tors, the Moskalets Büttiker Floquet scattering approach
[35] integrates so well within the Landauer-Büttiker scat-
tering transport approach.
For non periodic driving, the photo-absorption prob-

abilities become a continuous function of the energy.
In this spread spectrum situation, the definition of the
photo absorption or emission probability amplitudes be-
come

p(ε) =

∫ +∞

−∞

dt exp(−iφ(t)) exp(iεt/~) (10)

This describes the amplitude to find an electron, initially
emitted by the reservoir at energy E, scattered to the
energy E + ε. From this one can calculate the statistical
average of |p(ε)|2 giving the probability P (ε) from which
current, shot noise and energy distribution can be calcu-
lated using expressions similar to Eqs. (4)(5)and (6). A
similar use of these expressions for fully random excita-
tions and appropriate for interacting systems can be also
found in [34] .

III. BINARY INJECTION OF LEVITONS

A. Energy scattering probability

The pseudo-random injection leads to a continuous
spectrum characterized by the energy scattering prob-
ability P (E) that we derive in this section and which is
the analog of the photo-absorption/emission probability
considered above for periodic voltage drive.
As a realistic practical example, we consider the injec-

tion of single charge Levitons following a pseudo-random
sequence of binary bits bk = 0, 1. The voltage drive ap-
plied on the left contact is thus:

V (t) =
h

πeT

+∞∑

k=−∞

bk
1 + (t− kT )2/W 2

(11)

The mean value of the drive is 〈bk〉eh/T where 〈bk〉 is
the ensemble average of the bit value, typically 0.5 for

equal bit pseudo-random probability. The phase term
exp(iφ(t)) corresponding to the pseudo-random binary
levitonic drive is given by:

exp(iφ(t)) =

N∏

k=1

(
t− kT + iW

t− kT − iW

)bk

. (12)

The problem of calculating P (ε) is similar to the calcu-
lation of the power spectrum density in digital communi-
cation for binary phase pulse modulation, see [43, 44]. In
this analogy, the electronic quantum phase corresponds
to the modulated phase,the voltage pulses to frequency
pulses, the energy to frequency and P (ε) to electromag-
netic power. To obtain P (ε), one needs the two-time
autocorrelation function:

〈C(t, t′)〉 = 〈exp(−iφ(t)) exp(iφ(t′))〉 (13)

where 〈.〉 means ensemble averaging over statistically in-
dependent bit patterns. One can show that 〈C(t, t′)〉 is
cyclo-stationary, i.e. 〈C(t̄ + τ/2, t̄ − τ/2)〉 is invariant
when t̄ → t̄ + T , where t̄ = (t + t′)/2. is the mean
time and τ = t − t′ the time difference. After averaging
over t̄ we get the time average correlation function 〈C(τ)〉
whose Fourier Transform (F.T.) gives

P (ε) = (h/T )

∫ ∞

−∞

〈C(τ)〉eiετ/~dτ (14)

We now derive the expressions from which these phys-
ical quantities can be calculated. We will set T = 1
and τ and t̄ in period units and w = W/T and we
consider the ensemble {bk} as uncorrelated Bernouilli
random variables with probability P [bk = 1] = p and
P [bk = 0] = 1− p.
The two-time autocorrelation function is:

C(t−
τ

2
, t+

τ

2
) =

∞∏

k=−∞

(
tk − τ

2 − iw

tk − τ
2 + iw

.
tk +

τ
2 + iw

tk +
τ
2 − iw

)bk

,

(15)
where tk = t−k. After averaging over statistically equiv-
alent bit sequences, we get

〈C(t̄+ τ/2, t̄− τ/2)〉 =
∏

k

(
1− p+ p

t2k − (iw + τ
2 )

2

t2k − (iw − τ
2 )

2

)
(16)

=
sin(π(t− θp(τ)) sin(π(t+ θp(τ))

sin(π(t− iw + τ
2 ) sin(π(t+ iw − τ

2 )

where θp(τ) =
√

τ2

4 − w2 − (1 − 2p)iwτ . Note that

Eq.(16) interpolates between no modulation (p = 0, all
{bk = 0} and C is constant) and the periodic case (p = 1).
Remarkably, Lorentzian pulses (levitons) give rise to ana-
lytical expressions of the correlation functions. The two-
time correlation function can be written as:

〈C(t̄+τ/2, t̄−τ/2)〉 =
cos(2πθp(τ)) − cos(2πt̄)

cos 2π(τ/2− iw) − cos(2πt̄)
(17)
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As expected, it shows cyclo-stationary property. Its time
average is:

< C(τ) >=
cos(2πθp(τ)) − cos(π(τ − 2iw))

sin(π(τ − 2iw))
(18)

The first part with the square root argument in the co-
sine is responsible for a continuous spectrum as expected
for random excitation and depends, via the parameter p,
on the statistics of the bit injection. The second part rep-
resent harmonic contributions giving lines in the energy
spectrum reflecting the regularity of injection. Finally,
the imaginary part in the argument of the sine term in
the denominator indicates that C(τ) has only poles in the
upper half complex plane and no poles in the lower part
and ensures that P (ε), its F.T., vanishes for negative en-
ergies, as expected for levitons. Figure 1(b) shows the
variations of P (ε) for w =W/T = 0.1 and p = 1/2 corre-
sponding to equal bit probability. The energy spectrum
is continuous with spectral lines at energies multiple of
h/T and only extends to positive energies.
For comparison we consider similar pseudo-random bi-

nary injection of single electrons but with square wave
voltage pulses, with V (t) = bkV0(t − kT ) where V0(t) =
(2h/eT ) if t ∈ [0, T/2] and V0 = 0 for t ∈ [T/2, T ]. Ex-
pressing ε in reduced unit of h/T , we found P (ε) given
by:

P (ε) =
1

4

[(
sin(πε/2)

(πε/2)(2− ε)

)2

+
9

4
δ(ε) + ...

...+
1

4
δ(2− ε) +

+∞∑

p=−∞

4

π2

1

(2p2 − 1)2
δ(2p+ 1− ε)

]

(19)

As for the levitons, the first term gives a continuous en-
ergy spectrum followed by a series of lines at multiple of
the characteristic energy h/T . One can show, see [43],
that the first term is ∝ 〈b2k〉 − 〈bk〉

2 , = 1/4 here, and re-
sults from the fluctuating part of the injection making the
spectrum continuous, while the next terms, the spectral
line, ∝ 〈bk〉

2, result from the regular part of the injection.
Figure 2(a) shows the continuous part of P (ε) calculated
from Eq.(19) and the results of numerical simulations.
The Dirac peaks in the energy scattering probability

P (E) are not the sole result of regular injection but are
intimately related to the integer charge. From the field
of digital communication, where the bit information is
coded by phase modulation, it is known that similar
peaks in the emission power of digital phase modulation
also appear when the so-called modulation index h is
integer, i.e. when the phase increment ∆φ = h2π asso-
ciated with an elementary frequency pulse is multiple of
2π, see [43] chapter 3. A 2π phase increment is exactly
what is imprinted to the electronic phases when injecting

integer charges. Indeed using I(t) = e2

h V (t), one finds

∆φ/2π =
∫ T

0
dteV (t)/h =

∫ T

0
I(t)dt = q. To suppress

(a)

(b)

FIG. 2: (a) P (ε) for single electrons injected with pseudo-
random binary square-wave voltage pulses of length T/2. The
dashed curve is the continuous part of the analytic expres-
sion (19). The upper noisy curve is from numerical simu-
lations, where 8 spectra made of 1024 uncorrelated bit pat-
terns are averaged. For clarity a vertical shift between curves
has been made by applying a different arbitrary scale factor
to the curves. The double-side band energy spectrum shows
that square-wave pulses, unlike levitonic pulses, generate hole
like excitations as already observed for periodic injection. (b)
P (ε) for binary random Lorentzian voltage pulses injecting
a non-integer charge. The absence of sharp peaks observed
for integer charge is characteristic of fractional charge pulses.
Although the pulses are Lorentzian non-integer pulse are not
minimal excitation states as the energy spectrum is double
side-band signaling hole-like excitations.

the peaks which carry useless energy, telecommunication
engineers prefer to use a non integer modulation index.
In electron language, suppression of peaks will occur for
non-integer charge injection as the electronic wave mod-
ulation index is h = q/e. This is shown in figure 2(b) for
random binary Lorentzian voltage pulses carrying charge
q = 0.75e. We see here an example where non periodic
injection leads to physical manifestations not observable
in the case of simple periodic injection.

B. Quantum coherence of pseudo-random injection

From a superficial inspection one may conclude that
the random injection, like thermal injection, would lead
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to incoherent charge states. Here, we show that this is
not the case. As it has been observed in the case of
periodic injection, the density matrix in energy repre-
sentation presents significant off-diagonal components, a
signature of coherence of the injected leviton train. While
for the thermal emission of electrons by a contact there
is no phase relation between two injected electrons, by
contrast the regular pseudo-random injection of integer
charge is shown to preserve phase coherence between elec-
trons.
Lets first consider the case of pure periodic injec-

tion. We start from the first order electron coherence
g1(t

′, t) = 〈ψ†(t′)ψ(t)〉 [24–26] where the brackets here
means quantum statistical average and the Fermionic
electron operator ψ describing the injected electrons is
ψ(t) =

∫ +∞

−∞
dεˆ̃aL(E)e−iεt . We consider linearized dis-

persion relation and t is a short notation for t−x/vFermi

and ˆ̃aL(E), defined above, describes the annihilation op-
erator of electrons having experienced the voltage pulse.
Using energy representation ψ(ε0) =

∫ +∞

−∞
dtψ(t)eiε0t, we

will focus on the elements ρ(ε′, ε) of the electron density
matrix in energy representation:

ρ(ε′, ε) = 〈ψ†(ε′)ψ(ε)〉 − 〈ψ†(ε′)ψ(ε)〉FS (20)

It is directly related to the the first order coherence via
g1(t

′, t) =
∫ +∞

−∞
dε′dεei(ε

′t′−εt)ρ(ε′, ε) . The right term
of the right hand side represents the subtraction of the
Fermi Sea (FS) contribution. Using the expression of
ˆ̃aL(E) for periodic injection, one finds:

ρ(ε′, ε) = (f̃(ε)− f(ε))δ(ε− ε′)+
∑

k 6=0

f̃k(ε)δ(ε
′− ε−khν)

(21)
The first term of the right hand side equation is the
diagonal term representing the energy distribution as
in Eq.(6) but with subtracted FS. The last term with
f̃k(ε) =

∑
l p

∗
l−kplf(ε − lhν) describes the non-diagonal

terms. They characterize the coherence of the injec-
tion. They have been recently measured in order to per-
form the Quantum State Tomography of periodic leviton
trains in Ref.[12]. The non-diagonal terms are responsi-
ble for long range correlation between times t′ and t in
g1(t

′, t).
The fact that, for periodic drive, there are non zero di-

agonal terms f̃k linking energies separated by khν was
found in deriving Eq.(21) originating from the cyclo-
stationary of two-time correlation function C(t′, t) =
exp(−iφ(t))exp(iφ(t′) with mean time t̄ = (t+ t′)/2 and
relative time τ = t− t′.

C(t′, t) =
∑

k

Ck(τ)e
−ik2πνt̄ (22)

where Ck(τ) = eikπντ
∑

l p
∗
l−kple

il2πντ .
Similarly, for pseudo-random leviton injection we have

found that the two-time correlation function C(t′, t) is cy-
clostationary after averaging over an ensemble of random

bit realizations. From this observation, we can define the
following relative time correlation functions 〈Ck(τ)〉 :

〈C(t′, t)〉 =
∑

k

〈Ck(τ)〉e
−ik2πνt̄ (23)

where we found that 〈Ck(τ)〉 = eik2πτe−k2πw〈C0(τ)〉 and
〈C0(τ)〉 has been given in Eq.(18): We show here that de-
spite the injection randomness the cyclostationary prop-
erty leads to finite off diagonal density matrix elements
for energy separated by the quantity khν.

The continuous version of Eq.(21) is given by

ρ(ε′, ε) =

∫ ∞

−∞

dEf̃E(ε)δ(ε
′ − ε− E) (24)

where the non-diagonal energy density term is:

f̃E(ε) =

∫ +∞

−∞

dE′p∗(E′ − E)p(E′)f(ε− E′) (25)

and p(E′) = 1
2π

∫∞

−∞
dte−iφ(t)eiE

′t. Averaging Eq. (25)
over bit ensembles and using (23) we find that:

f̃E(ε) =
δ(E − khν)

2π

∫ +∞

−∞

dE′

∫ +∞

−∞

dτ〈Ck(τ)〉f(ε−E′)

(26)
Thus, non-diagonal elements connect energies separated
by the amount hν as in the periodic drive case.

Having shown the coherent character of a train of
randomly injected levitons, we would like to discuss its
meaning. Off diagonal coherence is related to cyclo-
stationarity of the two-time correlation functions of the
phase variation imprinted on the electronic wavefunction.
It is related to the regular periodic bit injection. Would
the time T between two injections be random, the cy-
clostationary character of the injection statistics would
be lost. The regular injection ensures that two levitons
injected at distant times keep a well defined temporal
phase and hence preserves some coherence property.

Finally, the notation of P (E), which describes scat-
tering in energy, may confuse the reader with the P (E)
notation used to describe dynamical Coulomb blockade
(DCB). In the latter case P (E) describes the energy
scattering due to the back-action of electron shot noise
which in finite impedance external circuit transforms into
random incoherent voltage fluctuations. Because of the
fully random voltage fluctuations no off-diagonal den-
sity matrix elements are to be expected and the phe-
nomenon is purely incoherent. We consider here the only
useful experimental situation where the external circuit
impedance, typically 50Ohms, is negligible and this DCB
interaction regime is disregarded.
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pulse charge q    

FIG. 3: The figure compares the excess number of excita-
tions ∆Nexc produced per period for sinewave pulses carrying
charge q for periodic and binary pulse injection. ∆Nexc shows
local minima for integer charges while for non-integer charge
it grows as a result of the Dynamical Orthogonality Catastro-
phe (DOC). Random binary injection giving more excitations
than periodic injection is consistent with the DOC scenario
as, in average,separation between pulses is larger.

IV. QUANTIFYING ELECTRON-HOLE

EXCITATIONS

A. Levitons versus non minimal integer charge

pulses

It is interesting to quantify the number of excitations
per pulse generated by the random pulses and compare
with the periodic case. The number of electrons (holes)
Ne (Nh) created per pulses is given by Ne =

∫∞

0 εP (ε)dε

(Nh =
∫ 0

−∞
(−ε)P (ε)dε) while the average charge per

pulses is 〈q〉 = e(Ne − Nh). With these definitions, the
number of extra excitations accompanying the injected
charge is ∆Nexc = Ne +Nh − 〈q〉 per pulses. In terms of
P (ε):

〈q〉 =

∫ +∞

−∞

P (ε)εdε (27)

Ne +Nh =

∫ +∞

−∞

P (ε)|ε|dε (28)

Ne + Nh can be measured using Shot Noise measure-
ments, see Eq.(5). This was experimentally demon-
strated in [11]. Indeed, if the charges injected by the
pulses in a ballistic conductor are send to a beam-splitter
of transmission D, their partitioning gives the zero tem-
perature noise SI = 2(e2(e/T )D(1 − D)(Ne + Nh) [28].
We now compare various single charge voltage pulses.
For all pulse shapes, the computation of (27) from P (ε)
gives the same average charge 〈q〉 = e/2 per injec-
tion period, trivially resulting from equal bit proba-
bility. The Lorentzian pulses give no extra excitation
∆Nexc = 0 as expected while the square wave pulses give

∆Nexc/ < q >= 0.1289. This is to be compared with
the periodic square wave case for which it was found in
[11, 28] ∆Nexc/ < q >= 0.1082. We have also numeri-
cally computed the case of sine wave voltage pulse injec-
tion where, during a period T , V (t) =

∑
k bk(h/eT )(1−

cos 2π(t − kT )/T )). One finds ∆Nexc/〈q〉 = 0.05476
(and 〈q〉 = e/2) while for the periodic case one has
∆Nexc/〈q〉 = 0.028 (and < q >= 1). This confirms
that sine wave pulses produce less extra excitations that
square wave pulses but in both cases the pseudo-random
binary injection generates more excitations per charge
injected than the periodic injection. From this study
we learn that the number of extra excitations is not only
a property of a given (single) pulse shape but depends
on the way the pulses are injected. The values of the
number of extra electron-hole pair excitation per pulses
∆Nexc/〈q〉 are summarized in table I.

injection 〈q〉 Lorentzian sine pulse square pulse

periodic 1 0 0.028 0.1082
pseudo-random 0.5 0 0.0548 0.1289

TABLE I: ∆Nexc/〈q〉 number of electron-hole pairs per mean
injected charge 〈q〉. Equal bit probability is assumed here.

B Fractional charge pulses

The discrepancy between periodic and binary injec-
tion becomes more pronounced if we consider non-integer
pulses. Indeed, the injection of pulses carrying non-
integer charge can never give rise to a minimal excita-
tion states, even in the case of Lorentzian voltage pulses.
For non minimal excitation pulses, like sine or square
wave pulses, this also manifests as a cusp in the electron-
hole number per pulse versus pulse charge when the
charge crosses an integer value, see Figure 6 in [28]. This
strong result, called Dynamical Orthogonality Catastro-
phe (DOC) in [13] tells us that injecting a non-integer
charge in a non-interacting Fermi system can be done
only at the expense of a large superposition of electron
and hole excitations.

In particular, the number of excited particle-hole pairs
detected over a large time interval t diverges as ln(t/W )
[13, 20, 21], where W is the time for switching the per-
turbation and is typically the width of Lorentzian pulses
here. In general, more space between pulses gives more
freedom to the excited Fermi sea to create extra exci-
tations. Thus, for binary injection, the average waiting
time between injected wave-packets being larger than in
the periodic case, one expects to observe more particle-
hole excitation per pulses.

Results are given here for sine wave pulses in Figure 3
which displays the evolution of ∆Nexc versus the charge
per pulse for periodic and non-periodic binary injection.
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FIG. 4: Hong Ou Mandel shot noise for levitons colliding in
a beam-splitter with time delay θ, as schematically shown in
(a). In (b) The binary (solid line), periodic (dashed line) and
single pulse (dotted line) injection are compared for W =
0.35T . While periodic injection limits the information in the
range [0, T/2], information for a larger time-scale is given by
the binary injection whose variation at small θ are closer to
that of a single pulse. Periodic HOM dips appearing for θ
multiples of T result from bits (0,0) and (1,1) occurrence,
each with 25% probability giving a ≃ 50% HOM dip.

For non-integer charge value, the number of electron-hole
excitations clearly rises signaling the Dynamical Orthog-
onality Catastrophe. As a perspective, a similar study
could shed light on the curious properties of fractional
charge pulses [27, 46] and on the recently considered half-
levitons [45] which are singular zero-energy fractional
excitations minimizing noise in superconducting normal
junctions [47].

V. HONG OU MANDEL INTERFERENCE WITH

PSEUDO-RANDOM BINARY PULSES

Finally we address electronic Hong Ou Mandel
(HOM) correlations where identical binary sequences of
Lorentzian pulses are applied on opposite contacts of a
QPC forming a beam-splitter of transmission D, see Fig.
4(a). We introduce a time delay θ between the two volt-
ages VL(t) = V bin(t − θ/2) and VR(t) = V bin(t + θ/2).
The measure of the HOM interference is given by the

noise SHOM
I (θ) ∝ (1−|〈ψ(θ)|ψ(0)〉|2) observed in the cur-

rent fluctuation of the output leads resulting from two-
electron partitioning, as shown for periodic electron in-
jection in [11, 23]. The time correlation function 〈C(τ, θ)〉
enabling calculation of P (ε), as done in Eq.(14), is:

〈C(τ, θ)〉 = 1 + I(τ, θ) + I(τ,−θ)∗ (29)

I(τ, θ) =
i

2
(cos 2π(τ + θ/2− iw)− cos 2πt+)× ...

...
(cos 2π(τ + θ/2 + iw)− cos 2πt−)

sin 2π(τ − θ/2 + iw) sin 2πτ sin 2π(θ/2− iw)
(30)

where:

t± =

(
τ2+(θ/2)2−w2±

√
4τ2((θ/2)2 − w2)− (wθ/2)2

)1/2

(31)
The HOM noise is shown in Figure 4. For θ = 0 electrons
emitted by identical sequences are undistinguishable at
all time. The Fermi statistics leads to perfect antibunch-
ing and 100% noise suppression is found. We see replica
of noise suppression for θ = kT , 50% deep, which corre-
spond to (0,0) and (1,1) bit events each occurring with
25% probability. These dips could be reduce by one half
using binary Barker codes [48] characterized by a sharply
peaked correlation function 〈bkbk+p〉 at p = 0. The HOM
noise of periodic levitons is shown for comparison as well
as the single pulse HOM noise. The pseudo-random bi-
nary injection is in between and provides information on
the leviton not limited to θ ≤ T/2. To complete this
study we generalize to random injection the remarkable
result, found for periodic injection in [28] and observed
in [49], that the HOM leviton noise shape versus θ is not
affected by temperature, a property not shared by sine
or square wave charge pulses. This is a robust property
which has also been theoretically observed in [51] in the
interacting regime of the Fractional Quantum Hall Ef-
fect where chiral edge channels form Luttinger liquids.
This confirms the prediction of [50] that finite tempera-
ture, unlike de-coherence, does not affect leviton HOM
correlations. This is shown in Figure 5 which demon-
strates the homothetic property of HOM noise curves for
different temperature. Finally, it will be interesting to
consider the HOM noise resulting from interference of
pseudo random multiple charge levitons, that it bk = 0,
1, 2, 3. While we expect zero HOM noise at zero de-
lay, the HOM dip replica should be different from the
case of single charge consider here. In the periodic case,
the HOM noise of doubly charge levitons interfering in
a Quantum Point Contact has been theoretically derived
and experimentally observed in [52]. It would be inter-
esting to look at the effect of pseudo-rando injection for
multiple charge leviton HOM interference in the Frac-
tional Quantum Hall regime in view of the recent theo-
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FIG. 5: Upper graph: Hong Ou Mandel shot noise for levitons
colliding in a beam-splitter with time delay θ and W = 0.05T
for different electronic temperatures Te. Lower graph : The
ratio between curves show that they are homothetic: remark-
ably the shape of the HOM noise curve versus time delay is
not affected by temperature, except an overall reduction fac-
tor, as already observed for periodic injection.

retical observation of crystallized leviton wavepackets in
this interacting regime [53].
To conclude we have generalized the Floquet scattering

approach to the non-periodic driving regime of a quan-
tum conductor. We have given the analytic form of the
time correlation function for the binary pseudo-random
injection of levitons and for other charge pulses carrying
integer charge. We have found the counterintuitive re-
sult that a random, but regular, injection does not spoils
the coherence of wavepackets as signaled by finite off-
diagonal elements of the energy density matrix. For non-
integer charge pulses we found that the number of neu-
tral electron-hole excitations accompanying the pulses in-
creases compared with the periodic injection as a result
of the Dynamical Orthogonality Catastrophe. Consider-
ing the Hong Ou Mandel interference of pseudo-random
integer levitons we found additional HOM dips result-
ing from the statistical antibunching of electrons and we
have confirmed the striking robust temperature indepen-
dent HOM shape versus time delay.
Considering random injection provides a new tool lead-

ing to tractable theoretical results to give new informa-
tion not accessible in periodic injection. Further studies

may include varying the bit injection probability to pro-
vide a systematic study of the DOC or use the binary
injection to simulate flying qubit operation. We think
this work may be also of interest for the rising commu-
nity studying Floquet driven Hamiltonian and give them
new perspectives. We hope that this work will inspire
new studies exploiting spread spectrum approaches to get
new information on electronic or non-electronic quantum
systems.
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Electrons surfing on a sound wave as a platform for quan-
tum optics with flying electrons, Nature 477 435 (2011)

[6] R. McNeil, M. Kataoka, C. Ford, C. Barnes, D. Ander-
son, G. Jones, I. Farrer, and D. Ritchie, On-demand
single-electron transfer between distant quantum dots,
Nature 477, 439 ? 442 (2011)

[7] J. D. Fletcher, P. See, H. Howe, M. Pepper, S. P. Giblin,
J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie,
T. J. B. M. Janssen, and M. Kataoka, Clock-Controlled
Emission of Single-Electron Wave Packets in a Solid-
State Circuit, Phys. Rev. Lett. 111 216807 (2013)

[8] S. Ryu, M. Kataoka, and H.-S. Sim, Ultrafast Emis-
sion and Detection of a Single-Electron Gaussian Wave
Packet: A Theoretical Study, Physical Review Letters,
117, 146802 (2016)

[9] Niels Ubbelohde, Frank Hohls, Vyacheslavs Kashcheyevs,
Timo Wagner, Lukas Fricke, Bernd Kästner, Klaus Pierz,
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quantum optics in quantum hall edge channels, Mod.
Phys. Lett. B. 25 10531073 (2011).

[26] G. Haack, M. Moskalets, M. Büttiker, Glauber coherence
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[31] Ya. M. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000)
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