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WAVE AND KLEIN-GORDON EQUATIONS
ON CERTAIN LOCALLY SYMMETRIC SPACES

HONG-WEI ZHANG

Abstract. This paper is devoted to study the dispersive properties of the
linear Klein-Gordon equation on a class of locally symmetric spaces. As a
consequence, we obtain the Strichartz estimate and prove global well-posedness
results for the corresponding semilinear equation with low regularity data as
on real hyperbolic spaces.

1. Introduction

LetM be a Riemannian manifold and denote by ∆ the Laplace-Beltrami operator
on M . The theory is well established for the following wave equation on M = Rn,{

∂2
t u(t, x)−∆u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x),
(1.1)

where the solutions u satisify the Strichartz estimates: 1

‖∇R×Rnu‖Lp(I;H−σ,q(Rn)) . ‖f‖H1(Rn) + ‖g‖L2(Rn) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (Rn)) ,

on any interval I ⊆ R under the assumptions

σ =
n+ 1

2

(
1

2
− 1

q

)
, σ̃ =

n+ 1

2

(
1

2
− 1

q̃

)
,

and the couples (p, q), (p̃, q̃) ∈ (2,+∞]×[2, 2n−1
n−3 ) fulfill the admissibility conditions:

1

p
=
n− 1

2

(
1

2
− 1

q

)
,

1

p̃
=
n− 1

2

(
1

2
− 1

q̃

)
.

These estimates serve as a tool for finding minimal regularity conditions on the
initial data ensuring well-posedness for corresponding semilinear wave equations,
which is addressed in [21], and almost fully answered in [11, 16, 22, 24].

Analogous results have been found for the Klein-Gordon equation{
∂2
t u(t, x)−∆u(t, x) + cu(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(1.2)

with c = 1, see [7, 17, 27, 28].
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1The symbol ., let us recall, means precisely that there exists a constant 0 < C < +∞ such

that ‖∇R×Rnu‖Lp(I;H−σ,q(Rn)) ≤ C
(
‖f‖H1(Rn) + ‖g‖L2(Rn) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (Rn))

)
.
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Given the rich Euclidean theory, it is natural to look at the corresponding equa-
tions on more general manifolds. We consider in the present paper a class of non-
compact locally symmetric spacesM , on which we study the Klein-Gordon equation
(1.2) with c ≥ −ρ2, where ρ is a positive constant depending on the structure of M
and defined in next section. Due to large-scale dispersive effects in negative curva-
ture, we expect stronger results than in the Euclidean setting, as on real hyperbolic
space, see [4, 5].

In the critical case c = −ρ2, (1.2) is called the shifted wave equation. To our
knowledge, it was first considered in [13, 14] in low dimensions n = 2 and n =
3. In [5, 6], a detailed analysis of the shifted wave equation was carried out on
real hyperbolic spaces and on Damek-Ricci spaces, which contains all rank one
symmetric spaces of noncompact type. In the non-shifted case c > −ρ2, similar
results on real hyperbolic spaces were obtained in [4].

In the recent paper [15], the Schrödinger equation was considered on certain
locally symmetric spaces. In the present paper, we study the wave and Klein-
Gordon equations in the same spirit.

1.1. Notations.
Let G be a semisimple Lie group, connected, noncompact, with finite center, and

K be a maximal compact subgroup of G. The homogenous space X = G/K is a
Riemannian symmetric space of the noncompact type, whose dimension is denoted
by n. Let g = k⊕p be the Cartan decomposition of its Lie algebra. The Killing form
of g induces a K-invariant inner product on p, and hence a G-invariant Riemannian
metric on G/K.

Fix a maximal abelian subspace a in p. The symmetric space X is said to have
rank one if dim a = 1. Denote by a∗ the real dual of a, let Σ ⊂ a∗ be the root
system of (g, a) and denote by W the Weyl group associated to Σ. Choose a set Σ+

of positive roots, let a+ ⊂ a be the corresponding positive Weyl chamber and a+ its
closure. Denote by ρ the half sum of positive roots counted with their multiplicites:

ρ =
1

2

∑
α∈Σ+

mαα,

where mα is the dimension of root space ga = {Y ∈ g | [H,Y ] = α(H)Y,∀H ∈ a }.
Let Γ be a discrete torsion-free subgroup of G. The locally symmetric space

M = Γ\X, equipped with the Riemannian structure inherited from X becomes a
Riemannian manifold. We say that M has rank one if X has rank one. Moreover
Γ is called convex cocompact if the quotient group Γ\Conv(ΛΓ) is compact, where
Conv(ΛΓ) is the convex hull of the limit set ΛΓ of Γ. We denote by ∆ the Laplace-
Beltrami operator, by d(·, ·) the Riemannian distance, and by dx the associated
measure, both on X and M . Consider the Poincaré series

P (s;x, y) =
∑
γ∈Γ

e−sd(x,γy), s > 0, x, y ∈ X,

and denote by δ(Γ) its critical exponent:

δ(Γ) = inf {s > 0 | P (s;x, y) < +∞} .

1.2. Assumptions.
In this paper, M = Γ\X is a rank one locally symmetric space such that Γ is

convex cocompact and δ(Γ) < ρ.
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Let us comment a few words on these assumptions. Wave type equations on non-
compact rank one symmetric spaces are well understood. Sharp pointwise estimates
of wave kernels on X(see Section 2.2), which were obtained in [4, 5], allow us to
deal with wave kernels on locally symmetric spaceM . Notice that such information
is lacking in higher rank.

The rank one symmetric spaces of the noncompact type are the hyperbolic spaces
Hn(F) with F = R,C,H or H2(O). In particular, we have a∗ = a and a+ ∼= R∗+,
hence ρ is just a positive constant depending on the structure of X. Specifically, as
a direct consequence of the assumption δ(Γ) < ρ, the series (3.1) defining the wave
kernel on M is absolutely convergent, see Proposition 3.1. In addition, according
to [9], the bottom λ0 of the L2-spectrum of −∆ on M is equal to ρ2, as on X.
Consequently, we obtain an analogous L2 Kunze-Stein phenomenon on M without
further assumptions, see Proposition 3.2. Notice that λ0 = ρ2 > 0 implies Vol(M) =
+∞, because λ0 = 0 if M is a lattice.

At last, the convex cocompactness assumption implies a uniform upper boundary
of the Poincaré series, see Lemma 3.3, which is crucial for the L1 → L∞ bounded-
ness of wave propagators on M .

Remark 1.1. The Schrödinger equation is studied in [15] under slightly different
assumptions, our well-posedness results hold also in that setting.

1.3. Statement of the results.
Consider the operator D =

√
−∆− ρ2 + κ2 with κ > 0, then the Klein-Gordon

equations (1.2) becomes{
∂2
t u(t, x) +D2

xu(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(1.3)

with c = κ2 − ρ2 > −ρ2. Notice that (1.3) is the wave equation when κ = ρ
and becomes the shifted wave equation in the limit case κ = 0. Consider another
operator D̃ =

√
−∆− ρ2 + κ̃2 with κ̃ > ρ. We denote by ωσt the radial convolution

kernel of the wave operator Wσ
t := D̃−σeitD on the symmetric space X:

Wσ
t f(x) = f ∗ ωσt (x) =

∫
G

ωσt (y−1x)f(y)dy,(1.4)

where f is any reasonable function on X, see Section 2.2 for more details. By
bi-K-invariance of the kernel ωσt , we deduce that Wσ

t f is left Γ-invariant and right
K-invariant if f is defined on the locally symmetric space M . Thus the wave
operator on M , denoted by Ŵσ

t , is also defined by (1.4). Consider the wave kernel
ω̂σt on M , which is given by

ω̂σt (x, y) =
∑
γ∈Γ

ωσt (y−1γx), ∀x, y ∈ X.

Then the wave operator Ŵσ
t on M is an integral operator:

Ŵσ
t f(x) =

∫
M

ω̂σt (x, y)f(y)dy,

see Proposition 3.1. The aim of this paper is to prove the following dispersive
properties:
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Theorem 1.2. For n ≥ 3, 2 < q < +∞ and σ ≥ (n+ 1)
(

1
2 −

1
q

)
,∥∥∥Ŵσ

t

∥∥∥
Lq′ (M)→Lq(M)

.

{
|t|−(n−1)( 1

2−
1
q ) if 0 < |t| < 1,

|t|− 3
2 if |t| ≥ 1.

(1.5)

Remark 1.3. In dimension n = 2, there is an additional logarithmic factor in the
small time bound, which becomes |t|−( 1

2−
1
q )(1− log |t|)1− 2

q , see Theorem 2.1 in the
next section.

Remark 1.4. At the endpoint q = 2, t 7→ eitD is a one-parameter group of unitary
operators on L2(M).

By applying the classical TT ∗ method and by using the previous dispersive
properties, we obtain the Strichartz estimate

‖∇R×Mu‖Lp(I;H−σ,q(M)) . ‖f‖H1(M) + ‖g‖L2(M) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (M))

for the solutions u of (1.3), see Section 4 for more information about the Sobolev
spaces H−σ,q(M). Here I ⊂ R is any time interval, possibly unbounded,

σ ≥ n+ 1

2

(
1

2
− 1

q

)
, σ̃ ≥ n+ 1

2

(
1

2
− 1

q̃

)
,

and the couples (p, q) and (p̃, q̃) are admissible, which means that
(

1
p ,

1
q

)
,
(

1
p̃ ,

1
q̃

)
belong, in dimension n ≥ 4 (see Section 4 for the lower dimensions) to the triangle{(

1

p
,

1

q

)
∈
(

0,
1

2

)
×
(

0,
1

2

) ∣∣∣ 1

p
≥ n− 1

2

(
1

2
− 1

q

)}⋃{(
0,

1

2

)
,

(
1

2
,

1

2
− 1

n− 1

)}
.

1
p

1
q

1
2

1
2 −

1
n−1

0 1
21

p = n−1
2

(
1
2 −

1
q

)
Figure 1. Admissibility in dimension n ≥ 4.

Notice that the admissible set forM is larger than the admissible set for Rn which
corresponds only to the lower edge of the triangle. For the Schrödinger equation on
real hyperbolic spaces, see [3] and [16]. In comparison with X, we loose the right
edge of the triangle, which corresponds to the critical case 1

p = 1
2 and 1

q >
1
2 −

1
n−1 ,

this will be explained in Section 4. Notice that we obtain nevertheless the same
well-posedness results as on X.
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This paper is organized as follows. In Section 2, we review spherical analysis on
noncompact symmetric spaces, and recall pointwise estimates of wave kernels on
rank one symmetric space obtained in [4]. In Section 3, after proving the necessary
lemmas, we prove the dispersive estimate by an interpolation argument. As a
consequence, we deduce the Strichartz estimate and obtain well-posedness results
for the semilinear Klein-Gordon equation in Section 4.

2. Preliminairies

2.1. Spherical analysis on noncompact symmetric spaces.
We review in this section some elementary facts about noncompact symmetric

spaces. We refer to [1, 2, 12, 18] for more details.
Recall that a+ is the closure of the positive Weyl chamber a+. Denote by

n =
∑
α∈Σ+ gα the nilpotent Lie subalgebra of g associated with Σ+, and by N the

corresponding Lie subgroup of G. Then we have the following two decompositions
of G: {

G = N (exp a)K (Iwasawa),

G = K (exp a+)K (Cartan).

In the Cartan decomposition, the Haar measure on G writes

∫
G

f(g)dg = const.

∫
K

dk1

∫
a+

∏
α∈Σ+

(sinhα(H))
mα dH

∫
K

f(k1(expH)k2)dk2.

(2.1)

In the rank one case, which we consider in this paper,∫
a+

∏
α∈Σ+

(sinhα(H))
mα dH = const.

∫ +∞

0

(sinh r)
mα (sinh 2r)

m2α dr,

where

(sinh r)
mα (sinh 2r)

m2α . e2ρr, ∀r > 0.(2.2)

Denote by S(K\G/K) the Schwartz space of bi-K-invariant functions on G. The
spherical Fourier transform H is defined by

Hf(λ) =

∫
G

f(x)ϕλ(x)dx, ∀λ ∈ a∗ ∼= R, ∀f ∈ S(K\G/K).

Here ϕλ ∈ C∞(K\G/K) is a spherical function, which can be characterized as a
radial eigenfunction of the negative Laplace-Beltrami operator −∆ satisfying

(2.3)

{
−∆ϕλ(x) =

(
λ2 + ρ2

)
ϕλ(x),

ϕλ(e) = 1.

In the noncompact case, the spherical function is characterized by

ϕλ(x) =

∫
K

e(iλ+ρ)A(kg)dk, λ ∈ a∗C,(2.4)

where A(kg) is the unique a-component in the Iwasawa decomposition of kg.
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Denote by S (a∗)
W the subspace of W -invariant functions in the Schwartz space

S (a∗). Then H is an isomorphism between S(K\G/K) and S (a∗)
W . The inverse

spherical Fourier transform is defined by

f(x) = const.

∫
a∗
Hf(λ)ϕ−λ(x)|c(λ)|−2dλ, ∀x ∈ G, ∀f ∈ S(a∗)W ,

where c(λ) is the Harish-Chandra c-function.

2.2. Pointwise estimates of the wave kernel on symmetric spaces.
We recall in this section the pointwise wave kernel estimates on rank one symmet-

ric space obtained in [4] and [6]. Via the spherical Fourier transform and (2.3), the
negative Laplace-Beltrami operator −∆ corresponds to λ2 +ρ2, hence the operators
D =

√
−∆− ρ2 + κ2 and D̃ =

√
−∆− ρ2 + κ̃2 to√

λ2 + κ2 and
√
λ2 + κ̃2.

By the inverse spherical Fourier transform, the radial convolution kernel ωσt of
Wσ
t = D̃−σeitD on X is given by

ωσt (r) = const.

∫ +∞

−∞
(λ2 + κ̃2)−

σ
2 eit

√
λ2+κ2

ϕλ(r)|c(λ)|−2dλ

for suitable exponents σ ∈ R. Consider smooth even cut-off functions χ0 and χ∞
on R such that 

χ0(λ) + χ∞(λ) = 1,

χ0(λ) = 1, ∀|λ| ≤ 1,

χ∞(λ) = 1, ∀|λ| ≥ 2.

Let us split up

ωσt (r) =ωσ,0t (r) + ωσ,∞t (r)

= const.

∫ +∞

−∞
χ0(λ)(λ2 + κ̃2)−

σ
2 eit

√
λ2+κ2

ϕλ(r)|c(λ)|−2dλ

+ const.

∫ +∞

−∞
χ∞(λ)(λ2 + κ̃2)−

σ
2 eit

√
λ2+κ2

ϕλ(r)|c(λ)|−2dλ.

As the kernel ωσ,∞t has a logarithmic singularity on the sphere r = t when σ = n+1
2 ,

we consider the analytic family of operators

W̃σ,∞
t :=

eσ
2

Γ
(
n+1

2 − σ
)χ∞(D)D̃−σeitD,(2.5)

in the vertical strip 0 ≤ Reσ ≤ n+1
2 , and their kernels

ω̃σ,∞t (r) = const.
eσ

2

Γ
(
n+1

2 − σ
) ∫ +∞

−∞
χ∞(λ)(λ2 + κ̃2)−

σ
2 eit

√
λ2+κ2

ϕλ(r)|c(λ)|−2dλ.

The following pointwise estimates of the kernels ωσ,0t and ω̃σ,∞t , which were
obtained in [4] for real hyperbolic spaces, extend straightforwardly to all rank one
Riemannian symmetric spaces of the noncompact type.
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Theorem 2.1. For all σ ∈ R, the kernel ωσ,0t satisfies

|ωσ,0t (r)| .

{
ϕ0(r), ∀t ∈ R, ∀r ≥ 0,

|t|− 3
2 (1 + r)ϕ0(r), ∀|t| ≥ 1, ∀ 0 ≤ r ≤ |t|2 .

For all σ ∈ C with Reσ = n+1
2 , and for every r ≥ 0, the following estimates hold

for the kernel ω̃σ,∞t :

|ω̃σ,∞t (r)| .

{
|t|−n−1

2 e−ρr, ∀0 < |t| < 1, if n ≥ 3,

|t|−N (1 + r)Nϕ0(r), ∀|t| ≥ 1, ∀N ∈ N.

In the 2-dimensional case, the small time estimate of ω̃σ,∞t reads

|ω̃σ,∞t (r)| . |t|− 1
2 (1− log |t|)e− r2 , ∀0 < |t| < 1.

3. Dispersive estimates for the wave operator
on locally symmetric spaces

In this section, we prove our main result, namely Theorem 1.2. Let us first
describe the wave operator Ŵσ

t on locally symmetric space M . Recall that the
wave kernel on M is given by

ω̂σt (x, y) =
∑
γ∈Γ

ωσt (y−1γx), ∀x, y ∈ X.(3.1)

Proposition 3.1. The series (3.1) is convergent for every x, y ∈ X, and the wave
operator on M is given by

Ŵσ
t f(x) =

∫
M

ω̂σt (x, y)f(y)dy,

for any reasonable function f on M .

Proof. According to the Cartan decomposition ofG, we can write y−1γx = kγ(expHγ)k′γ
with Hγ ∈ R+ and kγ , k

′
γ ∈ K. Notice that Hγ = d(x, γy). Then, by the bi-K-

invariance of ,ωσt , we have

|ω̂σt (x, y)| =

∣∣∣∣∣∣
∑
γ∈Γ

ωσt (expHγ)

∣∣∣∣∣∣ .
∑
γ∈Γ

|ωσ,0t (expHγ)|+
∑
γ∈Γ

|ω̃σ,∞t (expHγ)|.

For the first part, Theorem 2.1 implies that for all Hγ ≥ 0,∑
γ∈Γ

|ωσ,0t (expHγ)| .
∑
γ∈Γ

ϕ0(expHγ) .
∑
γ∈Γ

(1 +Hγ)e−ρHγ .

By choosing 0 < ε < ρ− δ(Γ), we obtain∑
γ∈Γ

|ωσ,0t (expHγ)| .
∑
γ∈Γ

e−(δ(Γ)+ε)d(x,γy) = Pδ(Γ)+ε(x, y) < +∞.

The second part is handled similarly and thus omitted. Hence the serie (3.1) is
convergent. According to (1.4), we know that

Ŵσ
t f(x) =

∫
G

ωσt (y−1x)f(y)dy =

∫
X

ωσt (y−1x)f(y)dy,
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since ωσt is bi-K-invariant and f is right K-invariant. By using Weyl’s formula and
the fact that f is left Γ-invariant, we deduce that

Ŵσ
t f(x) =

∫
Γ\X

∑
γ∈Γ

f(γy)ωσt (y−1γx)

 dy =

∫
M

ω̂σt (x, y)f(y)dy.

�

Next, we introduce the following version of the L2 Kunze-Stein phenomenon
on locally symmetric space M , which plays an essential role in the proof of the
dispersive estimate.

Proposition 3.2. Let ψ be a reasonable bi-K-invariant functions on G, e.g., in
the Schwartz class. Then

‖. ∗ ψ‖L2(M)→L2(M) ≤
∫
G

|ψ(x)|ϕ0(x)dx.(3.2)

The Kunze-Stein phenomenon is a remarkable convolution property on semisim-
ple Lie groups and symmetric spaces (see e.g., [23], [19], [10] and [20]), which was
extended to some classes of locally symmetric spaces in [25] and [26]. Let us prove
Proposition 3.2 along the lines of [26] in our setting where rankX = 1, δ(Γ) < ρ
and with no additional assumption.

Proof. We denote by Ĝ the unitary dual of G and by ĜK the spherical subdual.
Decompose

L2(Γ\G) ∼=
∫ ⊕
Ĝ

Hπdν(π)

and

L2(M) ∼=
∫ ⊕
ĜK

(Hπ)Kdν(π)(3.3)

accordingly, where ν is a positive measure on Ĝ. Recall that (Hπ)K = Ceπ is
one-dimensional for every π ∈ ĜK . Recall moreover that, in rank one, ĜK is
parametrized by a subset of C/± 1. Specifically, ĜK consists of
• the unitary spherical principal series π±λ (λ ∈ R/± 1),
• the trivial representation π±iρ = 1,
• the complementary series π±iλ (λ ∈ I), where

I =

{
(0, ρ) if X = Hn(R) or Hn(C),(
0, mα2 + 1

]
if X = Hn(H) or H2(O).

Under the assumption δ(Γ) ≤ ρ, we know that λ0 = ρ2 is the bottom of the
spectrum of −∆ on L2(M). As −∆ acts on (Hπ)K by multiplication by λ2 + ρ2,
we deduce that (3.3) involves only tempered representations, i.e., representations
πλ with λ ∈ R/± 1. Moreover, as the right convolution by ψ ∈ S(K\G/K) acts on
(Hπλ)K by multiplication by

Hf(λ) =

∫
G

f(x)ϕλ(x)dx,
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where ϕλ(x) = 〈πλ(x)eπλ , eπλ〉 is the spherical function (2.3), we deduce from (2.4)
that

‖. ∗ ψ‖L2(M)→L2(M) ≤ sup
λ∈R

∣∣∣∣∫
G

ψ(x)ϕλ(x)dx

∣∣∣∣ ≤ ∫
G

|ψ(x)|ϕ0(x)dx.

�

The following two lemmas are used in the proof of dispersive estimates.

Lemma 3.3. If Γ is convex cocompact, then there exists a constant C > 0 such
that for all x, y ∈ X,

P (s;x, y) ≤ CP (s;0,0),

where 0 = eK denotes the origin of X.

Proof. Let Conv(ΛΓ) be the convex hull of the limit set ΛΓ of Γ. Recall that Γ
is said to be convex cocompact if Γ\Conv(ΛΓ) is compact. Let F be a compact
fundamental domain containing 0 for the action of Γ on Conv(ΛΓ). Then, for each
z ∈ Conv(ΛΓ), there exists γ ∈ Γ and z′ ∈ F such that z = γz′.

The orthogonal projection π⊥ : X → Conv(ΛΓ) is defined as follows. For every
x in X, π⊥(x) is the unique point in Conv(ΛΓ) such that

d(x, π⊥(x)) = d(x,Conv(ΛΓ)) := inf
y∈Conv(ΛΓ)

d(x, y).

Then, for all x, y ∈ X, we have (see [8], Chap II, Proposition 2.4.)

d(π⊥(x), π⊥(y)) ≤ d(x, y).

On the other hand, for all x ∈ X and γ ∈ Γ,

d(γx, π⊥(γx)) = d(γx,Conv(ΛΓ)) = d(x,Conv(ΛΓ)),

since ΛΓ and Conv(ΛΓ) are Γ-invariant. Thus

d(γx, π⊥(γx)) = d(x, π⊥(x)) = d(γx, γπ⊥(x)),

which implies that, for all x ∈ X and γ ∈ Γ, π⊥(γx) = γπ⊥(x). Therefore, for
every x, y ∈ X and s > 0, the Poincaré series satisfies:

P (s;x, y) =
∑
γ∈Γ

e−sd(x,γy) ≤
∑
γ∈Γ

e−sd(π⊥(x),π⊥(γy))

=
∑
γ∈Γ

e−sd(π⊥(x),γπ⊥(y)) = P (s;π⊥(x), π⊥(y)),
(3.4)

with π⊥(x), π⊥(y) ∈ Conv(ΛΓ). Moreover, as there exist γ1, γ2 ∈ Γ and x′, y′ ∈ F
such that π⊥(x) = γ1x

′, π⊥(y) = γ2y
′, we have

P (s;π⊥(x), π⊥(y)) =
∑
γ∈Γ

e−sd(x′,γ−1
1 γγ2y

′) =
∑
γ′∈Γ

e−sd(x′,γ′y′) = P (s;x′, y′).(3.5)

Since x′, y′ ∈ F , the triangular inequality yields

d(0, γ′0) ≤ d(0, x′) + d(x′, γ′y′) + d(γ′y′, γ′0) ≤ d(x′, γ′y′) + 2 diam(F ).

Hence

P (s;x′, y′) ≤ e2s diam(F )P (s;0,0).(3.6)

We conclude by combining (3.4), (3.5) and (3.6). �
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Consider the radial weight function defined by

µ(x) = e(δ(Γ)+ε)d(x,0),

with 0 < ε < ρ− δ(Γ). We prove the following lemma by applying previous results.

Lemma 3.4. Let f be a reasonable function on M , and g be a radial reasonable
function on X. Then the bilinear operator B(f, g) := f ∗ (µ−1g) satisfies the fol-
lowing estimate:

‖B(·, g)‖Lq′ (M)→Lq(M) ≤ Cq
(∫

G

ϕ0(x)µ−1(x)|g(x)|q/2dx
)2/q

,

for all 2 ≤ q ≤ ∞.

Proof. According to Proposition 3.2,

‖B(·, g)‖L2(M)→L2(M) ≤
∫
G

ϕ0(x)µ−1(x)|g(x)|dx.(3.7)

Since f is left Γ-invariant, we can rewrite

B(f, g)(x) =

∫
X

(
µ−1g

) (
y−1x

)
f(y)dy

=

∫
Γ\X

∑
γ∈Γ

(
µ−1g

) (
y−1γx

) f(y)dy,

with ∣∣∣∣∣∣
∑
γ∈Γ

(
µ−1g

) (
y−1γx

)∣∣∣∣∣∣ ≤ ||g||∞
∑
γ∈Γ

e−(δ(Γ)+ε)d(x,γy).

According to the previous lemma, the last sum is uniformly bounded. Hence

‖B(·, g)‖L1(M)→L∞(M) = sup
x,y∈G

∣∣∣∣∣∣
∑
γ∈Γ

(
µ−1g

) (
y−1γx

)∣∣∣∣∣∣ ≤ C||g||∞.(3.8)

We conclude by standard interpolations between (3.7) and (3.8). �

We prove now our main result.

Proof of Theorem 1.2. We split up the proof into two parts, depending whether the
time t is small or large.
Dispersive estimate for small time

Assume that 0 < |t| < 1. On the one hand, by using the previous lemma with
g(x) = µ(x)ωσ,0t (x), we have

‖ · ∗ωσ,0t ‖Lq′ (M)→Lq(M) ≤ Cq
(∫

G

ϕ0(x)µ(x)
q
2−1|ωσ,0t (x)|

q
2 dx

) 2
q

.

Notice that the ground spherical function ϕ0, the weight µ and the kernel ωσ,0t are
all bi-K-invariant. By using the expression (2.1) of the Haar measure in the Cartan
decomposition, together with the estimate (2.2), we obtain fisrt∫

G

ϕ0(x)µ(x)
q
2−1|ωσ,0t (x)|

q
2 dx .

∫ +∞

0

ϕ0(r)µ(r)
q
2−1|ωσ,0t (r)|

q
2 e2ρrdr.
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As |ωσ,0t (r)| . ϕ0(r), according to Theorem 2.1, and 2 ϕ0(r) � (1 + r)e−ρr, we
obtain next∫ +∞

0

ϕ0(r)µ(r)
q
2−1|ωσ,0t (r)|

q
2 e2ρrdr .

∫ +∞

0

(1 + r)
q
2 +1e−( q2−1)(ρ−δ(Γ)−ε)rdr.

Since ρ − δ(Γ) − ε > 0, the last integral is finite of any 2 < q < +∞. By using
Lemma (3.4), we conclude that

sup
0<|t|<1

‖ · ∗ωσ,0t ‖Lq′ (M)→Lq(M) < +∞.

On the other hand, consider the analytic family of operators W̃σ,∞
t defined by (2.5).

When Reσ = 0, the spectral theorem yields∥∥∥W̃σ,∞
t

∥∥∥
L2(M)→L2(M)

.
∥∥eitD∥∥

L2(M)→L2(M)
= 1,(3.9)

for all t ∈ R∗. When Reσ = n+1
2 , Theorem 2.1 yields∥∥∥W̃σ,∞

t

∥∥∥
L1(M)→L∞(M)

= sup
x,y∈M

∥∥∥̂̃ωσt (x, y)
∥∥∥ . ‖µω̃σt (x, y)‖∞ . |t|

−n−1
2

in dimension n ≥ 3. By applying Stein’s interpolation theorem for an analytic
family of operators, we obtain∥∥∥W̃ n+1

2 (1−θ),∞
t

∥∥∥
Lq′ (M)→Lq(M)

. |t|−
n−1

2 (1−θ),

where θ = 2
q , that is

‖· ∗ ω̃σ,∞t ‖Lq′ (M)→Lq(M) . |t|
−(n−1)( 1

2−
1
q ),

with σ = (n+ 1)( 1
2 −

1
q ). In conclusion,∥∥∥Ŵσ

t

∥∥∥
Lq′ (M)→Lq(M)

. |t|−(n−1)( 1
2−

1
q ), ∀0 < |t| < 1

for n ≥ 3, σ = (n + 1)( 1
2 −

1
q ) and 2 < q < ∞. In dimension n = 2, the same

arguments yield∥∥∥Ŵσ
t

∥∥∥
Lq′ (M)→Lq(M)

. |t|−( 1
2−

1
q )(1− log |t|)1− 2

q , ∀0 < |t| < 1

for σ = 3
(

1
2 −

1
q

)
and 2 < q < +∞.

Dispersive estimate for small time
Assume now that |t| ≥ 1. We proceed as before after splitting up the kernel as

follows:

ωσt = 1
B(0,

|t|
2 )ω

σ,0
t + 1

X\B(0,
|t|
2 )ω

σ,0
t + ωσ,∞t .

2The symbol � means that there exist two constants 0 < C1 ≤ C2 < +∞ such that

C1 ≤
ϕ0(r)

(1 + r)e−ρr
≤ C2, ∀r ≥ 0.
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By using Lemma 3.4 and Theorem 2.1, we obtain

∥∥∥· ∗ 1B(0,
|t|
2 )ω

σ,0
t

∥∥∥
Lq′ (M)→Lq(M)

.

{∫ |t|
2

0

ϕ0(r)µ(r)
q
2−1|ωσ,0t (r)|

q
2 e2ρrdr

} 2
q

.|t|− 3
2

{∫ |t|
2

0

(1 + r)1+qe−( q2−1)(ρ−δ(Γ)−ε)rdr

} 2
q

︸ ︷︷ ︸
<+∞

and∥∥∥f ∗ 1X\B(0,
|t|
2 )ω

σ,0
t

∥∥∥
Lq′ (M)→Lq(M)

.

{∫ +∞

|t|
2

ϕ0(r)µ(r)
q
2−1|ωσ,0t (r)|

q
2 e2ρrdr

} 2
q

.

{∫ +∞

|t|
2

(1 + r)
q
2 +1e−( q2−1)(ρ−δ(Γ)−ε)rdr

} 2
q

︸ ︷︷ ︸
.|t|−∞

.

Instead of ωσ,∞t , we consider again the kernel ω̃σ,∞t . By Theorem 2.1, the asso-
ciated operators satisfy∥∥∥W̃σ,∞

t

∥∥∥
L1(M)→L∞(M)

. |t|−N , ∀N ∈ N

when Reσ = n+1
2 . By using again Stein’s interpolation theorem and by summing

up these estimates, we obtain finally∥∥∥Ŵσ
t

∥∥∥
Lq′ (M)→Lq(M)

. |t|− 3
2 , ∀|t| ≥ 1

for n ≥ 2, σ = (n+ 1)( 1
2 −

1
q ) and 2 < q <∞. �

4. Strichartz estimate and applications

Let σ ∈ R and 1 < q <∞. Recall that the Sobolev space Hσ,q(M) is the image
of Lq(M) under the operator (−∆)−

σ
2 , equipped with the norm

‖f‖Hσ,q(M) = ‖(−∆)
σ
2 f‖Lq(M).

If σ = N is a nonnegative integer, thenHσ,q(M) coincides with the classical Sobolev
space

WN,q(M) =
{
f ∈ Lq(M) | ∇jf ∈ Lq(M), ∀1 ≤ j ≤ N

}
,

defined by means of covariant derivatives. The following Sobolev embedding theo-
rem is used in next subsection:

Theorem 4.1. Let 1 < q1, q2 <∞ and σ1, σ2 ∈ R such that σ1−σ2 ≥ n
q1
− n
q2
≥ 0.

Then

Hσ1,q1(M) ⊂ Hσ2,q2(M).(4.1)

We refer to [29] for more details about function spaces on Riemannian manifolds.
Let us state next the Strichartz estimate and some applications. The proofs are
straightforwardly adapted from [4] and are therefore omitted.
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4.1. Strichartz estimate.
Recall the linear inhomogenous Klein-Gordon equation on M :{

∂2
t u(t, x) +D2u(t, x) = F (t, x),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(4.2)

whose solution is given by Duhamel’s formula:

u(t, x) = (cos tD) f(x) +
sin tD

D
g(x) +

∫ t

0

sin(t− s)D
D

F (s, x)ds.

We consider first the case n ≥ 4 and discuss the 2-dimensional and 3-dimensional
cases in the final remarks. Recall that a couple (p, q) is called admissible if

(
1
p ,

1
q

)
belongs to the triangle{(

1

p
,

1

q

)
∈
(

0,
1

2

)
×
(

0,
1

2

) ∣∣∣ 1

p
≥ n− 1

2

(
1

2
− 1

q

)}⋃{(
0,

1

2

)
,

(
1

2
,

1

2
− 1

n− 1

)}
.

1
p

1
q

1
2

1
2 −

1
n−1

0 1
21

p = n−1
2

(
1
2 −

1
q

)
Figure 2. Admissibility in dimension n ≥ 4.

Theorem 4.2. Let (p, q) and (p̃, q̃) be two admissible couples, and let

σ ≥ n+ 1

2

(
1

2
− 1

q

)
and σ̃ ≥ n+ 1

2

(
1

2
− 1

q̃

)
.

Then all solutions u to the Cauchy problem (4.2) satisfy the following Strichartz
estimate:

‖∇R×Mu‖Lp(I;H−σ,q(M)) . ‖f‖H1(M) + ‖g‖L2(M) + ‖F‖Lp̃′ (I;Hσ̃,q̃′ (M)) .(4.3)

Remark 4.3. In comparison with hyperbolic spaces , observe that we loose the
right edge of the admissible triangle. The reason is that the standard TT ∗ method
used to prove the Strichartz estimate breaks down in the critical case where p = 2
and q < 2n−1

n−3 . The dyadic decomposition method carried out in [22] takes care of
the endpoints, but it requires a stronger dispersive property than Theorem 1.2 in
small time, which reads∥∥∥Ŵσ

t

∥∥∥
Lq′ (M)→Lq(M)

. |t|−(n−1) max( 1
2−

1
q ,

1
2−

1
q̃ ), ∀ 0 < |t| < 1
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for n ≥ 3, 2 < q, q̃ < ∞ and σ ≥ (n + 1) max
(

1
2 −

1
q ,

1
2 −

1
q̃

)
. Such an estimate

would follow from ∥∥∥ω̂σt ∥∥∥
Lq(M)

. |t|−
n−1

2 , ∀0 < |t| < 1

for σ ≥ n+1
2

(
1
2 −

1
q

)
and 2 < q < +∞, which is unknown so far.

However, these critical points are not relevant for the following well-posedness
problems, hence we obtain the same results as on real hyperbolic spaces. The
admissible range in (4.3) can be widen by using the Sobolev embedding theorem.

Corollary 4.4. Let (p, q) and (p̃, q̃) be two couples corresponding to the square[
0,

1

2

)
×
(

0,
1

2

)⋃{(
0,

1

2

)
,

(
1

2
,

1

2
− 1

n− 1

)}
,

1
p

1
q

1
2

0
1
2

1
2 −

1
n−1

Figure 3. Case n ≥ 4

Let σ, σ̃ ∈ R such that σ ≥ σ(p, q), where

σ(p, q) =
n+ 1

2

(
1

2
− 1

q

)
+ max

{
0,
n− 1

2

(
1

2
− 1

q

)
− 1

p

}
,

and similarly σ̃ ≥ σ(p̃, q̃). Then the Strichartz estimate (4.3) holds for all solutions
to the Cauchy problem (4.2).

Remark 4.5. Theorem 4.2 and Corollary 4.4 still hold true in lower dimension
n = 3 and n = 2 with similar proofs. In particular, the endpoint (p, q) = (2,∞) is
excluded and the admissible set in dimension 2 becomes{(

1

p
,

1

q

)
∈
(

0,
1

2

)
×
(

0,
1

2

) ∣∣∣ 1

p
>

1

2

(
1

2
− 1

q

)}⋃{(
0,

1

2

)}
,

and the region in Corollary 4.4 is{(
1

p
,

1

q

)
∈
(

0,
1

4

)
×
(

0,
1

2

) ∣∣∣ 1

p
≤ 1

2

(
1

2
− 1

q

)}
.
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1
p

1
q

1
2

0
1
2

1
p

1
q

1
2

0
1
2

1
4

Figure 4. Cases n = 3 and n = 2

4.2. Global well-posedness in Lp (R, Lq(M)).
We refer to [4] for more detailed proofs of the following well-posedness results.

By using the classical fixed point scheme with the previous Strichartz estimates,
one obtains the global well-posedness for the semilinear equation{

∂2
t u(t, x) +D2u(t, x) = F (u(t, x)),

u(0, x) = f(x), ∂t|t=0u(t, x) = g(x).
(4.4)

on M with power-like nonlinearities F satisfying

|F (u)| ≤ C|u|γ , |F (u)− F (v)| ≤ C
(
|u|γ−1 + |v|γ−1

)
|u− v|, γ > 1.

and small initial data f and g. Assume that n ≥ 3, and consider the following
powers

γ1 = 1 +
3

n
, γ2 = 1 +

2
n−1

2 + 2
n−1

, γc = 1 +
4

n− 1
,

γ3 =


n+6

2 + 2
n−1 +

√
4n+( 6−n

2 + 2
n−1 )

2

n if n ≤ 5,

1 + 2
n−1

2 −
1

n−1

if n ≥ 6,

γ4 =

1 + 4
n−2 if n ≤ 5,

n−1
2 + 3

n+1 −
√(

n−3
2 + 3

n+1

)2

− 4n−1
n+1 if n ≥ 6,

and the following curves

σ1(γ) =
n+ 1

4
− (n+ 1)(n+ 5)

8n

1

γ − n+1
2n

,

σ2(γ) =
n+ 1

4
− 1

γ − 1
, σ3(γ) =

n

2
− 2

γ − 1
.
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Denote by 0+ any small positive constant. In dimension n ≥ 3, the equation (4.4)
is globally well-posed for small initial data in Hσ,2(M)×Hσ−1,2(M) provided that

σ = 0+, if 1 < γ ≤ γ1,

σ = σ1(γ), if γ1 < γ ≤ γ2,

σ = σ2(γ), if γ2 < γ ≤ γc,
σ = σ3(γ), if γc < γ ≤ γ4,

(4.5)

Similar results hold in dimension 2, see [4]. Observe that one obtains the same
global well-posedness results on M as on real hyperbolic spaces, without further
assumptions. In comparison with the Euclidean setting, this is a consequence of
the larger admissible set for the Strichartz estimate.
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