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This paper is devoted to study the dispersive properties of the linear Klein-Gordon and wave equations on a class of locally symmetric spaces. As a consequence, we obtain the Strichartz estimate and prove global wellposedness results for the corresponding semilinear equation with low regularity data as on real hyperbolic spaces.

Introduction

Let M be a Riemannian manifold and denote by ∆ the Laplace-Beltrami operator on M . The theory is well established for the following wave equation on M = R n ,

∂ 2 t u(t, x) -∆u(t, x) = F (t, x), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x), (1.1) 
where the solutions u satisify the Strichartz estimates:

1 ∇ R×R n u L p (I;H -σ,q (R n )) f H 1 (R n ) + g L 2 (R n ) + F L p (I;H σ, q (R n )) ,
on any interval I ⊆ R under the assumptions

σ = n + 1 2 1 2 - 1 q , σ = n + 1 2 1 2 - 1 q ,
and the couples (p, q), (p, q) ∈ (2, +∞]×[2, 2 n-1 n-3 ) fulfill the admissibility conditions:

1 p = n -1 2 1 2 - 1 q , 1 p = n -1 2 1 2 - 1 q .
These estimates serve as a tool for finding minimal regularity conditions on the initial data ensuring well-posedness for corresponding semilinear wave equations, which is addressed in [START_REF] Kapitanski | Weak and yet weaker solutions of semilinear wave equations[END_REF], and almost fully answered in [START_REF] D'ancona | Weighted decay estimates for the wave equation[END_REF][START_REF] Georgiev | Weighted Strichartz estimates and global existence for semilinear wave equations[END_REF][START_REF] Keel | Endpoint Strichartz estimates[END_REF][START_REF] Lindblad | On existence and scattering with minimal regularity for semilinear wave equations[END_REF].

Analogous results have been found for the Klein-Gordon equation

∂ 2 t u(t, x) -∆u(t, x) + cu(t, x) = F (t, x), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x).
(1.2) with c = 1, see [START_REF] Bahouri | High frequency approximation of solutions to critical nonlinear wave equations[END_REF][START_REF] Ginibre | Generalized Strichartz inequalities for the wave equation[END_REF][START_REF] Machihara | Small global solutions for nonlinear Dirac equations[END_REF][START_REF] Nakanishi | Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power[END_REF].

Given the rich Euclidean theory, it is natural to look at the corresponding equations on more general manifolds. We consider in the present paper a class of noncompact locally symmetric spaces M , on which we study the Klein-Gordon equation (1.2) with c ≥ -ρ 2 , where ρ is a positive constant depending on the structure of M and defined in the next section. Due to large-scale dispersive effects in negative curvature, we expect stronger results than in the Euclidean setting, as on real hyperbolic space, see [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF][START_REF] Anker | The wave equation on hyperbolic spaces[END_REF].

In the critical case c = -ρ 2 , (1.2) is called the shifted wave equation. To our knowledge, it was first considered in [START_REF] Fontaine | Une équation semi-linéaire des ondes sur H 3[END_REF][START_REF] Fontaine | A semilinear wave equation on hyperbolic spaces[END_REF] in low dimensions n = 2 and n = 3. In [START_REF] Anker | The wave equation on hyperbolic spaces[END_REF][START_REF] Anker | The wave equation on Damek-Ricci spaces[END_REF], a detailed analysis of the shifted wave equation was carried out on real hyperbolic spaces and on Damek-Ricci spaces, which contains all rank one symmetric spaces of noncompact type. In the non-shifted case c > -ρ 2 , similar results on real hyperbolic spaces were obtained in [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF].

In the recent paper [START_REF] Fotiadis | Schrödinger equations on locally symmetric spaces[END_REF], the Schrödinger equation was considered on certain locally symmetric spaces. In the present paper, we study the wave and Klein-Gordon equations in the same spirit.

Notations

We adopt the standard notation (see for instance [START_REF] Helgason | Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions[END_REF], [START_REF] Bunke | The spectrum of Kleinian manifolds[END_REF]). Let G be a semisimple Lie group, connected, noncompact, with finite center, and K be a maximal compact subgroup of G. The homogenous space X = G/K is a Riemannian symmetric space of noncompact type, whose dimension is denoted by n. Let g = k ⊕ p be the Cartan decomposition of its Lie algebra. The Killing form of g induces a K-invariant inner product on p, and hence a G-invariant Riemannian metric on G/K.

Fix a maximal abelian subspace a in p. The symmetric space X is said to have rank one if dim a = 1. Denote by a * the real dual of a, let Σ ⊂ a * be the root system of (g, a) and denote by W the Weyl group associated to Σ. Choose a set Σ + of positive roots, let a + ⊂ a be the corresponding positive Weyl chamber and a + its closure. Denote by ρ the half sum of positive roots counted with their multiplicities:

ρ = 1 2 α∈Σ + m α α,
where m α is the dimension of root space

g a = {Y ∈ g | [H, Y ] = α(H)Y, ∀H ∈ a }.
Let Γ be a discrete torsion-free subgroup of G. The locally symmetric space M = Γ\X, equipped with the Riemannian structure inherited from X becomes a Riemannian manifold. We say that M has rank one if X has rank one. Moreover Γ is called convex cocompact if the quotient group Γ\ Conv(Λ Γ ) is compact, where Conv(Λ Γ ) is the convex hull of the limit set Λ Γ of Γ. We denote by ∆ the Laplace-Beltrami operator, by d(•, •) the Riemannian distance, and by dx the associated measure, both on X and M . Consider the Poincaré series P (s; x, y) = γ∈Γ e -sd(x,γy) , s > 0, x, y ∈ X, and denote by δ(Γ) its critical exponent:

δ(Γ) = inf {s > 0 | P (s; x, y) < +∞} .

Assumptions

In this paper, M = Γ\X is a rank one locally symmetric space such that Γ is convex cocompact and δ(Γ) < ρ.

Let us comment a few words on these assumptions. Wave type equations on noncompact rank one symmetric spaces are well understood. Sharp pointwise estimates of wave kernels on X(see Section 2.2), which were obtained in [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF][START_REF] Anker | The wave equation on hyperbolic spaces[END_REF], allow us to deal with wave kernels on a locally symmetric space M . Notice that such information is lacking in higher rank.

The rank one symmetric spaces of the noncompact type are the hyperbolic spaces

H n (F) with F = R, C, H or H 2 (O).
In particular, we have a * = a and a + ∼ = R * + , hence ρ is just a positive constant depending on the structure of X. Specifically, as a direct consequence of the assumption δ(Γ) < ρ, the series (3.1) defining the wave kernel on M is absolutely convergent, see Proposition 3.1. In addition, according to [START_REF] Corlette | Hausdorff dimensions of limit sets[END_REF], the bottom λ 0 of the L 2 -spectrum of -∆ on M is equal to ρ 2 , as on X. Consequently, we obtain an analogous L 2 Kunze-Stein phenomenon on M without further assumptions, see Proposition 3.2. Notice that λ 0 = ρ 2 > 0 implies Vol(M ) = +∞, while λ 0 = 0 if M is a lattice.

At last, the convex cocompactness assumption implies a uniform upper bound of the Poincaré series, see Lemma 3.3, which is crucial for the L 1 → L ∞ boundedness of wave propagators on M .

Remark 1.1. The Schrödinger equation is studied in [START_REF] Fotiadis | Schrödinger equations on locally symmetric spaces[END_REF] under slightly different assumptions, our well-posedness results hold also in that setting.

Statement of the results

Consider the operator D = -∆ -ρ 2 + κ 2 with κ > 0, then the Klein-Gordon equations (1.2) becomes

∂ 2 t u(t, x) + D 2 x u(t, x) = F (t, x), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x). (1.3) with c = κ 2 -ρ 2 > -ρ 2 . Notice that (1.
3) is the wave equation when κ = ρ and becomes the shifted wave equation in the limit case κ = 0. Consider another operator D = -∆ -ρ 2 + κ 2 with κ > ρ. We denote by ω σ t the radial convolution kernel of the wave operator W σ t := D -σ e itD on the symmetric space X:

W σ t f (x) = f * ω σ t (x) = G ω σ t (y -1 x)f (y)dy, (1.4)
where f is any reasonable function on X, see Section 2.2 for more details. By K-bi-invariance of the kernel ω σ t , we deduce that W σ t f is left Γ-invariant and right K-invariant if f is defined on the locally symmetric space M . Thus the wave operator on M , denoted by W σ t , is also defined by (1.4). Consider the wave kernel ω σ t on M , which is given by

ω σ t (x, y) = γ∈Γ ω σ t (y -1 γx), ∀x, y ∈ X.
Then the wave operator W σ t on M is an integral operator:

W σ t f (x) = M ω σ t (x, y)f (y)dy, see Proposition 3.1.
The aim of this paper is to prove the following dispersive properties:

Theorem 1.2. For n ≥ 3, 2 < q < +∞ and σ ≥ (n + 1) 1 2 -1 q , W σ t L q (M )→L q (M ) |t| -(n-1)( 1 2 -1 q ) if 0 < |t| < 1, |t| -3 2 if |t| ≥ 1. (1.5) Remark 1.3. In dimension n = 2,
there is an additional logarithmic factor in the small time bound, which becomes |t| -(

1 2 -1 q ) (1 -log |t|) 1-2
q , see Theorem 2.1 in the next section.

Remark 1.4. At the endpoint q = 2, t → e itD is a one-parameter group of unitary operators on L 2 (M ).

By applying the classical T T * method and by using the previous dispersive properties, we obtain the Strichartz estimate

∇ R×M u L p (I;H -σ,q (M )) f H 1 (M ) + g L 2 (M ) + F L p (I;H σ, q (M ))
for the solutions u of (1.3), see Section 4 for more information about the Sobolev spaces H -σ,q (M ). Here I ⊂ R is any time interval, possibly unbounded,

σ ≥ n + 1 2 1 2 - 1 q , σ ≥ n + 1 2 1 2 - 1 q ,
and the couples (p, q) and (p, q) are admissible, which means that 1 p , 1 q , 1 p , 1 q belong, in dimension n ≥ 4 (see Section 4 for the lower dimensions) to the triangle

1 p , 1 q ∈ 0, 1 2 × 0, 1 2 
1 p ≥ n -1 2 1 2 - 1 q 0, 1 2 , 1 2 , 1 2 - 1 n -1 . 1 p 1 q 1 2 1 2 -1 n-1 0 1 2 1 p = n-1 2 1 2 -1 q Figure 1. Admissibility in dimension n ≥ 4.
Notice that the admissible set for M is larger than the admissible set for R n which corresponds only to the lower edge of the triangle. In comparison with X, we loose the right edge of the triangle, which corresponds to the critical case 1 p = 1 and 1 q > 1 2 -1 n-1 , this will be explained in Section 4. Notice that we obtain nevertheless the same well-posedness results as on X.

This paper is organized as follows. In Section 2, we review spherical analysis on noncompact symmetric spaces, and recall pointwise estimates of wave kernels on rank one symmetric space obtained in [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF]. In Section 3, after proving the necessary lemmas, we prove the dispersive estimate by an interpolation argument. As a consequence, we deduce the Strichartz estimate and obtain well-posedness results for the semilinear Klein-Gordon equation in Section 4.

Preliminairies

Spherical analysis on noncompact symmetric spaces

We review in this section some elementary facts about noncompact symmetric spaces. We refer to [START_REF] Anker | Lp Fourier multipliers on Riemannian symmetric spaces of the noncompact type[END_REF][START_REF] Anker | Spherical analysis on harmonic AN groups[END_REF][START_REF] Faraut | Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques[END_REF][START_REF] Helgason | Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions[END_REF] for more details.

Recall that a + is the closure of the positive Weyl chamber a + . Denote by n = α∈Σ + g α the nilpotent Lie subalgebra of g associated with Σ + , and by N the corresponding Lie subgroup of G. Then we have the following two decompositions of G:

G = N (exp a) K (Iwasawa), G = K (exp a+) K (Cartan).
In the Cartan decomposition, the Haar measure on G writes

G f (g)dg = const. K dk 1 a+ α∈Σ + (sinh α(H)) mα dH K f (k 1 (exp H)k 2 )dk 2 .
(2.1)

In the rank one case, which we consider in this paper,

a+ α∈Σ + (sinh α(H)) mα dH = const. +∞ 0 (sinh r) mα (sinh 2r) m2α dr,
where

(sinh r) mα (sinh 2r) m2α e 2ρr , ∀r > 0. (2.2)
Denote by S(K\G/K) the Schwartz space of K-bi-invariant functions on G. The spherical Fourier transform H is defined by

Hf (λ) = G f (x)ϕ λ (x)dx, ∀λ ∈ a * ∼ = R, ∀f ∈ S(K\G/K).
Here ϕ λ ∈ C ∞ (K\G/K) is a spherical function, which can be characterized as a radial eigenfunction of the negative Laplace-Beltrami operator -∆ satisfying

(2.3) -∆ϕ λ (x) = λ 2 + ρ 2 ϕ λ (x), ϕ λ (e) = 1.
In the noncompact case, the spherical function is characterized by

ϕ λ (x) = K e (iλ+ρ)A(kx) dk, λ ∈ a * C , (2.4)
where A(kx) is the unique a-component in the Iwasawa decomposition of kx.

Denote by S (a * )

W the subspace of W -invariant functions in the Schwartz space S (a * ). Then H is an isomorphism between S(K\G/K) and S (a * ) W . The inverse spherical Fourier transform is defined by

f (x) = const. a * Hf (λ)ϕ -λ (x)|c(λ)| -2 dλ, ∀x ∈ G, ∀f ∈ S(a * ) W ,
where c(λ) is the Harish-Chandra c-function.

Pointwise estimates of the wave kernel on symmetric spaces

We recall in this section the pointwise wave kernel estimates on rank one symmetric space obtained in [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF] and [START_REF] Anker | The wave equation on Damek-Ricci spaces[END_REF]. Via the spherical Fourier transform and (2.3), the negative Laplace-Beltrami operator -∆ corresponds to λ 2 +ρ 2 , hence the operators

D = -∆ -ρ 2 + κ 2 and D = -∆ -ρ 2 + κ 2 to λ 2 + κ 2 and λ 2 + κ2 .
By the inverse spherical Fourier transform, the radial convolution kernel ω σ t of W σ t = D -σ e itD on X is given by

ω σ t (r) = const. +∞ -∞ (λ 2 + κ2 ) -σ 2 e it √ λ 2 +κ 2 ϕ λ (r)|c(λ)| -2 dλ
for suitable exponents σ ∈ R. Consider smooth even cut-off functions χ 0 and χ ∞ on R such that

     χ 0 (λ) + χ ∞ (λ) = 1, χ 0 (λ) = 1, ∀|λ| ≤ 1, χ ∞ (λ) = 1, ∀|λ| ≥ 2.
Let us split up

ω σ t (r) =ω σ,0 t (r) + ω σ,∞ t (r) = const. +∞ -∞ χ 0 (λ)(λ 2 + κ2 ) -σ 2 e it √ λ 2 +κ 2 ϕ λ (r)|c(λ)| -2 dλ + const. +∞ -∞ χ ∞ (λ)(λ 2 + κ2 ) -σ 2 e it √ λ 2 +κ 2 ϕ λ (r)|c(λ)| -2 dλ.
To avoid possible singularities of the kernel ω σ,∞ t , see [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Chap 9], we consider the analytic family of operators

W σ,∞ t := e σ 2 Γ n+1 2 -σ χ ∞ (D) D-σ e itD , (2.5) in the vertical strip 0 ≤ Re σ ≤ n+1
2 , and their kernels

ω σ,∞ t (r) = const. e σ 2 Γ n+1 2 -σ +∞ -∞ χ ∞ (λ)(λ 2 + κ2 ) -σ 2 e it √ λ 2 +κ 2 ϕ λ (r)|c(λ)| -2 dλ.
The following pointwise estimates of the kernels ω σ,0 t and ω σ,∞ t , which were obtained in [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF] for real hyperbolic spaces, extend straightforwardly to all rank one Riemannian symmetric spaces of the noncompact type.

Theorem 2.1. For all σ ∈ R, the kernel ω σ,0 t satisfies

|ω σ,0 t (r)| ϕ 0 (r), ∀t ∈ R, ∀r ≥ 0, |t| -3 2 (1 + r)ϕ 0 (r), ∀|t| ≥ 1, ∀ 0 ≤ r ≤ |t| 2 . For all σ ∈ C with Re σ = n+1
2 , and for every r ≥ 0, the following estimates hold for the kernel ω σ,∞ t :

| ω σ,∞ t (r)| |t| -n-1 2 e -ρr , ∀0 < |t| < 1, if n ≥ 3, |t| -N (1 + r) N ϕ 0 (r), ∀|t| ≥ 1, ∀N ∈ N.
In the 2-dimensional case, the small time estimate of ω σ,∞ t reads

| ω σ,∞ t (r)| |t| -1 2 (1 -log |t|)e -r 2 , ∀0 < |t| < 1.

Dispersive estimates for the wave operator on locally symmetric spaces

In this section, we prove our main result, namely Theorem 1.2. Let us first describe the wave operator W σ t on locally symmetric space M . Recall that the wave kernel on M is given by

ω σ t (x, y) = γ∈Γ ω σ t (y -1 γx), ∀x, y ∈ X. (3.1)
Proposition 3.1. The series (3.1) is convergent for every x, y ∈ X, and the wave operator on M is given by

W σ t f (x) = M ω σ t (x, y)f (y)dy,
for any reasonable function f on M .

Proof. According to the Cartan decomposition of G, we can write y

-1 γx = k γ (exp H γ )k γ with H γ ∈ R + and k γ , k γ ∈ K.
Notice that H γ = d(x, γy). Then, by the K-biinvariance of ω σ t , we have

| ω σ t (x, y)| = γ∈Γ ω σ t (exp H γ ) γ∈Γ |ω σ,0 t (exp H γ )| + γ∈Γ |ω σ,∞ t (exp H γ )|.
For the first part, Theorem 2.1 implies that for all H γ ≥ 0,

γ∈Γ |ω σ,0 t (exp H γ )| γ∈Γ ϕ 0 (exp H γ ) γ∈Γ (1 + H γ )e -ρHγ .
By choosing 0 < ε < ρ -δ(Γ), we obtain

γ∈Γ |ω σ,0 t (exp H γ )| γ∈Γ e -(δ(Γ)+ε)d(x,γy) = P δ(Γ)+ε (x, y) < +∞.
The second part is handled similarly and thus omitted. Hence the serie (3.1) is convergent. According to (1.4), we know that

W σ t f (x) = G ω σ t (y -1 x)f (y)dy = X ω σ t (y -1 x)f (y)dy,
since ω σ t is K-bi-invariant and f is right K-invariant. By using Weyl's formula and the fact that f is left Γ-invariant, we deduce that

W σ t f (x) = Γ\X   γ∈Γ f (γy)ω σ t (y -1 γx)   dy = M ω σ t (x, y)f (y)dy.
Next, we introduce the following version of the L 2 Kunze-Stein phenomenon on locally symmetric space M , which plays an essential role in the proof of the dispersive estimate. Proposition 3.2. Let ψ be a reasonable bi-K-invariant functions on G, e.g., in the Schwartz class. Then

. * ψ L 2 (M )→L 2 (M ) ≤ G |ψ(x)|ϕ 0 (x)dx. (3.2)
The Kunze-Stein phenomenon is a remarkable convolution property on semisimple Lie groups and symmetric spaces (see e.g., [START_REF] Kunze | Uniformly bounded representations and harmonic analysis of the 2 × 2 real unimodular group[END_REF], [START_REF] Herz | Sur le phénomène de Kunze-Stein[END_REF], [START_REF] Cowling | The Kunze-Stein phenomenon[END_REF] and [START_REF] Ionescu | An endpoint estimate for the Kunze-Stein phenomenon and related maximal operators[END_REF]), which was extended to some classes of locally symmetric spaces in [START_REF] Lohoué | Invariants géométriques des espaces localement symétriques et théorèmes de multiplicateurs[END_REF] and [START_REF] Lohoué | Multipliers on locally symmetric spaces[END_REF]. Let us prove Proposition 3.2 along the lines of [START_REF] Lohoué | Multipliers on locally symmetric spaces[END_REF] in our setting where rank X = 1, δ(Γ) < ρ and with no additional assumption.

Proof. Since G is a connected semisimple Lie group, it is of type I, [START_REF] Harish-Chandra | Representations of semisimple Lie groups[END_REF][START_REF] Dixmier | C * -algebras[END_REF]. Denote by G the unitary dual of G and by G K the spherical subdual. We write L 2 (Γ\G) as the direct integral

L 2 (Γ\G) ∼ = ⊕ G H π dν(π) and L 2 (M ) ∼ = ⊕ G K (H π ) K dν(π) (3.3)
accordingly, where ν is a positive measure on G, see for instance [START_REF] Bunke | The spectrum of Kleinian manifolds[END_REF]. Recall that (H π ) K = Ce π is one-dimensional for every π ∈ G K . Recall moreover that, in rank one, G K is parametrized by a subset of C/ ± 1. Specifically, G K consists of • the unitary spherical principal series π ±λ (λ ∈ R/ ± 1),

• the trivial representation π ±iρ = 1,

• the complementary series π ±iλ (λ ∈ I), where

I = (0, ρ) if X = H n (R) or H n (C), 0, mα 2 + 1 if X = H n (H) or H 2 (O).
This result goes back to [START_REF] Kostant | On the existence and irreducibility of certain series of representations[END_REF]. Under the assumption δ(Γ) ≤ ρ, we know that λ 0 = ρ 2 is the bottom of the spectrum of -∆ on L 2 (M ). As -∆ acts on (H π ) K by multiplication by λ 2 + ρ 2 , we deduce that (3.3) involves only tempered representations, i.e., representations π λ with λ ∈ R/ ± 1. Moreover, as the right convolution by ψ ∈ S(K\G/K) acts on (H π λ ) K by multiplication by

Hf (λ) = G f (x)ϕ λ (x)dx,
where ϕ λ (x) = π λ (x)e π λ , e π λ is the spherical function (2.3), we deduce from (2.4) that

. * ψ L 2 (M )→L 2 (M ) ≤ sup λ∈R G ψ(x)ϕ λ (x)dx ≤ G |ψ(x)|ϕ 0 (x)dx.
The following two lemmas are used in the proof of dispersive estimates.

Lemma 3.3. If Γ is convex cocompact, then there exists a constant C > 0 such that for all x, y ∈ X, P (s; x, y) ≤ CP (s; 0, 0), where 0 = eK denotes the origin of X.

Proof. Let Conv(Λ Γ ) be the convex hull of the limit set Λ Γ of Γ. Recall that Γ is said to be convex cocompact if Γ\ Conv(Λ Γ ) is compact. Let F be a compact fundamental domain containing 0 for the action of Γ on Conv(Λ Γ ). Then, for each z ∈ Conv(Λ Γ ), there exists γ ∈ Γ and z ∈ F such that z = γz . The orthogonal projection π ⊥ : X → Conv(Λ Γ ) is defined as follows. For every

x in X, π ⊥ (x) is the unique point in Conv(Λ Γ ) such that d(x, π ⊥ (x)) = d(x, Conv(Λ Γ )) := inf y∈Conv(ΛΓ) d(x, y).
Then, for all x, y ∈ X, we have (see [START_REF] Bridson | of Grundlehren der Mathematischen Wissenschaften[END_REF], Chap II, Proposition 2.4.)

d(π ⊥ (x), π ⊥ (y)) ≤ d(x, y).
On the other hand, for all x ∈ X and γ ∈ Γ,

d(γx, π ⊥ (γx)) = d(γx, Conv(Λ Γ )) = d(x, Conv(Λ Γ )), since Λ Γ and Conv(Λ Γ ) are Γ-invariant. Thus d(γx, π ⊥ (γx)) = d(x, π ⊥ (x)) = d(γx, γπ ⊥ (x)),
which implies that, for all x ∈ X and γ ∈ Γ, π ⊥ (γx) = γπ ⊥ (x). Therefore, for every x, y ∈ X and s > 0, the Poincaré series satisfies:

P (s; x, y) = γ∈Γ e -sd(x,γy) ≤ γ∈Γ e -sd(π ⊥ (x),π ⊥ (γy)) = γ∈Γ e -sd(π ⊥ (x),γπ ⊥ (y)) = P (s; π ⊥ (x), π ⊥ (y)), (3.4) 
with π ⊥ (x), π ⊥ (y) ∈ Conv(Λ Γ ). Moreover, as there exist γ 1 , γ 2 ∈ Γ and x , y ∈ F such that π ⊥ (x) = γ 1 x , π ⊥ (y) = γ 2 y , we have

P (s; π ⊥ (x), π ⊥ (y)) = γ∈Γ e -sd(x ,γ -1 1 γγ2y ) =
γ ∈Γ e -sd(x ,γ y ) = P (s; x , y ). Consider the radial weight function defined by µ(x) = e (δ(Γ)+ε)d(x,0) , with 0 < ε < ρ -δ(Γ). We prove the following lemma by applying previous results. Lemma 3.4. Let f be a reasonable function on M , and g be a radial reasonable function on X. Then the bilinear operator B(f, g) := f * (µ -1 g) satisfies the following estimate:

B(•, g) L q (M )→L q (M ) ≤ C q G ϕ 0 (x)µ -1 (x)|g(x)| q/2 dx 2/q , for all 2 ≤ q ≤ ∞.
Proof. According to Proposition 3.2,

B(•, g) L 2 (M )→L 2 (M ) ≤ G ϕ 0 (x)µ -1 (x)|g(x)|dx. (3.7) Since f is left Γ-invariant, we can rewrite B(f, g)(x) = X µ -1 g y -1 x f (y)dy = Γ\X   γ∈Γ µ -1 g y -1 γx   f (y)dy, with γ∈Γ µ -1 g y -1 γx ≤||g|| ∞ γ∈Γ e -(δ(Γ)+ε)d(x,γy) ≤||g|| ∞ P δ(Γ)+ε (x, y) ≤ ||g|| ∞ P δ(Γ)+ε (0, 0), according to Lemma 3.3. Hence B(•, g) L 1 (M )→L ∞ (M ) = sup x,y∈G γ∈Γ µ -1 g y -1 γx ≤ C||g|| ∞ . (3.8)
We conclude by standard interpolations between (3.7) and (3.8).

We prove now our main result.

Proof of Theorem 1.2. We split up the proof into two parts, depending whether the time t is small or large. Dispersive estimate for small time Assume that 0 < |t| < 1. On the one hand, by using the Lemma 3.4 with g(x) = µ(x)ω σ,0 t (x), we have

• * ω σ,0 t L q (M )→L q (M ) ≤ C q G ϕ 0 (x)µ(x) q 2 -1 |ω σ,0 t (x)| q 2 dx 2 q
.

Notice that the ground spherical function ϕ 0 , the weight µ and the kernel ω σ,0 t are all K-bi-invariant. By using the expression (2.1) of the Haar measure in the Cartan decomposition, together with the estimate (2.2), we obtain fisrt

G ϕ 0 (x)µ(x) q 2 -1 |ω σ,0 t (x)| q 2 dx +∞ 0 ϕ 0 (r)µ(r) q 2 -1 |ω σ,0 t (r)| q 2 e 2ρr dr.
As |ω σ,0 t (r)| ϕ 0 (r), according to Theorem 2.1, and 2 ϕ 0 (r) (1 + r)e -ρr , we obtain next

+∞ 0 ϕ 0 (r)µ(r) q 2 -1 |ω σ,0 t (r)| q 2 e 2ρr dr +∞ 0 (1 + r) q 2 +1 e -( q 2 -1)(ρ-δ(Γ)-ε)r dr.
Since ρ -δ(Γ) -ε > 0, the last integral is finite for any 2 < q < +∞. By using Lemma 3.4, we conclude that sup 0<|t|<1

• * ω σ,0 t L q (M )→L q (M ) < +∞.

On the other hand, consider the analytic family of operators W σ,∞ t defined by (2.5). When Re σ = 0, the spectral theorem yields

W σ,∞ t L 2 (M )→L 2 (M ) e itD L 2 (M )→L 2 (M ) = 1, (3.9) for all t ∈ R * . When Re σ = n+1 2 , Theorem 2.1 yields W σ,∞ t L 1 (M )→L ∞ (M ) = sup x,y∈M ωσ t (x, y) µω σ t (x, y) ∞ |t| -n-1 2 in dimension n ≥ 3.
By applying Stein's interpolation theorem for an analytic family of operators, we obtain

W n+1 2 (1-θ),∞ t L q (M )→L q (M ) |t| -n-1 2 (1-θ) ,
where θ = 2 q , that is

• * ω σ,∞ t L q (M )→L q (M ) |t| -(n-1)( 1 2 -1 q ) ,
with σ = (n + 1)( 1 2 -1 q ). In conclusion,

W σ t L q (M )→L q (M ) |t| -(n-1)( 1 2 -1 q ) , ∀0 < |t| < 1
for n ≥ 3, σ = (n + 1)( 1 2 -1 q ) and 2 < q < ∞. In dimension n = 2, the same arguments yield

W σ t L q (M )→L q (M ) |t| -( 1 2 -1 q ) (1 -log |t|) 1-2 q , ∀0 < |t| < 1 for σ = 3 1 2 -1 q
and 2 < q < +∞.

Dispersive estimate for large time

Assume now that |t| ≥ 1. We proceed as before after splitting up the kernel as follows:

ω σ t = 1 B(0, |t| 2 ) ω σ,0 t + 1 X\B(0, |t| 2 ) ω σ,0 t + ω σ,∞ t
. 2 The symbol means that there exist two constants 0 < C 1 ≤ C 2 < +∞ such that

C 1 ≤ ϕ 0 (r) (1 + r)e -ρr ≤ C 2 , ∀r ≥ 0.
By using Lemma 3.4 and Theorem 2.1, we obtain

• * 1 B(0, |t| 2 ) ω σ,0 t L q (M )→L q (M ) |t| 2 0 ϕ 0 (r)µ(r) q 2 -1 |ω σ,0 t (r)| q 2 e 2ρr dr 2 q |t| -3 2 |t| 2 0 (1 + r) 1+q e -( q 2 -1)(ρ-δ(Γ)-ε)r dr 2 q <+∞ and f * 1 X\B(0, |t| 2 ) ω σ,0 t L q (M )→L q (M ) +∞ |t| 2 ϕ 0 (r)µ(r) q 2 -1 |ω σ,0 t (r)| q 2 e 2ρr dr 2 q +∞ |t| 2 (1 + r) q 2 +1 e -( q 2 -1)(ρ-δ(Γ)-ε)r dr 2 q , which is O(|t| -N ), for any N > 0. Instead of ω σ,∞ t
, we consider again the kernel ω σ,∞ t . By Theorem 2.1, the associated operators satisfy

W σ,∞ t L 1 (M )→L ∞ (M ) |t| -N , ∀N ∈ N
when Re σ = n+1 2 . By using again Stein's interpolation theorem and by summing up these estimates, we obtain finally

W σ t L q (M )→L q (M ) |t| -3 2 , ∀|t| ≥ 1
for n ≥ 2, σ = (n + 1)( 1 2 -1 q ) and 2 < q < ∞.

Strichartz estimate and applications

Let σ ∈ R and 1 < q < ∞. Recall that the Sobolev space H σ,q (M ) is the image of L q (M ) under the operator (-∆) -σ 2 , equipped with the norm

f H σ,q (M ) = (-∆) σ 2 f L q (M ) .
If σ = N is a nonnegative integer, then H σ,q (M ) coincides with the classical Sobolev space

W N,q (M ) = f ∈ L q (M ) | ∇ j f ∈ L q (M ), ∀1 ≤ j ≤ N ,
defined by means of covariant derivatives. The following Sobolev embedding theorem is used in next subsection:

Theorem 4.1. Let 1 < q 1 , q 2 < ∞ and σ 1 , σ 2 ∈ R such that σ 1 -σ 2 ≥ n q1 -n q2 ≥ 0. Then H σ1,q1 (M ) ⊂ H σ2,q2 (M ). (4.1)
We refer to [START_REF] Triebel | Theory of function spaces[END_REF] for more details about function spaces on Riemannian manifolds. Let us state next the Strichartz estimate and some applications. The proofs are straightforwardly adapted from [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF] and are therefore omitted.

Strichartz estimate

Recall the linear inhomogenous Klein-Gordon equation on M :

∂ 2 t u(t, x) + D 2 u(t, x) = F (t, x), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x). (4.2)
whose solution is given by Duhamel's formula:

u(t, x) = (cos tD) f (x) + sin tD D g(x) + t 0 sin(t -s)D D F (s, x)ds.
We consider first the case n ≥ 4 and discuss the 2-dimensional and 3-dimensional cases in the final remarks. Recall that a couple (p, q) is called admissible if 1 p , 1 q belongs to the triangle Theorem 4.2. Let (p, q) and (p, q) be two admissible couples, and let

1 p , 1 q ∈ 0, 1 2 × 0, 1 2 
1 p ≥ n -1 2 1 2 - 1 q 0, 1 2 , 1 2 , 1 2 - 1 n -1 . 1 p 1 q 1 2 1 2 -1 n-1 0 1 2 1 p = n-1
σ ≥ n + 1 2 1 2 - 1 q and σ ≥ n + 1 2 1 2 - 1 q .
Then all solutions u to the Cauchy problem (4.2) satisfy the following Strichartz estimate:

∇ R×M u L p (I;H -σ,q (M )) f H 1 (M ) + g L 2 (M ) + F L p (I;H σ, q (M )) . (4.3) Remark 4.3. In comparison with hyperbolic spaces , observe that we loose the right edge of the admissible triangle. The reason is that the standard T T * method used to prove the Strichartz estimate breaks down in the critical case where p = 2 and q < 2 n-1 n-3 . The dyadic decomposition method carried out in [START_REF] Keel | Endpoint Strichartz estimates[END_REF] takes care of the endpoints, but it requires a stronger dispersive property than Theorem 1.2 in small time, which reads W σ t L q (M )→L q (M ) |t| -(n-1) max( 12 -1 q , 1 2 -1 q ) , ∀ 0 < |t| < 1 We refer to [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF] for more detailed proofs of the following well-posedness results. By using the classical fixed point scheme with the previous Strichartz estimates, one obtains the global well-posedness for the semilinear equation and small initial data f and g. Assume that n ≥ 3, and consider the following powers 

γ 1 = 1 + 3 n , γ 2 = 1 + 2 n-1 2 + 2 n-1 , γ c = 1 + 4 n -1 , γ 3 =    n+6 2 + 2 n-1 + 4n+( 6-n 2 + 2 n-1 ) 2 n if n ≤ 5, 1 + 2 n-1 2 -1 n-1 if n ≥ 6, γ 4 =    1 + 4 n-2 if n ≤ 5,

(3. 5 )

 5 Since x , y ∈ F , the triangular inequality yields d(0, γ 0) ≤ d(0, x ) + d(x , γ y ) + d(γ y , γ 0) ≤ d(x , γ y ) + 2 diam(F ). Hence P (s; x , y ) ≤ e 2s diam(F ) P (s; 0, 0).(3.6) We conclude by combining (3.4), (3.5) and(3.6).
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∂ 2 t

 2 u(t, x) + D 2 u(t, x) = F (u(t, x)), u(0, x) = f (x), ∂ t | t=0 u(t, x) = g(x).

(4. 4 )

 4 on M with power-like nonlinearities F satisfying|F (u)| ≤ C|u| γ , |F (u) -F (v)| ≤ C |u| γ-1 + |v| γ-1 |u -v|, γ > 1.

for n ≥ 3, 2 < q, q < ∞ and σ ≥ (n + 1) max 1 2 -1 q , 1 2 -1 q . Such an estimate would follow from

and 2 < q < +∞, which is unknown so far. However, these critical points are not relevant for the following well-posedness problems, hence we obtain the same results as on real hyperbolic spaces. The admissible range in (4.3) can be widen by using the Sobolev embedding theorem.

Corollary 4.4. Let (p, q) and (p, q) be two couples corresponding to the square

and similarly σ ≥ σ(p, q). Then the Strichartz estimate (4.3) holds for all solutions to the Cauchy problem (4.2).

Remark 4.5. Theorem 4.2 and Corollary 4.4 still hold true in lower dimension n = 3 and n = 2 with similar proofs. In particular, the endpoint (p, q) = (2, ∞) is excluded and the admissible set in dimension 2 becomes

and the region in Corollary 4.4 is

Denote by 0 + any small positive constant. In dimension n ≥ 3, the equation (4.4) is globally well-posed for small initial data in H σ,2 (M ) × H σ-1,2 (M ) provided that

Similar results hold in dimension 2, see [START_REF] Anker | Wave and Klein-Gordon equations on hyperbolic spaces[END_REF]. Observe that one obtains the same global well-posedness results on M as on real hyperbolic spaces, without further assumptions. In comparison with the Euclidean setting, this is a consequence of the larger admissible set for the Strichartz estimate.