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Abstract
In this report we review the present state of the art of

the control of propagating quantum states at the single-
electron level and its potential application to quantum
information processing. We give an overview of the differ-
ent approaches which have been developed over the last
ten years in order to gain full control over a propagating
single electron in a solid state system. After a brief intro-
duction of the basic concepts, we present experiments on
flying qubit circuits for ensemble of electrons measured
in the low frequency (DC) limit. We then present the
basic ingredients necessary to realise such experiments
at the single-electron level. This includes a review of the
various single electron sources which are compatible with
integrated single electron circuits. This is followed by a
review of recent key experiments on electron quantum
optics with single electrons. Finally we will present re-
cent developments about the new physics that emerges
using ultrashort voltage pulses. We conclude our review
with an outlook and future challenges in the field.

I. INTRODUCTION:

In current semiconductor technology, where the inte-
grated circuits are composed of transistors, which are
nowadays as small as a few tens of nanometers in scale,
the electronic circuits are still operated with of a huge
number of electrons. The ultimate goal, in this respect, is
the realisation of integrated circuits at the single-electron
level. Over the past decade, an important effort has been
made in the field of low-dimensional electronic conduc-
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tors towards single electron electronics with the goal to
gain full control over single electrons in solid state de-
vices. Nowadays it is possible to confine and manipu-
late single electrons in a very controlled way in semi-
conductor nanostructures such as nanowires or quantum
dots1–5. However, in order for the single electron circuits
of the future to lead to useful applications, one requires
a mechanism to transport and interconnect a single elec-
tron from one functional part of the circuit to another and
to manipulate it in a very controlled way. In addition,
the ability to control single electrons on-demand enables
electron quantum optics experiments where single elec-
trons emitted in a ballistic electronic interferometer play
the role of single photons emitted in an optical medium
in quantum optics.

Coherent manipulation of single electrons in solid state
devices are also attractive for quantum information pur-
poses because they have a high potential for scalability.
Depending on the system used, the charge or the spin
may code binary qubit information. A particular appeal-
ing idea is to use a single flying electron itself as the con-
veyor of quantum information6–10. Such electronic flying
qubits allow performing quantum operations on qubits
while they are being coherently transferred. Information
processing typically takes place in the nodes of the quan-
tum network on locally controlled qubits, but quantum
networking would require flying qubits to exchange in-
formation from one location to another11. It is therefore
of prime interest to develop ways of transferring informa-
tion from one node to the other. The availability of flying
qubits would enable the possibility to develop new non-
local architectures for quantum computing with possibly
cheaper hardware overhead than e.g. surface codes12.

Photons in vacuum are a natural choice for flying
qubits due to their long coherence time. Solid state
electronic devices have advantage in terms of size and
hence for possible scalability, however, with a serious
drawback of a much shorter coherence time. Electronic
spin states are often chosen as spatially localised qubits
as they can be easily confined to a small volume2,13–15.
Coherent transport of quantum information has been
demonstrated in solid state systems by transporting sin-
gle electrons in multiple quantum dot networks16,17 or
by coupling of superconducting qubits to microwave
photons18–20. Recent advances in the field of electron
quantum transport have shown that solid-state flying
qubits based on single electrons are also very promising
as these systems have possible applications in electron
interferometry and entanglement.

In this review we concentrate on integrated electronic
circuits operated at the single-electron level in semicon-
ductor heterostructures and outline their potential to-
wards a flying qubit architecture. We will focus in par-
ticular on quantum experiments appropriate for electron
quantum optics where the emitted single electrons play
the role of flying charge qubits. We give a comprehensive
review of the present state of the art and put emphasis on
the connection to quantum information processing and

the physical phenomena underlying realistic devices.

II. BASIC THEORETICAL CONCEPTS FOR
FLYING QUBIT ARCHITECTURES WITH
SINGLE ELECTRONS

The flying qubits that will be discussed in this review
aim to encode the quantum information into two different
paths (or rails) that can be taken by an electron during
its propagation. Such a quantum rail can be defined by
a one-dimensional channel along which a single-electron
wave packet is propagating ballistically. This can be ex-
perimentally realised in a gate-defined nanostructure on
top of a two-dimensional electron gas formed at the in-
terface of a semiconductor heterostructure and will be
described in detail in section III. In order to realise this
flying qubit architecture with single flying electrons, it is
necessary to be able to control the state of an electron
via two independent qubit rotations.

1. Single-qubit operations

Let us define the two qubit states |0〉 and |1〉 on the
Bloch sphere as shown in figure 1. A rotation around the
x-axis with rotation angle θ is described by the following
rotation matrix:

Sx(θ) =

(
cos θ2 i sin θ

2

i sin θ
2 cos θ2

)
(1)

while a rotation around the z-axis with rotation angle
φ is given by :

Sz(φ) =

(
e−i

φ
2 0

0 ei
φ
2

)
(2)

Such rotation matrices can also be expressed in terms
of Pauli matrices: Sx(θ) = exp(iσxθ/2), Sz(φ) =
exp(−iσzφ/2). They are usually referred to as single
qubit rotations21. In order to construct any arbitrary
state on the Bloch sphere, it is enough to combine two
of the three possible rotation matrices. Combining the
two rotation matrices, it is also possible to construct a
universal transformation U6,22

U(α, β, φ) = Sx(α− π

2
)Sz(φ)Sx(β +

π

2
) (3)

Such a scheme can be implemented into a coherent na-
noelectronic circuit by coupling two quantum rails7 as
schematised in figure 1(a). One can define two qubit
states |0〉 and |1〉 by the presence of the electron in the
lowest energy state of one of the two rails:

|0〉 = electron present in the upper rail



3

|1〉 = electron present in the lower rail

When the confinement potential of the two quantum
wires are identical in the region, where the two quan-
tum wires are coupled by a tunnel barrier (interaction
region), hybridisation between these two states occurs
and the new eigenbasis is given by the symmetric |S〉
and antisymmetric state |A〉23–25 :

|S〉 =
1√
2

(
|0〉+ |1〉

)
; |A〉 =

1√
2

(
|0〉 − |1〉

)
(4)

By injecting an electron into the upper rail |0〉, the wave

function will evolve into a superposition of 1/
√

2 (|S〉
+ |A〉). While travelling through the interaction re-
gion of length LC , the wave function of the electron
will then pick up a phase and will evolve into 1/

√
2

(eikSLC |S〉 + eikALC |A〉), with kS (kA) being the wave
vector of the symmetric (antisymmetric) state. Project-
ing back the wave function onto the two output channels
allows obtaining the probability of finding an electron in
the upper (lower) channel. Doing the same calculation
by injecting an electron in state |1〉 (lower rail) one can
then work out the complete transmission matrix which
reads:

Stw = exp(i
kS + kA

2
L)

(
cos(kS−kA2 L) i sin(kS−kA2 L)
i sin(kS−kA2 L) cos(kS−kA2 L)

)
(5)

By comparing this to equation (1) one can immediately
see that this matrix corresponds to a rotation matrix
with rotation angle θ = ∆k · L = (kS − kA) · L. This
means that the electron wave packet propagating through
the tunnel-coupled wire will oscillate between states |0〉
and |1〉 (upper and lower wire) and hence represents a
rotation around the x-axis of the Bloch sphere26. Time
resolved numerical simulations of the propagation of a
single-electron wave packet through such tunnel-coupled
wires for realistic experimental conditions can now be
realised6,26,27. An example of such real-time simulations
is shown in figure 2.

As mentioned above, to attain any arbitrary final state
on the Bloch sphere, another rotation has to be im-
plemented. This can be done by connecting the wire
to a ring geometry in order to pick up an additional
phase due to the Aharonov-Bohm effect28,29 as schema-
tised in Fig. 1(c). Electron interference arises due to a
phase difference between electrons passing through the
upper or lower path. The phase difference is given by
∆φ =

∫
k · dl − (e/h̄)B · dS, where k is the wave vec-

tor, l the path along the ring, B the magnetic field and
S the surface area enclosed by the ring structure. One
way of changing ∆φ is to simply change the Aharonov-
Bohm flux. From an experimental point of view, this is
however not very practical as the magnetic field cannot
be changed on fast timescales. For an electron travel-
ling at the Fermi velocity of approximately 1×105 m/s
passing through a 10 µm long coherent quantum conduc-
tor will only take 100 ps. A more practical way is to

FIG. 1. Implementation of qubit-rotations using single
electron channels. (a) two single electron channels repre-
senting the qubit are brought together to an interaction region
where they are tunnel-coupled over a length LC . The tunnel-
coupling energy of the two propagating quantum states in-
duces a rotation of angle Θ around the x-axis as shown on
the corresponding Bloch sphere (b). As a result, an electron
(yellow dot) injected into channel |0〉 will oscillate in the in-
teraction region between the upper and lower channel before
being projected into the output channels. The two half dots
schematise a superposition of 1/

√
2 (α |0〉 + β |1〉) within the

interaction region. The tunnel barrier indicated by the black
dashed line allows varying the rotation angle Θ by changing
the tunnel-coupling between the two electron channels. (c)
Two path interferometer for single electrons. An electron is
injected in the upper channel and passed through a beam
splitter (tunnel-coupled wire) before entering the Aharonov-
Bohm interferometer. The magnetic field induces a phase
shift φ between the upper and lower path which allows realis-
ing a rotation around the z-axis on the Bloch sphere as shown
in (d).

modify the phase by changing the wave vector k. This
can be done on a very fast time scale using an electro-
static gate. Such a modification of ∆φ by an electrostatic
gate will be described in section III B. Combining both
single qubit rotations, the tunnel-coupled wire as well
as the Aharonov-Bohm ring, one can then entirely con-
trol the phase of the electron and realise a flying qubit
architecture30.

2. Two-qubit operations

The next step is to combine the single qubit opera-
tions in order to perform a two-qubit operation7. It is
actually possible to use the interaction region to control
the state of one qubit with a second qubit and to realise
for instance a controlled phase gate. This quantum gate
exploits the Coulomb interaction between two single elec-
trons in two different pairs of coupled quantum wires. So
far we have only considered one electron at a time in the
interaction region. It is however possible to control the
phase of an electron in one of the two rails by the pres-
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FIG. 2. Tunnelling of an electron wave packet. Real
time simulations of the propagation of a single-electron wave
packet through a 10 µm long tunnel-coupled wire. Each indi-
vidual quantum wire has a width of 200 nm. A charge pulse is
injected into the upper quantum wire and tunnels across the
tunnel barrier as it propagates along the quantum wire cre-
ating a coherent superposition of states. Snapshots are taken
at different instances of time varying from 20 to 80 ps. The
colour code measures the additional electronic density with
respect to equilibrium (dark red: high density; light red: low
density).

ence of another electron in the other rail due to Coulomb
interaction. This scheme is usually termed a Coulomb
coupler (CC) and allows controlling the phase of the tar-
get qubit using a second control qubit. A possible design
for the realisation of a controlled phase gate for flying
electrons using a CC is shown in figure 3. Two qubits
(A and B) are coupled in the center by a CC. In ad-
dition four tunnel-coupled wires are added, which allow
for tunnelling between the wires and hence controlling
the rotation angle Θ of each individual qubit. When set
at Θ = π/2, they act as beam splitters. Other schemes
have been proposed to implement two qubit gates such as
ballistic Aharonov-Bohm qubits31,32 or surface acoustic
wave driven electrons8. Here we concentrate on the most
general case which can be applied to both systems.

The induced phase χ on each electron in the CC is
proportional to the coupling strength ∆ (capacitive
coupling) between the two rails and the interaction
time tc. In order to have a strong coupling between the
two electrons in the interaction region, the two qubit
rails have to be sufficiently close. On the other hand,
tunnelling between the two rails should be suppressed.
A CC should therefore have a large potential barrier
in order to prevent electron tunnelling from one rail to
the other, and at the same time the two rails should
be close enough to induce a significant phase shift.
For the experimental systems we will describe in the
following, this can be achieved by adjusting the barrier
height induced by the electrostatic gate of the CC which
separates the two rails as well as the length of the
interaction region. The operation of the CC in figure 3
can hence be written as:

|00〉 → |00〉
|01〉 → |01〉

FIG. 3. Two-qubit gate using single electron channels.
Possible experimental set-up for the implementation of a two-
qubit gate for single electrons. The blue regions represent the
one-dimensional channels defined by electrostatic gates (not
shown) in the 2DEG. One of the two qubits can be used as the
control qubit whereas the other is the target qubit. The black
dashed lines are beam splitters (BS) and the interaction region
(black solid line) acts as a Coulomb coupler (CC) between the
two electrons launched simultaneously from qubit A and B.

|10〉 → e−iχ |10〉
|11〉 → |11〉,

where χ = 2∆tc. This phase shift χ can be mea-
sured experimentally by performing an interference
experiment and observe a change in the detection
probability of an electron in one of the output ports.
To do that, the rotation angle for BS1 and BS2 is set
to π/2, the one for BS3 and BS4 is set to 0. In this
case the probability P0 of detecting an electron in A |0〉
oscillates as one changes the barrier height of the CC,
which modulates χ. The inverted oscillation P1 = 1−P0

should be observed in the other output. For the same
circuit a controlled phase gate can be implemented by
setting χ to π, the rotation angle Θ for BS1 and BS2 to
0, the one for BS3 to π, and the one for BS4 to 3π.

This device structure also allows to entangle two dif-
ferent qubits33. To do so one can for instance activate
the beam splitters (Θ = π/2 for all BS) and adjust the
Coulomb coupler in such a way that a π phase shift
is induced between the two propagating electrons. By
sending synchronously one electron into input A1 and
B0 the outcome of such a scheme is a maximally entan-
gled Bell state34 1/

√
2(−iA |0〉B |−〉−A |1〉B |+〉), where

|+〉 = 1/
√

2(|0〉+ i |1〉) and |−〉 = 1/
√

2(|0〉 − i |1〉). An-
other interesting feature of this system is that it is easily
scalable by simply adding several qubits in parallel to re-
alise a multi qubit system. Combination of an arbitrary
single qubit rotation (U in Eq. 3) and a controlled phase
gate allows then to perform an arbitrary unitary opera-
tion for a n-qubit system21. A similar approach to scale
up the system is also used in linear quantum optics35–38.

The experimental realisation of such a system is by all
means not trivial. Several important requirements have
to be fulfilled such as high fidelity on-demand single elec-
tron injection as well as single-shot read-out of the elec-
trons at the output ports. Another important require-
ment is that the electrons within the different quantum
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rails have to be synchronised at all times in order to prop-
erly perform two-qubit gating, as the two electrons have
to reach simultaneously the Coulomb coupling window.
All these issues will be addressed in detail in sections
III-VI by giving an overview of the different approaches
developed in the field to gain full control of electron trans-
port at the single-electron level.

III. LOW-FREQUENCY TRANSPORT IN
QUANTUM COHERENT CIRCUITS

We have seen in section II that beam splitters, phase
shifters and interferometers are the basic elements needed
to realise electronic flying qubits. The most promis-
ing experimental systems to realise such electronic flying
qubits are at present two-dimensional electron systems
formed at the interface of a GaAs/AlGaAs heterostruc-
ture. These systems are extremely well mastered and
electron trajectories can be easily implemented by en-
gineering the desired quantum rails using electrostatic
gates deposited on the surface of the GaAs heterostruc-
ture. The phase coherence length Lφ in such systems
can attain several tens of micrometers at low tempera-
tures (< 100 mK)39–41, which is sufficient to implement
many gate operations on the fly.

The control and manipulation of the phase of an elec-
tron is of prime importance for the realisation of flying
qubits at the single-electron level. In order to access the
phase of an electron it is usually convenient to realise a
two-path interference experiment with electrons29,42,43,
similar to the well known Young’s double slit experiment
for photons44,45. A simple realisation is an Aharonov-
Bohm ring of micrometer size, such that phase coher-
ence of the electrons is ensured throughout the entire
device46–51 when working at low temperatures. At the
entrance of the ring structure the electron wave function
is split into two paths and recombined at the output as
depicted in figure 1c. A phase difference is induced be-
tween the upper and lower arm of the ring by means of
an externally applied magnetic field52. When scanning
the magnetic field, the conductance oscillates as a func-
tion of magnetic field with a period which is proportional
to the surface area enclosed by the two trajectories. As
will be detailed below, the realisation of a true two-path
interferometer is quite challenging as electrons in solids
behave quite differently than photons in vacuum. Con-
trary to photons, electrons in solids can backscatter and
this complicates seriously the interpretation of the inter-
ference pattern53–55.

One possibility to overcome these unwanted effects is
to work in the quantum Hall regime, where transport
is realised along edge states. This system is particu-
larly appealing as backscattering is suppressed due to
the chirality of the system. It is for instance possible
to realise the electronic analogue of the optical Mach
–Zehnder interferometer (MZI). A beam splitter, made
from a quantum point contact (QPC)56,57 splits an in-

coming electron beam into two independent beams which
are guided towards a second beam splitter where they
recombine and interfere39,58,59 as schematised in figure
4. In the past, this system has been used to study
fundamental phenomena such as quantum coherence60,
entanglement61, electron-electron interactions as well as
two-particle interference62.

Another possibility to realise a Mach–Zehnder (MZ)
type interferometer is by combining an Aharonov-Bohm
ring to two tunnel-coupled wires30. In this case (see fig-
ures 8 and 9 ) the tunnel-coupled wires63–65 fulfill the
function of the beam splitters as we have already seen
in section II. This system can be operated as a flying
qubit MZ interferometer by simply controlling the phase
of the electrons via electrostatic gates26 at basically zero
magnetic field.

Since Mach–Zehnder interferometry represents an es-
sential ingredient for the realisation of electronic flying
qubits, we review these two different Mach–Zehnder in-
terferometers in more detail in the next two sections. Let
us emphasise that these experiments were done in the DC
limit by applying a voltage at low frequencies and bil-
lions of coherent electrons are passing through the nano-
device. Experiments at the single-electron level with such
interferometers are quite challenging and have not yet
been realised. We will come back to this issue in sections
IV – VI

A. Mach–Zehnder interferometry in the quantum
Hall regime

In this section, we discuss the different type of elec-
tronic interferometers which have been studied in the
quantum Hall regime. In GaAs/AlGaAs, several ques-
tions have been addressed to improve our understanding
of electronic interferometry and electron entanglement.
An edge state in the quantum Hall regime, together with
the electronic beam splitter, is a building block of elec-
tronic interferometry. Historically, one of the first ad-
dressed questions was to unveil the coherence properties
of the edge states in the quantum Hall regime. This
has been realized using a MZI39,58,59,66,67. Another big
challenge was to use MZIs to make basic quantum op-
erations. The combination of the two MZIs lead to the
two-electron Aharonov-Bohm interferometer and should
allow for generation of entangled states62,68, assuming an
appropriate tuning of the electronic beam splitters.

1. The electronic Mach–Zehnder interferometer

The electronic MZI is the electronic counterpart of the
optical one58, QPCs working as electronic beam split-
ters and ohmic contacts as detectors. A first QPC splits
the incoming edge current to an upper path (u) and a
down path (d) (see Fig. 4). The two electronic tra-
jectories will follow the edge of the sample designed to
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FIG. 4. Mach–Zehnder interferometry. Mach–Zehnder
interferometer (MZI) for photons (a) and for electrons (b).
(a) Photons emitted from a photon source (S) are split by a
beam splitter (BS) into two paths, guided with mirrors (M)
towards a second beam splitter where they are recombined
and then detected at the two detectors (D). A phase shifter
allows to modulate the phase φ of the photon wave function.
(b) Similar set-up as (a) but for electrons. The beam splitters
can be realised by means of quantum point contacts (QPCs)
in the quantum Hall regime which leads to a 50 % transmitted
and 50 % reflected beam. (c) Experimental realisation of an
electronic MZI in the quantum Hall regime. The image shows
a scanning electron micrograph (SEM) with a schematic rep-
resentation of the outer edge state. G0, G1, G2 are quantum
point contacts which mimic beam splitters. The pairs of split
gates defining a QPC are electrically connected via an Au
metallic bridge deposited on an insulator (SU8). G0 allows to
control the transmission of the impinging current, G1 and G2
are the two electrostatic gates which form the beam splitters
of the MZI. LG is a side gate which allows a variation of the
length of the lower path (d) in red. The small ohmic contact
in between the two arms (D2) collects the back scattered cur-
rent IB to the ground through a long gold bridge. The two
interfering electron trajectories are schematised in blue and
red in (b) and (c). (figure adapted from ref.39).

ensure a zero length difference between the upper (u)
and down (d) trajectories. The two electronic trajec-
tories recombine then on a second QPC. This leads to
interference which is visible in the measured transmit-
ted current IT, while the reflected part of the current is
collected in a grounded inner tiny ohmic contact. This
is an important point in order to avoid electrons from
being re-injected into the interferometer that would lead
to a more complicated interference pattern. The trans-
mission probability T through the MZI is, T = T1T2 +
R1R2 +2

√
T1T2R1R2 cos(ϕ) where ϕ ∼

∫
B · dS with

S the area of the interferometer, T1 (T2) and R1 (R2)
the transmission and reflection probability of the first
(second) beam splitter. Consequently to observe oscilla-

tions, one varies the Aharonov-Bohm (AB) flux through
the surface defined by the two arms of the interferome-
ter, either by varying the area defined by the paths (u)
and (d) using a lateral gate or by sweeping the magnetic
field. We have represented in Fig.5 the two different ways
to reveal oscillations. One can notice that sweeping the
magnetic field to reveal quantum interferences leads to a
more noisy sinusoidal curve than by sweeping the lateral
gate voltage

FIG. 5. Interference measurements. (a) MZI transmis-
sion as a function of the lateral gate voltage. (b) MZI trans-
mission as a function of the magnetic field. The oscillation
period is 0.46 mT which corresponds to a surface defined by
the arms equal to 8.5 µm2, in good agreement with the de-
signed geometry of the MZI (7.25 µm2). Interference pattern
obtained at filling factor 2 and 20mK.

In the physics of quantum conductors, one of the fun-
damental length scales which sets an upper limit to the
manifestation of quantum effects, is the quantum coher-
ence length Lϕ. It is the typical length over which an
electron exchanges information with other degrees of free-
dom and looses its phase coherence. In the Integer Quan-
tum Hall Regime, because of the chirality that prevent
energy exchange processes, we expect a very long coher-
ence length. To determine the coherence length, one has
to measure the dependence of the visibility with differ-
ent parameters (the bias, the temperature, the size of the
interferometer).

First studies focused on the effect of a DC voltage ap-
plied on the source contact. Unexpectedly, the bias de-
pendence of the visibility revealed an unusual lobe struc-
ture (at filling factor ν=1 and 2)66,67. This is now under-
stood as a signature of strong Coulomb interaction be-
tween edge states and results in a separation of the spec-
trum of edge excitations into a slow and fast mode69. The
interaction between the two co-propagating edge states
has been widely considered both theoretically and exper-
imentally to explain coherence properties of edge states
at filling factor ν=269–75. Because of Coulomb interac-
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tion between the two edge states of opposite spins, new
eigenmodes with different velocities arise: a fast mode
that carries the charge and a slow neutral charge mode.
A direct observation of this separation has been realised
at filling factor ν=2 where each mode can be addressed
individually76–80.

The systematic study based on the temperature and
size dependence of the visibility came slightly later. It
enabled to extract the coherence length Lϕ at filling fac-
tor ν=2 (B≈ 4.6 T), where two edge states are propagat-
ing into the interferometer39. Two conditions are nec-
essary to measure the absolute value of Lϕ. First one
needs to prove its existence by varying the size on which
interferences occur. Secondly, one needs to show that
the interferences have a phase which does not depend
on the energy of the quasiparticles (to exclude thermal
smearing). This can be ensured by the geometry of the
interferometer: for equal length of interferometer arms,
the phase is energy independent. From the temperature
dependence of the visibility ν, it has been shown that ν
∼ e−T/Tϕ with T the electronic temperature and Tϕ ∼
νD the drift velocity of the electrons. From the size de-
pendence of the visibility Lϕ ∼ 20µm has been extracted
at T=20mK39. With some record visibilities equal to
90 %62, the MZI appears as a promising brick for more
complicated geometries.

FIG. 6. Schematic representation of the double MZI
proposed by Samuelsson et al.68. Electrons are injected
from contacts 2 and 3. Cross-correlation noise measurements
are realized between contacts 5 and 8. Φα is the phase ac-
cumulated along the trajectory of an edge. For example
Φ1 is the accumulated phase along the outer edge between
the beam splitters C and A. Cross-correlation noise measure-
ment between contacts 5 and 8 is sensitive to the two-electron
Aharonov-Bohm phase Φ = Φ1+Φ2−Φ3−Φ4 (figure adapted
from refs.68,81).

2. The two-electron Mach–Zehnder interferometer

To realise quantum gates, entangled states must be
generated. To create an entangled state, a two-electron
interferometer where indistinguishable electrons are in-
jected from two independent sources is necessary82–84.
As depicted in Fig. 6, electrons are injected from two
independent sources 2 and 3. A, B, C and D are QPCs.
Contacts 6 and 7 are grounded (contacts 1 and 4 are
not used). The measurement is realised between con-
tacts 5 and 8. The direction propagation is fixed by
the magnetic field: electrons from source 2 (3) are par-
titioned by QPC C (D). Reflected electrons from 2 are
sent to QPC B. Transmitted electrons from 3 are also
sent to QPC B: at the output of QPC B it is not possi-
ble to distinguish electrons coming from 2 to those from
3. This indiscernibility is the building block of the two-
electron Aharonov-Bohm effect and the orbital entan-
glement. The quantity that will post-select the entan-
gled part of the output state at contacts 5 and 8 is the
zero-frequency current cross correlator noted S58. When
the gate transmissions are equal to 1/2, one can show

that68,81: S58 = −e2
4h eV (1+cos(Φ1 +Φ2−Φ3−Φ4) where

Φ1 is the phase accumulated between QPCs C and A, Φ2

between QPCs D and B, Φ3 between QPCs C and B, Φ4

between QPCs D and A (see figure 6). We now assume
that a magnetic flux Φ can be added through the sample.
Due to the chirality of the electronic trajectories, one ob-
tains a positive contribution of the magnetic flux for the
phases Φ1 and Φ2, and a negative one for the phases Φ3

and Φ4. The global contribution related to the magnetic
flux is thus equal to Φ1 + Φ2 −Φ3 −Φ4 =

∫
BdS where

B is the magnetic flux across the area enclosed by the
four trajectories. Varying the magnetic flux through the
double MZI, one should observe oscillations of S58. Since
none of the electrons injected from 2 (or 3) can make a
complete loop around Φ, this effect is necessarily a two-
electron Aharonov-Bohm effet.

The first and so far only realisation of this experiment
has been done by the Weizmann team62. As depicted in
Fig. 7(a), the experimental double MZI was composed of
two single MZIs separated by a central top gate. The
central gate being closed, each single MZI was indepen-
dently tuned reaching a maximum visibility of 90 %. The
central gate is then fully opened to finally obtain the dou-
ble MZI configuration. In Fig. 7(b), the cross-correlation
shot noise S58 has been measured as a function of a lat-
eral gate voltage (varying the area defined by the four
paths) or the magnetic field (exploiting the gradual de-
cay of the magnetic field in persistent mode). Oscillations
with a period compatible with two-electron interference
have been observed, but only with a 25 % visibility, much
smaller than expected with two MZI showing 90 % visibil-
ity in single electron interference. Before going further,
like performing Bell’s inequalities violation62,82,85, one
definitively needs to understand the mechanisms lead-
ing to this unexpected low visibility of the two-electron
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quantum interference.

FIG. 7. Double Mach–Zehnder Interferometer. (a)
schematic drawing of the MZI shown in (b). The double MZI
geometry is composed of two single MZIs separated by the
middle gate (MDG). The tuning gates MG1 and MG2 are
used to sweep the Aharonov-Bohm phase of the electrons in
the two MZIs. Metallic air bridges connect drains D1 and D3
to ground. (b) Scanning electron micrograph of the actual
sample. Air bridges were used to contact the small ohmic
contacts, the split gates of the QPCs, and the MDG. c) Two-
electron inteference measured as a function of the tuning gate
and time (exploiting the gradual decay of the magnetic field
in persistent mode). An unexpected low visibility of 25 % is
measured. (figure adapted from ref.62).

B. Mach–Zehnder interferometry at low magnetic
fields (AB ring with tunnel-coupled wires)

Another way to realise a MZI which works at low mag-
netic fields (<∼ 100 mT ) is to combine an Aharonov-
Bohm interferometer with tunnel-coupled wires. In this
case the chirality is not relevant for the electron trans-
port. As briefly mentioned before, realisation of a two-

path interferometer is a direct way to realise a flying
qubit. For a two-path interferometer the two qubit states
|0〉 and |1〉 are defined by the presence of an electron in ei-
ther one of the two paths of the interferometer (see figure
8(a)) and well defined qubit operations can be performed
for the well defined electron trajectories. For the MZI in
the quantum Hall regime the chirality of the system en-
sures suppression of backscattering and allows for realisa-
tion of a two-path interference, however limits the system
to high magnetic field (several Teslas). Under low mag-
netic field it is more challenging to realise a pure two-path
interference since electrons can easily be backscattered.

This can be done by combining an AB interferometer
to two tunnel-coupled wires30 which act as beam split-
ters as shown in Figs. 8 and 9. The device structure is
tailored into a two-dimensional electron gas made from
a GaAs/AlGaAs heterostructure by electrostatic surface
gates. Applying a negative voltage VAB to the bridge gate
allows to deplete the central region to form the Aharonov-
Bohm ring. Electrons are injected from the lower left
contact by applying an ac bias (23.3 Hz, 50 µV ). They
are guided into the two arms of the AB ring through
the first tunnel-coupled wire and accumulate a phase dif-
ference between the two arms. Finally they are guided
into the two contacts on the right through the second
tunnel-coupled wire and measured as currents I1 and I2.
This device shows two distinct behaviours depending on
the voltage VT1 and VT2 applied on the tunnel-coupling
gates:

(i) When the voltages on gate VT1 and VT2 are set to
zero, both tunnel-coupled wires behave simply as single
quantum wires. In this single wire regime the two ohmic
contacts on each side are equivalent and the interferome-
ter effectively works as a two-terminal AB interferometer
as shematised in Fig. 8(b). The corresponding AB oscil-
lations of the two output currents I1 and I2 for this situ-
ation are shown in Fig. 8(c), where one probes the mod-
ulation of the phase difference ∆φ =

∫
k · dl − (e/h̄)BS

between the two paths of the AB ring when sweeping
the perpendicular magnetic field B. The fact that I1
and I2 behave in the same way clearly shows that the
two ohmic contacts on the right are equivalent and the
tunnel-coupled wires behaves like a single quantum wires.
For such a two-terminal device Onsager’s law87 as well
as current conservation imposes the boundary condition
G(B) = G(−B) on the linear conductance54. This can
be demonstrated by modifying ∆φ via modulation of
k. Changing the side gate voltage VM1 locally modi-
fies the wave vector k of the electron in the path along
gate M1. As shown in Fig. 8(d), the AB oscillations are
clearly symmetric with respect to the magnetic field and
show phase jumps as a function of VM1. Such an inter-
ference pattern indicates that the observed interference
is not a two-path interference but contains contributions
from multiple interference paths to satisfy the boundary
conditions26.

(ii)When VT1 and VT2 are set to large enough negative
voltages to form a tunnel-coupled wire as schematised in



9

FIG. 8. Flying qubit device under low magnetic field
and its behaviour in the single wire regime. (a) SEM
image of the relevant device. (b) Schematic of the electron
trajectory in the single wire regime. (c) Oscillations of the
output current I1 (black) and I2 (red) as a function of the
perpendicular magnetic field in the single wire regime. (d)
Oscillations of I1 as a function of the perpendicular magnetic
field B and the side gate voltage VM1. A smoothed back-
ground is subtracted and only the oscillating components are
plotted for (c) and (d). (figures adapted from refs.30,86).

Fig. 9(a), the behaviour drastically changes. The phase
now smoothly evolves as a function of the the side gate
voltage VM1 (Fig. 9(e)) while the output currents I1 and
I2 show anti-phase oscillations (Fig. 9(f)). In this tunnel-
coupled wire regime any superposition state of |0〉 and |1〉
in the AB ring can transmit into the tunnel-coupled wire
by being transformed into the superposition of a sym-
metric hybridised state |S〉 = (1/

√
2)(|0〉 + |1〉) and an

anti-symmetric hybridised state |A〉 = (1/
√

2)(|0〉 − |1〉).
This is in clear contrast with the above case of sin-
gle wire leads, where only |S〉 is transmitted into the
leads. Scattering of electrons from one path to the other
at the entrance and the exit of the AB ring are there-
fore highly suppressed and prevent electrons from encir-
cling the AB ring several times and contributing to the
interference26. These distinct behaviours depending on
the tunnel-coupling energy have been also studied the-
oretically and nicely reproduced26,88. Consequently the
device works as a true two-path interferometer as well as
a flying qubit. Due to this peculiarity, this device has
been exploited in recent studies to revisit a number of
fundamental questions89,90 about the phase modification
of an electron when traversing a quantum dot86,91.

In the tunnel-coupled wire regime a rotation about the
x-axis Sx(θ) can be performed as described in section I,

FIG. 9. Flying qubit operations in the tunnel-coupled
wire regime. (a) Schematic of the electron trajectory in the
tunnel-coupled wire regime. (b) – (d) Rotation about x axis
Rx(θ). (b) Output currents in the tunnel-coupled wire. Black
and red curves are the output currents I1 and I2 as a function
of VT1 when the current is injected from the upper wire. (in-
set) Evolution of the flying qubit state when a tunnel-coupling
is induced. (c) Oscillating components of the output currents.
Smoothed backgrounds are subtracted from the black and the
red curves of (b). (d) Schematic of an electron propagating
through the tunnel-coupled wire. The tunnel-coupling be-
tween the upper and lower wire induces an oscillation of the
electrons between the upper and lower wire as they propagate
through this region. (e), (f) Rotation about z axis Rz(φ). (e)
Oscillating component of the output currents I = I1 − I2 as
a function of the perpendicular magnetic field and side gate
voltage VM1. (f) Oscillations of the current I1 (black) and I2
(red) as a function of the perpendicular magnetic field in the
tunnel-coupled wire regime. The smoothed backgrounds are
subtracted from the raw data. (inset) Evolution of the qubit
state in Ramsey interference scheme. (figures adapted from
ref.30).

where θ = ∆k ·L = (kS − kA) ·L. This operation can be
demonstrated by varying the voltage of gate VT1 which
controls the tunnel-coupling between the upper and lower
wire: A current is injected into the upper wire to pre-
pare the initial state |0〉 and the output currents I1 and
I2 are measured as a function of the gate voltage VT1

(Fig. 9(b)). VT1 changes ∆k and hence the rotation an-
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gle θ. Clear anti-phase oscillations of currents I1 and I2
are observed at 2.2 K, as shown in Fig. 9(c). These anti-
phase oscillations are a direct signature of electron tun-
nelling between the two wires as schematised in Fig. 9(d).
An electron injected into the upper wire oscillates be-
tween the upper and lower wire depending on the tunnel-
coupling set by the gate voltage VT1. For this device, the
visibility of the oscillation, the ratio of the oscillation
component to the total current, is limited to 1%. This
is due to the existence of several transmitting channels
and the high measurement temperature. Improvement
of design and lowering the temperature allowed to reach
visibilities above 10%92.

A rotation about the z-axis Sz(φ) can be achieved in
the AB ring by varying the perpendicular magnetic field
or the gate voltages VM1 as already outlined in section I.
The relative phase difference between the upper path and
the lower path is given by ∆φ =

∮
k · dl− (e/h̄)BS. The

combination of Sx(θ) and Sz(φ) enables the generation
of an arbitrary vector state on the Bloch sphere. This
can be achieved by controlling simultaneously the tunnel-
coupling and phase difference between the two paths.
Sz(φ) is demonstrated in a Ramsey-type interference

(Schematic in Fig. 9(f)). The two sets of tunnel-coupled
wires were prepared to Sx(π/2) and the magnetic field is
varied to perform Sz(φ) in the AB ring. When the initial
state is prepared to |0〉 by injecting a current from the
upper wire, the final state becomes

Sx

(π
2

)
Sz(φ)Sx

(π
2

)
|0〉 =

eiφ − 1

2
|0〉+

ieiφ + i

2
|1〉 .

(6)
The two output currents are proportional to the square
modulus of each coefficient and become

I1(2) ∝
∣∣eiφ ∓ 1

∣∣2
4

=
1∓ cosφ

2
, (7)

respectively. The measured I1 and I2 plotted in Fig. 9(f)
indeed oscillate with exactly opposite phase for the mod-
ulation of φ by the magnetic field. The phase φ can also
be modulated by the gate voltages VM1, which changes
the wave vector k of the path. This is demonstrated in
Fig. 9(e), where the phase smoothly evolves over a range
of 2π as a function of the side gate voltage VM1 along the
vertical axis. This is in strong contrast to Fig. 8(d). This
rotation about the z-axis by VM1 is important for qubit
applications. Combined with the rotation about x-axis
by VT1,T2, the qubit can be fully operated by the gate
voltages at zero magnetic field. This allows for much
faster operations than the ones controlled with a mag-
netic field.

The flying qubit presented here is attractive for quan-
tum information technology. In addition to the ability to
transfer the quantum information over a long distance,
it has a much shorter operation time compared to other
qubits in solid-state systems. The operation time L/vF

(L, gate length; vF, Fermi velocity) is of the order of 10
ps. Analysing the temperature dependence of the oscil-
lation amplitude shows that this qubit has a very long

coherence length lφ = 86 µm at T = 70 mK30. Us-
ing even higher quality heterostructures, the coherence
length could be longer than 100 µm. Since each quan-
tum operation is performed within a 1 µm scale, it would
in principle be possible to perform more than 100 qubit
operations.

On the other hand the visibility, defined as the AB
oscillation amplitude divided by the total current, is lim-
ited to about 10 %. Since the coherence length is found
to be much longer than the interferometer length, deco-
herence is not the main origin of this limited visibility.
The influence of thermal smearing due to the difference in
Fermi velocity between the two paths is also small at the
measurement temperature. The main limitation comes
from the contribution of several transmitting channels in
each part of the tunnel-coupled wires and in each arm of
the AB ring while only one in each wire contributes to
the main AB oscillation. Therefore the visibility could be
improved by operating the interferometer with a highly
coherent single transmitting channel (See Supplementary
information in Ref. 30 for more details). One possible
remedy towards this direction would be to adiabatically
reduce the number of transmitting channels to one at
a specific point of the interferometer while keeping the
number of channels (or the electron density) constant
over the other part of the interferometer. Higher electron
density is preferable to screen the potential fluctuations
induced by the gates, which is proposed to be the main
source of decoherence in ballistic AB interferometers93,
and hence to maintain the coherence.

In addition to quantum information transfer, it should
also be possible to create a non-local entanglement state
following the scheme proposed in refs. 31 and 34, com-
bined with single electron sources94–97 to synchronise
qubits. This flying qubit can also be used in combination
with a spacially localised qubit32.

In this section we introduced different device architec-
tures which can be exploited to realise electronic flying
qubits at the single-electron level. For the implementa-
tion of a flying qubit at the single-electron level, however,
these architectures have to be combined with a single
electron source as well as a single electron detector, which
we will describe in the sections IV and V. In addition,
synchronisation of different qubits is required to realise
two qubit operations. For that purpose MZI in the quan-
tum Hall regime is advantageous. Chirality suppresses
backscattering and synchronising different single electron
sources can be straightforwardly achieved71. Upscaling
of this system, however, is not straightforward. On the
contrary, the MZI interferometer for low magnetic fields
is easier to scale-up by adding the basic qubit structure in
parallel or in series. On the other hand, when the device
gets longer, it will suffer from backscattering of the elec-
trons, which prevents synchronisation between different
qubits. One possible way to avoid backscattering is using
electron transport by surface acoustic waves8,96,98–100.
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The biggest challenge, however, is single shot detection
of such single flying electrons. For low magnetic field
there are potential approaches to achieve this in the near
future (see section V) while single-shot detection under
high magnetic field is a real challenge in this field of re-
search.

When dealing with single-electron wave packets, it is
also important that there is a substantial overlap be-
tween the interfering electrons at the output of a beam
splitter101,102. It is hence important that the two infer-
ence arms are of similar length. For electron wave packets
of a temporal width of about 100 ps, which can nowa-
days be routinely produced with state-of-the-art elec-
tronic equipment, the spatial extension is still large (10
µm for a speed of 105 m/s). This is of the same order
of magnitude as the size of the present interferometers.
However, when going to smaller and smaller wave packets
this issue has to be taken into account. The case where
electron wave packets are much smaller than the size of
the interferometer, new types of interference effects will
appear103. This novel physics will be described in section
VII.

IV. SINGLE ELECTRON SOURCES

In the preceding section we have presented proof-of-
principle experiments for the realisation of a solid state
flying qubit with two different types of MZIs. In these
experiments, however, the electrons are injected as a con-
tinuous stream and the measurements are based on en-
semble averages. The ultimate goal in this line of research
is the ability to control the flying qubit at the single-
electron level, which requires on-demand single electron
sources (SES) as well as single electron detectors. In
this section we will focus on the single electron sources
which have been developed over the last 10 years with
the goal to perform quantum interference experiments at
the single-electron level.

At the origin of most single electron sources is the quest
for a fundamental standard of electrical current linking
the ampere to the elementary charge and frequency. Such
single electron sources can be realised by high-speed,
high-accuracy transport of single electrons in nanoscale
devices104–106. Development of an accurate single elec-
tron pump is of particular importance for metrology. It
allows for the precise determination of the value of the
elementary charge, which is one of the seven reference
constants in the new SI units which will be redefined
in 2018107–109. In addition it contributes to the quan-
tum metrology triangle (QMT) experiment110,111 which
is a consistency test of three quantum electrical stan-
dards: the single-electron current standard, the Joseph-
son voltage standard and the quantum Hall resistance
standard, which play a fundamental role in metrology.
The future redefinition of the international system of
units in terms of natural constants requires a robust,
high-precision quantum standard for the electrical base

unit ampere.
The best single electron pumps reach nowadays an er-

ror rate of better than 1 ppm at 0.6 ∼ 1 GHz112–114.
Besides this, integrated single-electron circuits have also
a great potential in quantum information processing as
already motivated in the introduction. Most implemen-
tations of today’s single electron sources are based on
small isolated regions of charges connected to a reservoir
via tunable barriers, a prime example is semiconductor
quantum dots. In this case one exploits the fact that
in a sufficiently small isolated region, the energy level is
fully quantised by the charging energy originating from
Coulomb interactions and the number of electrons inside
the quantum dot can be controlled one by one1,115,116.

For completeness let us also mention that single elec-
tron transistors using superconductor or metallic islands
have been developed to realise high accuracy current
pumps104. In this review, however, we will focus on single
electron sources made from GaAs heterostructures.

A. AC single electron source (Mesoscopic
Capacitor)

A capacitor forms a simple and elegant possible reali-
sation of a single electron source. The idea is to realise a
RC circuit driven by an AC voltage such that the charge
and discharge of the capacitor is limited to a single ele-
mentary charge q = e. The capacitor has to be weakly
connected to the lead in which the elementary charges are
transferred such that charge quantisation occurs between
two stationary capacitor states. A metallic island con-
nected to leads by a single tunnel junction could realise
this device when the Coulomb charging energy e2/C is
larger than the thermal energy kBT . However, the metal-
lic island capacitor is reputed to have a quasi-continuous
density of states and the energy at which, and the state
from which electrons are emitted are not well defined,
while controlling the initial state is of utmost importance
for quantum information applications. A quantum coher-
ent electron source requires in addition using a quantum
dot viewed as a mesoscopic capacitor in which electrons
keep quantum coherence and their state and energy lev-
els are well defined. The spacing of the energy levels
of the dots should be much larger than the thermal en-
ergy kBT and the level used to emit and absorb single
electrons, whose energy is closest to the Fermi energy of
the leads, should be non degenerate. This coherent sin-
gle electron source95 is based on a mesoscopic capacitor
which was initially realised117 to check a prediction by M.
Büttiker118 of an universal quantisation of the charge re-
laxation resistance (called Büttiker’s resistance h/2e2)).
Here no DC current but only an AC current is produced.
In the single electron source regime, a quantised AC cur-
rent of amplitude ef is made of the periodic injection
of single electrons above, followed by single holes below
the Fermi energy EF . For ease of operation and further
use in electron quantum optics, a strong perpendicular
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magnetic field brings the conductor in the integer Quan-
tum Hall Effect (QHE) regime. In this regime, for a
small dot (submicron diameter) the 1D QHE chiral edge
states modes running along the dot boundary give rise
to energy level quantisation with energy level spacing
∆ = hvD/p of typically 1 Kelvin in energy, where vD,
a few 104 cm/s is the drift electron velocity and p is the
quantum dot capacitor perimeter. The top gate, above
the mesoscopic capacitor provides enough screening of
the Coulomb interaction such that the charging energy
is smaller than ∆, see Fig. 10 for a schematic descrip-
tion. To ensure energy level and charge quantisation,
the capacitor is weakly connected to the leads, the chiral
edge channels, via a quantum point contact which con-
trols the tunnel-coupling. The operating principle is as
follows, see Fig. 10. Starting from a situation where the
last occupied energy level is below the Fermi energy 1©,
a sudden rise of the voltage applied on the capacitor top
gate rises the occupied energy level above the Fermi en-
ergy 2©. After a time of the order of the energy-level life
time ' h̄/D∆, which is controlled by the barrier trans-
mission D, an electron is emitted at a tunable energy
εe above the Fermi level (∆ is the energy level spacing).
Then restoring the top gate voltage to its initial value
3© pulls down the energy level below the Fermi energy:
an electron is captured or equivalently a hole is emitted
at a definite energy −εh below the lead Fermi energy.
Fig. 10(b) shows time domain measurements of the mea-
sured current averaged over a large number of periodic
emission cycles at a 30 MHz repetition frequency. The
exponential decay of the current reflects the exponen-
tial decay rate (characteristic time τem = h̄/D∆) of the
emission probability of electrons and holes.

The mesoscopic capacitor electron source is an energy-
resolved electron source. It provides a convenient single
electron source where electrons can be emitted at a tun-
able energy (< ∆/2) above the Fermi energy. The emis-
sion quantum energy uncertainty D∆ is also tunable, as
reflected by the quantum emission time τem. Among ma-
jor achievements obtained with the mesoscopic capacitor
single source is the demonstration of single electron par-
titioning and the Hong–Ou–Mandel (HOM) correlations.
Regarding limitations, for HOM experiments, it is tech-
nically difficult to realize identical capacitor dots due to
nanolithography reliability. Another limitation is that a
good energy resolution requires that the number of elec-
trons (or holes) is limited to one per cycle because of the
charging energy.

B. Single electron pumps based on dynamic
semiconductor quantum dots

As mentioned in the introduction of this section, the
development of single electron sources have been trig-
gered by the quest for a fundamental standard of electri-
cal current. One of such sources realised in GaAs based
nanostructures will be described in the following. The

FIG. 10. Mesoscopic Capacitor single electron source.
(a) Radio-frequency square-wave pulses Vexc(t) are applied on
the top gate (inset of the figure). 1© Starting point: the Fermi
level lies between two discrete energy levels of the quantum
dot. 2© 2eVexc(t) is equal to the level spacing ∆. An electron
escapes the dot at a well defined and tuneable energy. 3©
Vexc(t) is brought back to its initial value, a hole escape at
energy below the lead Fermi energy. (b) Time domain mea-
surement of the average current (black curves) on one period
of the excitation signal (red curves) at 2eVexc(t) = ∆ for three
values of the transmission D. The expected exponential relax-
ation with time h̄/D∆ (blue curve) fits well the data (figure
adapted from ref.95).

basic building block of this device is a dynamic quantum
dot (QD), where the periodically varying confining po-
tential is varied by energy barriers. Originally94 such a
source was implemented by using two barriers controlled
by two independent voltage parameters. In a more opti-
mised version119–122 only one of the two gate voltages is
used to eject a single electron from the dynamic QD as
shown in Fig. 11. Two parallel electrostatic gates with a
small opening allow to trap a small number of electrons
inside the QD. A schematic of the one-dimensional elec-
trostatic potential landscape is shown in the right panel.
For the loading procedure the energy of the right bar-
rier is set well above the Fermi energy to prevent the
electrons from escaping the QD. The left barrier is then
lowered to an energy close to the Fermi energy to load
a small number of electrons (black curve). By increas-
ing the gate voltage on the left barrier (more negative
voltage) the QD is progressively isolated. During this
process, some initially trapped electrons tunnel back to
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FIG. 11. Single electron pump based on dynamic semi-
conductor quantum dots. (a) Scanning electron microsope
(SEM) image of the device. Two electrostatic gates (light
grey) allow for control of this single electron pump. Scale
bar indicates 1 µm. (b) Schematic diagrams of the potential
along the channel during four phases of the pump cycle. (1)
loading, (2) back-tunneling, (3) trapping and (4) emission.
One cycle transports an electron from the left (source) to the
right (drain) lead. (c) Average number of pumped electrons
per cycle as a function of exit gate voltage VG2 at a repetition
frequency of 945 MHz. (d) Comparison between the fit ob-
tained from the data in (c) (red line) and the high-resolution
data around the plateau. They are plotted on an offset gate
voltage scale. (figure adapted from ref.123).

the reservoir before tunnelling is eventually suppressed.
The electrons, which remain trapped, are ejected from
the dot, once the left barrier exceeds the potential of the
right one. By finely adjusting the voltages on the gate
VG1 and VG2 it is then possible to eject a single elec-
tron. The single electron pumps are usually operated at
a repetition frequency of 100 MHz-1GHz, limited by the
tunnelling time into the QD. Presently, current accuracy
of about 1ppm have been achieved123. To obtain such a
high accuracy, the experiments are usually done under a
large magnetic field, which stabilises the quantised cur-
rent plateaus as shown in 11(c) and (d) most likely due to
the increased sensitivity of the tunneling rate to the elec-
trostatic potential and the suppression of non-adiabatic
excitations105,124,125. Working at large magnetic fields
is also convenient to guide the electrons along the edge
states in the quantum Hall regime. A detailed review
on the working principle and performance of these single
electron sources can be found in ref.105. Let us empha-
sise that for this single electron source the electrons are
ejected with an energy far above the Fermi sea, typi-
cally above 100 meV with an energy resolution of about
3 meV125. This is much larger than the Fermi Energy
EF ≈ 10 meV as well as the charging energy of the gate

defined QD EC ≈ 1meV. Naturally, this high energy will
set limits to this single electron source to use it for elec-
tron optics experiments. We will come back to this issue
at the end of this section.

It is also possible to measure the energy as well as the
temporal distribution of the emitted high energy elec-
trons. This can be done by adding an energy selective
barrier at the arrival position125. By repeating the single
electron emission at the pump clock rate and by inducing
a time delay between the emission and the on-off switch-
ing of the arrival barrier, one can map out the shape of
the emitted wave packet with ps resolution126. Presently
the smallest wave packet size so far detected is of the or-
der of 5ps127. Finally, it is also possible to load several
electrons in the QD and eject them sequentially125. Us-
ing in a similar manner a barrier to detect the electrons
it is possible to partition them individually128. We will
come back to this issue in section VI.

Let us also mention that semiconductor devices made
from silicon129 become again very popular112 for high
precision electron pumps. This is also the case for sin-
gle electron QDs which can be operated as charge130 or
spin qubits131,132. Silicon has the advantage compared
to GaAs that it can be relatively easily isotopically puri-
fied. Nuclear spin free 28Si is nowadays employed in the
spin qubit field and extremely long coherence times have
been obtained133.

C. Single electron source based on voltage pulses
(levitons)

Here, we describe a very simple way of injecting single
or multiple electrons in a quantum conductor. The idea
is to reduce the charge emitted by the electronic reservoir
to its ultimate value – an elementary charge – by applying
an ultra-short voltage pulse.

The method presents the advantage that no lithogra-
phy step is required for the electron source and the (mod-
erate) difficulty is left to the control of a current pulse
on a very short time scale. To describe the principle, let
us first consider a perfect quantum conductor made of
a single quantum channel, spin disregarded. According
to finite frequency Büttiker’s quantum transport laws, a
voltage pulse V (t) applied on a contact, while other con-

tacts are grounded, injects a current pulse I(t) = e2

h V (t)
from the contact to the single channel conductor. To
inject n electrons, one has to tune the amplitude and du-
ration of the voltage pulse such that

∫∞
−∞ I(t)dt = ne or

equivalently
∫∞
−∞ eV (t)dt = nh. Thus realizing a single

electron source (n = 1) seems easy to perform. However,
for quantum information application, it is important that
the injected electron, the flying qubit, is the only exci-
tation created in the quantum conductor. This is not
the case in general, as noticed by Levitov and collabora-
tors in a series of theoretical papers134–136. Indeed elec-
trons are not injected in a vacuum of quantum states,
like single photons, but on a ground state full of elec-
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trons, the Fermi sea. The voltage pulse in general per-
turbs all electrons and creates extra excitations137–139.
These excitations are neutral in order to conserve the in-
jected charge. Levitov’s remarkable prediction was that
only a special voltage pulse, a Lorentzian pulse, inject-
ing an integer number of charge is able to provide a
so-called minimal excitation state where only charge ex-
citation is created with no extra neutral excitation134.
After its recent experimental realization97, this single
charge minimal excitation state has been called a leviton.
Other pulse shapes140, or non-integer charge injection,
create non-minimal states which are not suitable for fly-
ing qubits. To understand the underlying physics of the
generation of levitons, one has to consider the effect of
a voltage pulse on all electrons of the electrical contact
subjected to the pulse. An electron emitted from the
contact at some energy ε below the Fermi energy and ex-
periencing the potential eV (t) has its phase modulated

as φ(t) = 2π
∫ t
−∞ eV (t′)dt′/h. As the time dependence

is breaking energy conservation, the electron will end in
a superposition of quantum states of different energies.
The probability amplitude to have its energy displaced
by δε is p(δε) =

∫∞
−∞ exp(−iφ(t)) exp(−iδεt/h̄). For ar-

bitrary phase modulation (or voltage pulse shape) p(δε)
takes finite values for both positive and negative δε. The
electrons of the Fermi sea are displaced up and down
in energy and this creates electron- and hole- like exci-
tations. To create a leviton, a pure electron excitation
with no hole, one needs p(δε) = 0 for δε < 0. To ensure
this for a single pulse, exp(−iφ(t)) must have no poles in
the lower half complex plane and at least one pole in the
upper half, i. e. exp(−iφ(t)) = (t + iw)/(t − iw). One
immediately sees that the phase derivative (and so the
voltage V (t)) must be a Lorentzian, with :

V (t) =
h̄

e

2w

t2 + w2
(8)

the parameter w is the width of the Lorentzian. Adding
an extra pole in the upper complex plane is equivalent to
adding an extra electron. For periodic leviton injection
with period T = 1/f , the poles are regularly spaced at
values −kT + iw, k integer and exp(−iφ(t) = sin(π(t +
iw)/T )/ sin(π(t− iw)/T ) and

eV (t) =
hf

2

sinh(2πw/T )

sinh(πw/T )2 + sin(πt/T )2
(9)

The first implementation of a single electron voltage
pulse has been done recently, see ref.97. The periodic
injection of a single electron, using square, sine and
Lorentzian pulses have been compared to evidence Levi-
tov’s prediction of minimal excitation states. To do this
a measure of the total number of excitations created per
pulses is needed. This is provided by sending the charge
pulses towards a QPC with finite transmission D. This
artificial scatterer plays the role of a beam splitter which
partitions the charge into transmitted and reflected states
following a binomial law. Assuming we have created

levitons, i.e. electrons not accompanied by electron-hole
pairs, the partitioning statistics of n electrons arriving at
frequency ν gives a low frequency current noise spectral
density SI = 2e2fnD(1 − D) (here n = 1). If however
both electron and hole excitations are incoming on the
QPC, one can show that, at zero temperature, one has
exactly, see ref.141 :

SI = 2e2f(Ne +Nh)D(1−D) (10)

while the mean current is I = eν(Ne − Nh) = eνn.
Levitons with Nh = 0 and Ne = n give minimal noise.
This was experimentally demonstrated in ref.97. Reduc-
tion of the shot noise has also been observed in experi-
ments using tunnel junctions with a biharmonic drive140.
In Fig. 12 (a) and (b), the experimental set-up is de-
picted: leviton pulses are sent on the ohmic contact of
the quantum point contact, while partitioned quasiparti-
cles are detected by cross-correlation measurement tech-
niques. In Fig. 12 (c), excess particle number as a func-
tion of injected charge per pulse is shown: compared to
the sine and square pulse, the Lorentzian pulse gives the
smallest amount of electron-hole pairs. This approach
ensures an excellent control of the electronic wave func-
tion that arrives at the QPC. For electron-quantum op-
tics experiments, this source has the advantage to in-
ject electrons at the Fermi energy and will less suffer
from relaxation processes, as observed in the mesoscopic
capacitor source. It is worth noticing that this experi-
ment is an electron analog of a photonic Hanbury-Brown
Twiss experiment142,143 where single photons are sent to
a beam splitter, but with electrons. We will see later
that we can go further and perform Hong–Ou Mandel–
interferometry by sending two periodic trains of levitons
on each beam splitter input and measuring the noise cor-
relation.

D. SAW driven single electrons

Yet another highly efficient on-demand single electron
source can be realised by transporting a single electron
with a surface acoustic wave (SAW)96,98. One exploits
again the fact that a single electron can be isolated in
a semiconductor quantum dot (QD) and single electron
transfer can be realised by transferring the single electron
into a moving SAW QD. When connecting two QDs with
a quantum channel (see figure 13(a)), it is then possible
to transfer a single electron from one QD to the other
with detection efficiencies much higher than 90 %96,98.
GaAs is a piezo-electric substrate and therefore allows
to generate SAWs which carry a moving electric field for
certain crystal directions. The SAW can be generated by
an interdigitated transducer (IDT) which is deposited on
the surface of the GaAs substrate (see figure 13(b)). The
IDT is usually composed of several tens of interdigitated
metallic fingers with a length of about 100 µm in order
to create an oscillating electric field at the surface of the
GaAs crystal when applying a radio frequency signal to
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FIG. 12. Leviton voltage pulse source. (a) schematic
view of the sample, a 2D electron gas with a quantum point
contact in its middle. (b) experimental cryogenic set-up de-
signed to send short ∼ 30ps wide Lorentzian pulses and
equipped for cross-correlation noise measurements with cryo-
genic HEMT amplifiers. The lower graph (c) shows the excess
shot noise generated by partitioned electron pulses. Square
and sine wave pulse gives finite noise due to partitioning of
extra electron-hole pairs accompanying the pulse. Lorentzian
pulses with integer charge give no noise except a weak thermal
noise contribution. This is consistent with minimal excitation
states called levitons and suitable for charge flying qubits (fig-
ures are adapted from ref.97).

the two electrodes. Due to the piezo-electric effect, the
crystal contracts periodically and generates a Rayleigh
wave for specific crystal directions which travels at the
surface of the GaAs crystal with a sound velocity of the
order of 3000 m/s144. This slow speed, which is about
2 orders of magnitude slower than the Fermi velocity, is
advantageous as it allows to induce gate operations of
the propagating electrons on shorter length scales com-
pared to ballistic electrons. The wavelength of the SAW
can be simply engineered with the distance between the
fingers of the IDT. For such single electron transfer ex-
periments, the IDT is operated at a frequency close to
3 GHz which translates into a wavelength of the order
of 1 µm145–148. This ensures a moving QD of a size of
several hundred nanometers when propagating through
an electrostatically defined one-dimensional channel of
similar dimensions. Going to higher frequency is desir-
able as it increases the confinement potential and hence
the level spacing of the QD. This however comes with
technical difficulties. Beyond a frequency of 5-6 GHz the
efficiency of the IDTs decreases drastically due to ohmic
losses in the metal strips (usually made from gold) but

also due to losses into the bulk of GaAs. The wave-
length gets so small that surface roughness can excite
bulk waves. Going to smaller wavelength puts also much
higher constraints on the spatial resolution of nanofabri-
cation. The highest frequencies which have been achieved
(f ≈ 20 GHz) so far have been realised with nano-imprint
techniques149.

FIG. 13. Single electron SAW device. (a) SEM of the sin-
gle electron source. The source and reception dot is defined by
four gates highlighted in color (yellow, red, green and blue).
The violet gates serves as a QPC in order to determine the
electron number of each quantum dot. The two large central
gates serve to guide the emitted single electron on a specific
trajectory. (b) SEM image of the central part of the inter-
digitated transducer schematised in (a). It is composed of 70
fingers with a spacing of 1 µm. Each finger has a width of
250 nm and a length of 100 µm. The transducer is placed
approximately 1 mm away from the central structure. (c)
Electrostatic potential landscape for a single electron transfer
experiment. (d) Coincidence measurements of a single-shot
QPC trace at the source (left) and reception (right) quan-
tum dot. An electron initially trapped in the source quantum
dot is transferred to the reception dot after applying a SAW
burst. Figures are adapted from ref.96,99,150.

The SAW driven single electron source is operated in
the following way: At first, a single electron is loaded
into the QD at the loading position LP of the charge
stability diagram shown in figure 14 (c). The quantum
point contact (yellow and purple gates in figure 13(a))
allows to detect whether an electron is present inside the
QD (see section V for details). Varying gate voltages VL
and VR the electron is then moved to its isolated position
IP by increasing the barriers formed by the electrostatic
gates which separate the QD from the reservoir (VL) and
the channel (VR). At this position the electron can be
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trapped for a very long time151. The dwell time of an
electron in this isolated position can be measured by sta-
tistical average of the time when the electron stays in
the QD before it tunnels into the nearby reservoir. This
is shown in figure 14(d) where several individual escape
events are measured. Averaging 10000 of such events re-
sults in an exponential decay from which one can deduce
the dwell time of the electron in the isolated position,
here ≈ 700 ms.

If one now keeps an electron in the isolated position
and launches a SAW train, one can expel the single elec-
tron from the QD with very high efficiency. To demon-
strate this, a 60 ns long SAW train is launched from the
IDT 50 ms after the single electron is brought to the
isolated position. If the amplitude of the SAW is suffi-
ciently strong, the moving electric field can pick-up the
electron from the QD and carry it along. This is shown
by the red curve in figure 14(e). Whenever the SAW ar-
rives at the QD, the electron is ejected and the QD is
depopulated. Adjusting the SAW amplitude and the QD
potential, ejection efficiencies higher than 96 % have been
achieved96,98. By engineering one-dimensional channels
with electrostatic gates, the ejected electron can be trans-
ported and guided at will to any desired position on the
electronic circuit. The single electron is then literally
surfing on the SAW within the electrostatic confinement
potential landscape created by the one-dimensional chan-
nel as shown in figure 13(c). In order to show that the
electron is indeed transferred to the detector QD through
the one-dimensional channel it is necessary to perform co-
incidence measurements on both QDs at the same time99.
Such coincidence measurements are shown by the QPC
traces in figure 13(d) .

Now that we have presented the different single elec-
tron sources let us discuss their advantages and disad-
vantages. All four SES can easily be integrated into
electronic quantum circuits engineered from GaAs het-
erostructures. The leviton source has the least con-
straints on nano fabrication as it simply requires an
ohmic contact to which a short voltage pulse is applied.
Care has to be taken for the design of the waveguide
which guides the radio-frequency (RF) signal to the con-
tact, but this is true for any electrical connection on-chip
which is operated at RF frequencies. The ohmic contact
should be reduced to a small size, typically 10µm×10µm,
to be able to easily guide the single-electron wave packet
into a gate defined quantum rail and the contact resis-
tance should be as small as possible, typical values are
of the order of 100 Ω. For all other sources, several ad-
ditional electrostatic gates have to be implemented. The
most demanding from this point of view is certainly the
SAW based single electron source as it requires a detec-
tor (QPC) as well as a QD to make it operational. On
the other hand an important advantage of this SES is
that it also allows for single-shot detection, a require-
ment absolutely necessary for quantum information pur-
poses. For this single electron transport technique it is
possible to capture the propagating single electron in an-

FIG. 14. Single electron loading procedure and dwell
time measurement of the electron. Electrostatic poten-
tial profile for (a) the loading position LP, (b) the isolated
position IP. (c) Charge stability diagram of the quantum dot
obtained by varying the two barrier gate voltages VL and VR.
The color scale corresponds to the derivative of the QPC cur-
rent. Whenever a red line is crossed, the electron number on
the dot changes exactly by one. (d) Individual escape events
of the electron when in the IP. (e) blue curve: average of
10000 single escape events; red curve: same measurement as
for the blue curve, with the difference that after a waiting
time of 50 ms in the isolated position a 60 ns long SAW train
is launched.

other QD and measure its presence with a single-shot
measurement96,98 with a precision higher than 99 %152.
This is presently not the case for the other three electron
sources. All electron counting experiments performed to
date with these SES are based on a measurement of the
average DC current or the low frequency current noise
while repeating the experiment billions of times. To reach
the single-shot limit is very challenging since the prop-
agation speed of the generated electron is very fast and
the interaction time with any detector will be very short
(see next section for details).

To realise a current standard the non-adiabatic charge
pump is obviously the best choice as it allows quanti-
sation of the electron charge as well as very high clock
frequencies. SAW based single electron sources as the one
presented here cannot be operated at very high repetition
frequencies. Presently they are limited to below 100 Hz
due to technical issues of the experimental setup99. It is
also possible to apply the SAW in a continuous manner
by driving the SAW across a constriction100,145,153 rather
than by single electron transport between QDs with very
short SAW bursts. In this case one can confine a single
electron within each minimum of the SAW. and allows
to obtain a very high repetition frequency (several GHz).
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This technique was initially developed with the motiva-
tion to realise a very precise electron pump with a cur-
rent of several hundred pA (1GHz ≈ 160 pA). The best
precision which could be achieved with this source was,
however, only of the order of 100 ppm100. For quantum
interference experiments single electron transport using
a SAW wave in a continuous fashion presents also some
limitations. The power dissipation due to the SAW itself
is high, not favourable for quantum interference exper-
iments. Neither the leviton source nor the Mesoscopic
Capacitor source can be used as a current standard. The
leviton source does not deliver any quantised current,
that is no quantisation plateau will appear when chang-
ing for instance the amplitude of the voltage pulse, while
the Mesoscopic Capacitor source delivers a zero net DC
current as it periodically generates an electron followed
by a hole.

In this review, however, we are mainly interested
in discussing quantum coherent nanocircuits suitable
for implementation of electron quantum optics and fly-
ing qubits with electrons. This requires an electron
wave packet that preserves its phase while propagating
throughout the entire quantum circuit. In addition, two
electrons sent from two different sources should be well
synchronised in time and should be indistinguishable. In
this respect the four SES have quite different proper-
ties. Synchronization on the ps level can be achieved
with all four single electron sources. State-of-the-art ar-
bitrary wave generators allow to induce a time difference
of presently of about 1 ps between two output signals127

which is well below the actual time-spreading of the gen-
erated single-electron wave packets. In this respect only
the synchronisation of the SAW wave source seems prob-
lematic as a single electron has to be loaded into exactly
the same SAW minimum for each SES. Recent exper-
iments have shown that this can be achieved with very
high efficiency when using ps pulse triggering of the load-
ing barrier gate to inject an electron into a specific mini-
mum of the SAW train152. With this technique it is then
possible to map out in a time-resolved manner the entire
SAW train.

An important issue for realising quantum interference
experiments at the single-electron level is phase preser-
vation. For the non-adiabatic SES, the ejection en-
ergy of the electron is very high. While propagating,
the electron will relax and loose energy which results
in visibility loss when performing interference experi-
ments. It has been shown that electrons can be trans-
ported over several microns with small inelastic electron-
electron or electron-phonon scattering125. For a 170 meV
emission energy the contribution due to inelastic scat-
tering is less than 1 meV. In order to reduce energy
relaxation over longer propagation length, it is possi-
ble to completely deplete the electron gas which mini-
mizes electron-electron interactions154. Interference ex-
periments with such a SES, however, have not yet been
reported. Energy relaxation is also an issue for the Meso-
scopic Capacitor electron source. Similar to the non-

adiabatic single electron source, the generated electron
have a well defined energy, however with a 100 times
smaller energy. Still, when launching the electron wave
packet, it will relax in energy during propagation which
will lead to decoherence155,156. In addition electron-
electron interaction between the edge channel have to
be taken into account. Even though additional edge
channels help to reduce the Coulomb interaction due to
mutual screening157, Hong–Ou–Mandel interference mea-
surements show that the Pauli dip does not go to zero71.
We will come back to this issue in more detail in section
VI.

This issue is conceptually different for the other two
sources. As mentioned above, the leviton source gen-
erates a very peculiar type of single electron excita-
tion. Due to its exponential energy distribution, the
leviton lives very close to the Fermi sea and since all
electronic states below the Fermi sea are occupied, it is
well protected against energy relaxation. Two particle
Hong–Ou–Mandel interference have shown a reduction
of the Pauli dip which is in good agreement with theo-
retical expectations97 and nicely demonstrates that the
two emitted electron wave packets are indistinguishable.
From these experiments it is however difficult to estimate
a value of the phase coherence length. Preliminary exper-
iments on a 40 µm long tunnel-coupled wire with electron
wave packets of a temporal width shorter than 100 ps
have shown that phase coherence is preserved through-
out the wire92. This is very promising and suggests that
the leviton source is very suitable for integration into a
flying qubit architecture. Apart from being very suitable
for quantum optics like experiments, the leviton source
will also allow to explore novel quantum effects. As the
wave packet is propagating at the surface of the Fermi
sea, novel quantum interference phenomena have been
predicted when a very short charge pulse is interfering
with the Fermi sea103. This novel physics will be dis-
cussed in section VII

The SAW electron source on the contrary eliminates
completely the effect of the Fermi sea. The electron
is confined in a moving QD well above the Fermi en-
ergy. In this sense this technique is the closest to photon
experiments. However, the fact that the electrons are
completely isolated form the Fermi see makes them also
more vulnerable to external perturbations since electron
screening is strongly reduced. As mentioned above, this
technique allows to transport single electrons with a very
high fidelity96,98. Recent experiments have been able to
push the transfer efficiency beyond 99 % for a transfer
distance of more than 20 microns152. Employing a struc-
ture similar to the one schematised in figure 1(a), it has
been possible to partition on-demand electrons coming
from input port 1 into the two output ports, hence real-
ising a directional coupler at the single-electron level152.
Present research is devoted to the realisation of phase co-
herent transport of SAW driven electrons. First attempts
for the observation of coherent tunnelling between two
tunnel-coupled wires have been done with a continuous
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wave approach. In these experiments tunnelling from one
quantum wire into a two-dimensional reservoir have been
observed100,158. Coherent tunnelling between two tunnel-
coupled wires with SAWs have so far not been realised.
This is subject to ongoing experimental research. Finally,
let us also mention that single electron transport assisted
with SAW also allows to exploit the spin properties of
the electron which is quite appealing for quantum infor-
mation processing. The spin degrees of freedom couple
much less to the electromagnetic environment compared
to the charge degree of freedom. Recent measurements
have shown10 that the spin polarisation is preserved dur-
ing the transport with a fidelity of 70 %.

V. SINGLE ELECTRON DETECTORS

The detection of a single electron can be achieved
when the electron is captured inside a static quantum
dot. As the electron can be trapped for a sufficiently
long time, it can be detected with conventional on-chip
detectors159 and which we will detail below. In quantum
experiments30,39,58,71,97, where one would like to detect
the electrons on the fly, this task is much more diffi-
cult: indeed the interaction time with any detector usu-
ally does not exceed 1 ns and is fixed by the speed of
the flying electrons, the size of the on-chip detector and
the spatial extension of the electronic wave packet. This
issue will be addressed in more detail in section V B.

A. Single electron detection in static quantum dots

A very convenient way to read out the electronic charge
state of a static quantum dot can be realised by a quan-
tum point contact159 when placed in close vicinity to the
quantum dot (QD) (see figures 13 and 15). The quantum
point contact (QPC) is brought to a gate voltage condi-
tion where the sensitivity δG/δVG is the highest, usually
in between the first quantised plateau and the pinch-off
as shown in figure 15(b). The QPC is biased typically at
a few hundred microvolts to avoid back action160,161 and
the current through the QPC is continuously monitored.
At this working point the current is very sensitive to the
nearby electrostatic environment. If the electron number
of the quantum dot is changed, the nearby electrostatic
environment will be modified and results in an abrupt
variation of the QPC current as shown in figures 15 (c).
When sweeping the two side gates (VR and VL) of the
QD shown in figure 13(a) and 15(a), one can map out
the so-called charge stability diagram1 of the QD. Plot-
ting the derivative of the conductance with respect to the
gate voltage VR to suppress the smooth background and
to enhance the conductance steps, one observes parallel
lines which delimit regions where the electron number is
constant. Whenever a diagonal line is crossed, the num-
ber of electrons changes exactly by one. Decreasing the
voltage to more negative values ejects the electrons one

by one until one ends up with a QD containing no elec-
tron at all (large region on the left in figure 15 (d) where
the diagonal lines are absent).

FIG. 15. Principle of single charge detection with a
quantum point contact. (a) schematic of the gate struc-
ture of the quantum dot (QD) and its adjacent QPC. The
(un)depleted electron gas is represented in grey (red) color,
the electrostatic gates are drawn in yellow. (b) Conductance
curve of the QPC. The arrow indicates the approximate work-
ing point of the QPC. (c) QPC current when the voltage of
the left QD gate is changed. The abrupt jumps in the cur-
rent correspond to a change of the electron number on the
quantum dot by exactly one. (d) Charge stability diagram:
differential conductance (white: high ; blue: low) is plotted
as a function of the two side gate voltages VL and VR.

Nowadays the QPC is often replaced by a sensing QD
where one takes advantage of a very sharp Coulomb
blockade peak, which can have a higher sensitivity
δG/δVG. In this case the sensing QD is operated at a
very steep flank of a Coulomb peak. This requires, how-
ever, an additional gate to be added to the sample de-
sign. In addition to these improvements, fast read-out
schemes have been implemented by reflectometry in or-
der to increase the measurement bandwidth. To do so,
the QPC or QD is integrated into a LRC tank circuit
which operates at a few hundred MHz. This is the so-
called RF-QPC which allows for single-shot detection at
timescales below 1µs.162–164.
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B. Towards single electron detection on the fly

To detect an electron on the fly is presently the most
challenging task in the field of electron quantum optics.
First, the interaction time between a submicron-size elec-
trometer and the flying electron does not exceed 1 ns
and is fixed by the speed of the flying electrons, the size
of the on-chip electrometer and the width of the elec-
tronic wave packet. This interaction time is 2 orders of
magnitude faster than the typical timescale needed to
detect a single electron for the best on-chip charge detec-
tor demonstrated so far in a 2DEG165,166. Second, the
experiment has to be performed at temperatures below
50 mK to avoid fluctuations of the local chemical poten-
tial of the Fermi sea larger than the influence of a single
electron on the detector134.

Combining single electron injection and readout would
open the avenue for the realisation of full quantum ex-
periments and will bring the field of electron quantum
optics to a status similar to that of quantum optics. In
particular, single-shot detection of flying electrons would
enable to perform electron flying qubit operations.

Up to now most measurements are statistical: elec-
tron injection is periodically repeated and DC current
or low frequency current noise measurements provide in-
formation on the average value and the fluctuations of
the charge that arrives in each contact. Recording the
detected single charge each time, when a single charge
is injected, will also give unprecedented access to the
Full Counting Statistics of the electron partitioned be-
tween the different output arms of an interferometer. In
addition, due to the existence of Coulomb interaction
electrons provide new possibilities for linear quantum
optics9,35 especially to generate entanglement7.

Towards this goal several quantum systems have been
identified as extremely sensitive systems to external per-
turbations and potentially good detectors167. They have
been used for example to detect a single phonon excita-
tion of a nanomechanical system168. In a 2DEG, two
quantum systems have been recently proposed to de-
tect propagating electrons: a double quantum dot charge
qubit and a Mach-Zehnder interferometer169.

Another option is to exploit the extreme sensitivity of
spin qubits when operated in the charge regime. The
idea is to couple capacitively the single flying electron
to a so-called Singlet-Triplet (S-T0) qubit170. The two
levels of the qubit are the two anti-parallel spin states of
a double quantum dot with one electron in each dot171.
For such a spin qubit, the energy separation J is directly
related to the exchange interaction. J is highly depen-
dent on both, the energy detuning ε between the two
dots and the tunnel-coupling and can be widely tuned on
fast timescale in lateral double quantum dots in GaAs
heterostructures13. In more recent experiments it has
been shown that the the tunnel-coupling can be tuned
over an extremely large range, from basically zero to sev-
eral GHz151,172,173. The S-T0 qubit can hence be used
as an ultra-sensitive detector to probe the local electro-

static environment166. These properties can be exploited
to imprint the passage of the flying electron on the qubit
population where it can be stored for several microsec-
onds.

The principle of this flying electron detector is depicted
in figure 16. An electron, which is guided via electrostatic
gates or the edge channels in the QH regime is passing
by the S-T0 charge detector schematically shown as a
double dot. Due to the capacitive coupling between the
electron-wave packet and the detector, the electrostatic
environment of the quantum dot will be slightly modi-
fied. This leads to a change of the qubit energy splitting
during the interaction time. As the Rabi oscillations (see
figure 16(b)) accelerates for more positive energy detun-
ing, the passage of an electron close by to the detector will
induce a phase shift in the rotating frame of the S-T0.
The accumulated phase shift corresponds to a popula-
tion change of the S-T0 qubit. If the accumulated phase
is π this would correspond to a complete flip of the S-T0

population. Such a change in population can be stored
for several tens of microseconds in the spin degrees of
freedom of the qubit and then be measured single-shot
by spin-to-charge conversion. Ideally, if the coupling is
large enough to ensure a phase shift, a one-to-one corre-
spondence between the qubit state and the presence of
the flying electron is expected and therefore a single-shot
detection of the flying electron can be performed. The
challenge here is to reach a large enough phase shift to
have the sensitivity to detect a single flying electron in
a sub-nanosecond timescale. First attempts have been
done in this direction170 and report a π phase shift when
a packet of 80 flying electrons is passing by the detector.
Improved sample design should allow to reach in the near
future the detection of a single electron on the fly.

VI. QUANTUM OPTICS LIKE EXPERIMENTS
WITH SINGLE ELECTRONS

Photons are very interesting flying particles to study
quantum effects such as entanglement, non locality or
quantum teleportation174–176. One can produce single
photons on-demand, single-photon detection can be re-
alised after propagation and most importantly its co-
herence can be preserved over hundred kilometres177,178.
Important tools with which to infer complex photon cor-
relations inaccessible from ensemble measurements are
single photon sources and single photon detectors. They
are also the elementary building blocks for the manip-
ulation of information coded into a quantum state, a
qubit. When combined with beam splitters, polarisers
etc., photonic qubits can be manipulated to process quan-
tum information. A well-known example is quantum
cryptography179,180, a secure way to transmit informa-
tion. On the other hand, it is very difficult to make
two photons interact and this represents a crucial tech-
nological hurdle for producing more complex quantum
operations with photons. Several strategies towards this
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FIG. 16. Principle of the S-T0 qubit charge detector.
(a) An electron is passing next to a double quantum dot.
Due to the capacitively coupling to the S-T0 qubit the elec-
tron will locally change the electrostatic field experienced by
the S-T0 qubit. (b) Simulated coherent Larmor oscillations of
the S-T0 qubit as a function of energy detuning ε. The triplet
probability is plotted in colour scale. (c) Simulated coher-
ent oscillations for two different values (-0.1 mV and -0.035
mV) of the energy detuning ε indicated by the green and blue
dotted lines where the induced phase shift is π after an inter-
action time of 15 nanoseconds. (d) Bloch sphere for the S-T0

qubit. Projection of the qubits states (solid arrows) into the
read-out basis T0 and S (dotted arrows) for an induced phase
shift of π.

goal have been proposed based on optical cavity QED
concepts, however it turned out to be very challenging
experimentally181,182. An interesting concept has been
brought forward to realise efficient quantum computing
with linear optics. In this case the combination of beam
splitters, phase shifters, single photon sources and photo-
detectors with feed forward control allows to implement
efficient quantum computation35, where two qubit opera-
tions can be performed probabilistically by measurement
of photons36–38. In analogy with photons, similar exper-
iments should be possible with single flying electrons in
a solid-state device. The advantage of performing quan-
tum optics experiments with flying electrons is the ex-
isting Coulomb coupling between the electrons. Photons
are basically non-interacting quantum particles and they
therefore have a longer coherence time than electrons.
However, due to the absence of interactions it is more
difficult to construct a two-qubit gate, which operates
at the single photon level. This represents some funda-
mental limitation to the development of quantum com-
putation with photons. In contrast Coulomb interaction
allows to envision deterministic two qubit operations for
electrons at the single-electron level7,9. Naturally, strong
interactions come with a short coherence time and may
set limitations to this system for quantum information
processing. We have seen in section III that quantum
operations can be done on a very fast time scale for bal-

listic electrons, allowing in principle to perform about
one hundred quantum operations on the fly. Yet, this
research field is only at its beginning and much techno-
logical development is still needed in order to bring it
to the level of its photonic counter part. We have seen,
however, that single electron sources have an extremely
high efficiency, well above what it is possible at present
with single photon sources. The best on-demand single
photon sources are based on quantum dots integrated
into optically resonant micro-cavities183–185. They offer
a high degree of indistinguishability and a collector effi-
ciency of approximately 65 %. Integration and synchro-
nization of multiple single photon sources into multiple
photonic waveguides186 by keeping at the same time a
high emission efficiency, a high degree of indistinguisha-
bility as well as a high brightness is a real challenge.
The same is true for the integration of single photon de-
tectors into photonic wave guide structures187. On the
other hand, single electron detection is much more chal-
lenging compared to photons when dealing with single
electrons propagating at the Fermi sea. In addition, an
important question is how good a quantum state one can
prepare and how well it can be preserved upon propa-
gation. This is subject to ongoing experimental as well
as theoretical research. Nevertheless the possibility to
exploit single electron circuitry for quantum information
processing merits to be explored to see how far this tech-
nology can be pushed. Besides that, we will also see that
a lot of other interesting physics arises due to the inter-
action of the single electrons and the Fermi sea188. In
the following we will present the present state of the art
concerning such electron quantum optics experiments.

A. HOM interference in quantum Hall edge
channels

Since the seminal work of Hong, Ou and Mandel
(HOM)189, HOM interferometry is commonly used in
photonic quantum optics. HOM interferometry is a two-
particle interference (or second-order coherence) which
tests the indistinguishably and the quantum statistics of
single particles. It consists in sending repeatedly two par-
ticles at the two separate inputs of a 1/2 beam splitter
and looking at the arrival coincidence in the two sepa-
rate outputs. A time delay τ is introduced between the
incoming particles. For τ = 0, the particles are fully
indistinguishable and fully mix in the beam splitter. Ac-
cording to the fact that photons are bosons, the positive
quantum statistical interference makes them to appear
simultaneously in one of the two detectors. This is the
so-called photon bunching. As a consequence the coin-
cidence counts between the two output ports are fully
suppressed. By varying the time delay between the emit-
ted photons as shown in figure 17, the overlap of the wave
function between the two arriving single particle states
can be measured. The overlap is maximal when the par-
ticles arrive simultaneously at the beam splitter while it
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FIG. 17. Schematic of Hong–Ou–Mandel interference.
Left: two photons (a) or two electrons (b) collide on a beam
splitter and are collected at the detectors D1 and D2. Right:
Normalized coincidence counts of detectors D1 and D2. The
normalized coincidence counts is 1 when for each collision
event exactly one particle is detected in D1 and one particle
in D2. The coincidence count rate is zero when for each event
the two particles are detected together in either D1 or D2. (a)
At zero time delay, indistinguishable bosons (photons) always
exit in the same output (bunching) and results in a suppres-
sion of the coincidence counts at zero time delay. (b) The
opposite behavior is expected for indistinguishable fermions
(electrons). At zero delay the two electrons exit into the op-
posite outputs (anti-bunching) and the coincidence count rate
doubles.

tends to zero when the time delay becomes larger than
the wave packet. Looking at the particle number fluctu-
ations, the noise in each output corresponds to binomial
partitioning of two particles and is doubled with respect
to the case where only a single particle were sent to the
beam splitter. This is the limit which is recovered if the
time delay τ is much longer than the extension of the
photon wave packet ψ . In the intermediate range of τ
the noise is ∝ (1 + |〈ψ(0)|ψ(τ)〉|2). For particles obeying
fermionic statistics, a similar effect occurs, which however
leads to the opposite behaviour188. Destructive quan-
tum statistical interference makes them never appearing
in the same output for τ = 0. This is the Pauli exclusion
as opposed to photon bunching. Thus, if we send period-
ically single electrons in an electron beam splitter one ex-
pects a low frequency current noise∝ (1−|〈ψ(0)|ψ(τ)〉|2).

Electronic HOM like experiments have been done using
DC voltage sources142,143,190 but they were incomplete as
there was no way to provide time control. In contrast,
the advent of on-demand single electron sources allow
performing full HOM interferences. The first HOM ex-
periment at the single-electron level has been done us-
ing the mesoscopic capacitor single electron source71 op-
erated in the quantum Hall regime. Two electrons are
injected into the quantum Hall edge channel from each
single electron source as shown in figure 18. It is pos-
sible to guide the electrons along the edges towards a
beam splitter where they interact and then detect them

at the two output ports. This set-up is the electronic
equivalent of the photonic Hong–Ou–Mandel (HOM)189

experiment, where two photons are colliding on a beam
splitter.

FIG. 18. Hong–Ou–Mandel interference in the quan-
tum Hall regime. (a) False colour SEM image of the sam-
ple. Two Mesoscopic Capacitor sources emit a single electron
which are guided towards a beam splitter (QPC). The trans-
parency of the beam splitter partitioning the inner edge chan-
nel (blue line) is tuned to a transmission T = 1/2. The average
ac current generated by sources 1 and 2 is measured on out-
put 3, and the low-frequency output noise S44 is measured on
output 4. (b) Measurement of the excess noise ∆q = S44/e

2f
as a function of the delay τ and normalised by the value of the
plateau observed for long delays. The blue line corresponds
to the partition noise of both sources. The experiments are
done at filling factor ν = 3 (adapted from ref.71).

Electrons arriving at the same time at the beam split-
ter will exit in different output ports (anti-bunching).
However, single-shot measurements of the arriving elec-
trons, as for the case of photons, is at present not achiev-
able. For this reason, the anti-bunching is probed by the
measurement of low-frequency fluctuations of the electri-
cal current in the two output leads rather than by coin-
cidence counts. Two identical quantum dots are placed
at a distance of approximately 3 µm away from a quan-
tum point contact tuned to a transmission T = 1/2 and
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which acts as a beam splitter. For the present experi-
ment, the average emission time for both single electron
sources were fixed to 58 ± 7 ps and the low frequency
partition noise is measured by repeating the measure-
ment at a frequency f ≈ 2 GHz. As mentioned in section
IV, for this single electron source, at each cycle one elec-
tron is emitted followed by a hole. The low frequency
current noise188 at one of the outputs is then given by191

S33 = S44 = e2f × [1 − |〈ψ1|ψ2〉|2]. By changing the
time delay τ of the electron emission of the two sources,
one can then probe the indistinguishability of the elec-
trons coming from the two single electron sources. This
is shown in figure 18b, where the excess partition noise
∆q is plotted as a function of the time delay τ . At large
delays, one essentially measures the random classical par-
tition noise as indicated by the blue shaded line. For
short time delay one observes a dip in ∆q, which corre-
sponds to the fermionic equivalent of the HOM dip, and,
which clearly demonstrates two-particle interference ef-
fects. The dip, however, does not go to zero for zero de-
lay as for the case of indistinguishable photons but stays
at a finite value. The particles arriving at zero time de-
lay at the beam splitter have hence lost a certain degree
of indistinguishability. While the two-particle interfer-
ence effect was clearly observed, the HOM dip at τ = 0
was not fully developed as decoherence occurred and pre-
vented full indistinguishably. The origin of the finite ex-
cess noise at zero delay originates from Coulomb inter-
action effects192,193 between the different edge channels
as the experiment has been realised in the quantum Hall
regime at filling factor ν = 3. Even though a single elec-
tron is injected into the edge channel closest to the edge
of the sample, during propagation inter-channel coupling
leads to a loss of coherence towards the other channels
and results in a reduction of the HOM dip192,193. This
has been investigated in more detail recently79 for the
case of filling factor ν = 2 . When injecting an electron
into the outer edge channel, due to Coulomb interaction
the electron wave packet decomposes into new propaga-
tion modes that couple both channels: a slow neutral
mode where the charge is anti-symmetrically distributed
over the two channels and a fast charge mode which has a
symmetric charge distribution69. This leads to additional
dips in the HOM curve at time delays which correspond
to the difference of the propagation velocities of the two
different modes194. This has also been addressed recently
by time resolved measurements78. We will come back to
this point in the outlook section.

B. HOM interferometry with levitons

Another HOM experiment, which we describe in this
section has been performed with levitons97 propagating
in the single channel of a QPC at zero magnetic field,
a situation less sensitive to interaction induced decoher-
ence. In addition, levitons live close to the Fermi energy,
which increases their coherence time.

FIG. 19. Hong–Ou–Mandel interference using single
electron voltage pulses. (a) Schematic principle of HOM
measurements. (b) Two-particle partition shot noise versus
time delay τ resulting from the interference of identical peri-
odic trains of levitons in the QPC beam splitter. For τ = 0
perfectly indistinguishable levitons and absence of decoher-
ence give zero noise. (figure adapted from Ref.97).

Figure 19 shows the schematic principle where two pe-
riodic Lorentzian pulses are injected with a controlled
time-delay τ on opposite contacts of a QPC beam split-
ter. The two trains of levitons interfere and mix in the
electron beam splitter and the cross-correlated noise is
measured. Here single and doubly charged levitons are
considered. At zero temperature one expects that the
noise gives direct information on the overlap of the levi-
ton wave functions. It is given by:

SI = 2e2νD(1−D)2(1− |〈ψ(x)|ψ(x− vF τ)〉|2) (11)

where ψ is the leviton wave function. If doubly charged
levitons are sent, one expects:

SI = 2e2νD(1−D)2(2− |〈ψ1(x)|ψ1(x− vF τ)〉|2−
|〈ψ2(x)|ψ2(x− vF τ)〉|2)

(12)

where ψ1,2 are the first two orthogonal levitonic wave
functions195 of a Slater determinant describing the two
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incoming electrons. Finite temperature only slightly re-
duces the amplitude of noise variations with τ , not the
shape. Remarkably, the voltage pulse electron injection
technique allows the generation of an arbitrary number of
electrons and to perform a N-electron HOM correlation.
In figure 19 experimental HOM measurements are shown
(points) and compared with theory (solid curves) with
no adjustable parameters for single and doubly charged
interfering levitons.

FIG. 20. Experimental Wigner function of a leviton
and comparison to the theory. The time periodicity of
the Wigner function arises from the periodic injection of levi-
tons. As expected for levitons no value is found at negative
energies. Both experimental and theoretical Wigner func-
tions have been truncated to the first two harmonics. (figure
adapted from ref.196).

HOM experiments have also been performed with a
tunnel junction driven by a harmonic time-dependent
voltage197. Beyond HOM experiments, electron quan-
tum optics with single electron sources allows to per-
form all quantum experimental standards of quantum
optics. Closely related to HOM interference, is the
Quantum State Tomography (QST). The goal of QST
is to give a complete view of the electron wave func-
tion. It consists in measuring the energy density ma-
trix %(ε′, ε) =< ψ†(ε′)ψ(ε) > from which the Fermi sea
contribution has been subtracted. From this, one recon-
structs the Wigner function which, in the representation
of the conjugate energy-time variables (ε, t), is given by

W (t, ε) =

∫ ∞
−∞

dδ%(ε+ δ/2, ε− δ/2)e(−iδt/h̄). (13)

For periodic injection, only the non-diagonal elements
of % differing by a multiple k of the fundamental fre-
quency ε′ − ε = khf are non zero. This implies that the

Wigner function is a periodic function of time and this
conveniently restricts the number of measurements to be
done. A quantum state tomography procedure to mea-
sure %(ε′, ε) has been theoretically proposed by Grenier
and collaborators156,198. This has been experimentally
realised in Ref.196. The measurements were only able to
sample the first two harmonics of the Wigner function,
although the third might have been accessible as well.
The theoretical Wigner function restricted to two har-
monics is compared with the experimental one in figure
20. This example shows the degree of maturity that has
reached electron quantum optics today.

C. Electron partitioning experiments
(non-adiabatic quantised charge pump)

Finally, let us also mention another way of partitioning
electrons that can be realised by using an energy selective
barrier. In this case the single-parameter non-adiabatic
quantised charge pump presented in section IV is con-
nected to a two-dimensional electron gas operated in the
quantum Hall regime. The ejected non-equilibrium elec-
trons will then travel along the edge of the sample. A
surface gate which is operated as an energy selective bar-
rier is placed on the trajectory of the electrons by apply-
ing an appropriate gate voltage. When arriving at the
energy barrier, electrons having a lower energy will be
reflected to output SR while electrons with higher en-
ergy will arrive at output ST as shown in figure 21. To
partition the electron one fixes the emission energy by
setting the gate voltage VE to the desired energy and
scans the energy of the barrier hight. For single electron
emission one nicely observes that the transmitted current
is given by IT(E) = T (E)ef , where T (E) is the transmis-
sion probability of the barrier as shown in figure 21(c).
Measuring the cross-correlation between the current in
the transmitted and reflected output signal one obtains
the expected partitioning noise S = −2T (1− T )e2f . As
the two detectors are completely uncorrelated, the rep-
etition frequency (280 MHz) being sufficiently low, no
correlation in the electron stream is expected.

An interesting feature arises when sending electron
pairs rather than a single electron. It is possible to
load two electrons into the electron pump and emit them
within one pumping cycle. When the pump is operated
with a sinusoidal drive, the electron are emitted128 se-
quentially at the same energy since the electron source
is operated in the adiabatic limit. The electrons have
initially an energy separation due to the charging energy,
but due to the slow operation of the pump, the elec-
tron has time to compensate the charging energy before
emission. Independent scattering will arise at the poten-
tial barrier and each of the two emitted electrons will
be partitioned with the same transmission probability
T resulting in the same binomial partitioning distribu-
tion, P2 = T 2, and P0 = (1 − T )2. Here Pi corresponds
to the probability that i (2-i) electrons are detected in
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FIG. 21. Partitioning experiment using hot electrons.
a) Schematics: an electron is emitted from the non-adiabatic
single electrons source (SES) with a repetition frequency of
280 MHz and the emitted current (IP = 2ef) is partitioned
at the energy barrier. The reflected current IR is directed to-
wards output SR while the transmitted current is collected at
output ST. (b) Micrograph of the sample. VE sets the emis-
sion energy of the electron source while VEB sets the energy
of the the barrier. The experiment is performed in the quan-
tum Hall regime in order to guide the electrons along the edge
channels. The surface gate VPO is fully pinched off, such that
all transmitted electrons are guided towards output IT. (c)
Transmitted current IT (grey symbols) and cross-correlation
noise power SX (red symbols) of the two outputs ST and SR

as a function of barrier height energy. (figure adapted from
ref.128).

the transmitted (reflected) current. This is very simi-
lar to the single electron emission case. One observes
that the current evolves smoothly from an almost per-
fect transmitted current a low barrier hight towards a
fully reflected current at high barrier height, with the
appearance of a single dip in the partitioning noise for a
transmission probability of T = 1/2. This corresponds
to a 50 % probability that the electron pair is partitioned
in such a way that they arrive in the opposite outputs.
The other 50 % correspond to detecting the two electrons
either at output SR or at output ST, each event having
a probability of 25 %.

The situation is quite different when operating the cur-
rent source with a short emission pulse rather than a

FIG. 22. Partitioning experiment with electron pairs.
(a),(b) Two electrons are emitted from the single electrons
source with a sinusoidal drive. Due to the slow variation of
the sinusoidal drive, the two electrons are emitted sequen-
tially having the same energy. (a) transmitted current IT
(grey symbols) and partitioning noise SX (red symbols) as a
function of energy barrier. (b) Pi probability of detecting i
electrons in the transmitted current . c,d) same as a,b, but
for a pumping cycle with a sharp rising edge. In this case the
two electrons are emitted with different energy as the charg-
ing energy can no longer be neglected. (figure adapted from
ref.128).

sine wave in order to reduce the time delay between the
emission of the two electrons. In this case the charg-
ing energy is important and the two electrons cannot be
treated as independent any more. They are emitted al-
most simultaneously, but with different energies. This is
seen in the noise correlation measurements which show
two distinct dips as a function of barrier hight indicating
that the electrons are emitted at different energies. In
addition, this is accompanied by a plateau observed for
IT = 1ef at energies E ≈ 52-55 meV. As a consequence,
the probability distribution P1 in this energy interval is
enhanced, (see figure 22 (d)) reaching a value of 90 %.
The barrier therefore acts as an efficient energy filter. In-
deed, electrons arriving with different energies are parti-
tioned to different ports and the probability distribution
P1 should reach 1 if the energy selection of the barrier
were perfect. One also observes a small feature of positive
cross-correlation, a small peak in P2 at an energy of ≈
57meV, which means that the electrons show bunching.
This feature is presently not understood. It would also
be interesting to see whether coherent manipulations of
such high energy electrons is possible due to their high
energy.
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VII. NOVEL QUANTUM INTERFERENCE
EXPERIMENTS WITH SHORT VOLTAGE
PULSES

With the ability to generate very short voltage pulses
comes the possibility to probe the quantum dynamics at
scales faster than the propagation time through the sam-
ple. This is a new direction for quantum nanoelectronics
that already has interesting promises, that we illustrate
below: the non-adiabatic probing of the quantum dy-
namics. These non-adiabatic regimes require very fast
electronics. Indeed, typical Fermi velocities in a 2DEG
are of the order of vF ≈ 105m/s while the typical system
size that can remain coherent is of the order of 10µm, so
that the typical dwell time inside such a ballistic system
is 100 ps. When one uses longer pulses, the propagation
inside the sample cannot be probed. In fact, in order
to observe the novel interference effect described later in
this section, the duration of the pulse must be signifi-
cantly shorter than 100 ps as the Coulomb interaction
induces a renormalisation of the Fermi velocity into the
larger plasmonic velocity199.

To illustrate the effects that can occur in the non-
adiabatic regime, let us focus on numerical simulations of
the Mach–Zehnder interferometer of figure 4 in the time
domain. A typical snapshot of a simulation is shown
in figure 23a: at t = 0, one abruptly raises the voltage
at contact 0 (V (t) ≈ Vbθ(t), where θ(t) is the Heavy-
side function) and studies the propagation of the current
front along the two arms of the interferometer. The three
snapshots correspond to different times: in the first, the
front has reached the first QPC, in the second the front
has arrived to contact 1 through the short lower arm, but
is still traveling along the upper arm (this is the transient
regime on which we focus below), in the third, the front
has arrived through both arms and one has reached a
stationary state. The corresponding current observed at
contact 1 is shown in figure 23b. In the transient regime,
one observes a very striking effect: The current oscil-
lates in time with a frequency set by the voltage bias,
I(t) ∝ cos(eVb/h̄). This is the mesoscopic analog to the
AC Josephson effect in superconducting junctions200. An
effect of similar nature can be observed if one replaces the
abrupt raise of voltage by short voltage pulses. In a typi-
cal experiment, the protocol would be repeated at rather
low frequency f and one would measure the DC cur-
rent Idc flowing through contact 1. One finds Idc = en1f
where n1 is the average number of particle transmitted to
contact 1 per pulse. In the ”standard” adiabatic regime
(pulses long with respect to the internal time scales of the
device), one expects n1 ∝ n̄ where n̄ =

∫
dteV (t)/h is the

average number of particles sent in the pulse. However,
for short pulses, one finds a rather different behavior103

with n1 ∝ sin n̄, i.e. the number of electrons collected at
contact 1 oscillates with the number of electrons sent.

Let us now build a simple theory that allows one to un-
derstand these two effects in a rather simple way. Let us
start by considering the propagation of a voltage pulse in
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FIG. 23. (a) Snapshots of the simulation of the propagation
of an abrupt raise of voltage in an electronic Mach Zehnder
interferometer in the quantum Hall regime. From left to right
the snapshot has been taken: just after the voltage raise,
in the transient regime where the current front has arrived
through the lower arm but not the upper one, in the station-
ary regime. (b) corresponding current as a function of time
measured in contact 1. (figure adapted from ref.200).

a simple one-dimensional wire. The first thing to realise,
is that such a voltage pulse cannot be simply associated
with the classical propagation of a ballistic excitation as
would be the case in vacuum. Indeed, we are consider-
ing an electronic system with a Fermi sea, so that before
one sends the pulse, the system is not empty; it already
sustains stationary plane waves of the form

ΨE(x, t) = eikx−iEt (14)

We now assume that the voltage pulse V (t) leads to an
abrupt drop of electric potential at x = 0 (i.e. V (x, t) =
V (t)θ(−x)). We also suppose, for simplicity, that the
voltage is small with respect to the Fermi energy so that
one can linearise the dispersion relation E = vF k. Under
this condition, the effect of the increased voltage reduces
to a faster oscillation of the wave function phase for x < 0
which leads to a ”phase domain wall” which propagates
ballistically inside the system. The corresponding wave
function reads,

ΨE(x, t) = e−iE(t−x/vF )e−iΦ(t−x/vF ) (15)

where the phase Φ(t) is the total phase accumulated due
to the time dependent voltage,

Φ(t) =

∫ t

0

du
eV (u)

h̄
(16)

Equation (15) has an interesting structure which was first
analysed by Levitov and co workers, in particular in the
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context of Lorentzian pulses (levitons) and the associ-
ated (lack of) quantum noise136. What is particularly
appealing is the fact that the wave function phase is en-
tirely engineered by the physicist through the shape of
the voltage pulse, i.e. a quantum object (a wave func-
tion phase) is controlled by a classical, experimentally
tunable quantity (a voltage). Phases cannot be observed
by themselves, so that the next step is to feed this wave
function to an electronic interferometer in order to probe
this special feature. We focus on the two path interfer-
ometer of figure 23a, with an ”upper” U and ”lower” L
arm, described by a transmission amplitude

d(ε) = dL + dUe
iετ (17)

where the energy dependency is controlled by the delay of
propagation τ of the upper arm with respect to the lower
one. For the Mach–Zehnder interferometer of figures 4
and 23a, dU =

√
TATB and dL =

√
(1− TA)(1− TB)

(TA, TB transmission probability of the corresponding
QPC) while for the flying qubit of section figure 8,
dU = cos

(
kA−kS

2 L
)

and dL = sin
(
kA−kS

2 L
)
. The wave

function after the interferometer takes the form (up to a
global plane wave phase).

ΨE(x, t) = dLe
−iΦ(t−x/vF ) + dUe

−IEτ/h̄e−iΦ(t−x/vF−τ)

(18)
The interesting aspect of Eq.(18) is the fact that the two
phases Φ(t) are delayed by the time τ which enables the
possibility to control the interference pattern hence to ac-
cess the wave function experimentally. Let us discuss a
few specific example. In the ”adiabatic” limit where V (t)
varies very slowly with respect to τ , Φ(t) and Φ(t − τ)
are essentially the same and one is back to the usual DC
theory. In the opposite limit, one sends a pulse which
is very short with respect to τ so that Φ(t) abruptly
goes from 0 to 2πn̄ where n̄ is the average number of
electrons sent by the pulse, according to the Landauer
formula en̄ ≡

∫
dtI(t) = (e2/h)

∫
dtV (t). Let us focus

on the wave function somewhere after the interferome-
ter. At both small and large time, one recovers the usual
interference pattern,

ΨE(t) ∝ dL + dUe
−iEτ/h̄ (19)

but in the transient regime where the pulse has arrived
through the lower arm but not yet through the upper one,
one gets a dynamically modified interference pattern:

ΨE(t) ∝ dL + dUe
−iEτ/h̄e−i2πn̄ (20)

which oscillates with the number of particles sent (i.e.
with the amplitude of the pulse). This effect is even
more drastic if one considers an abrupt raise of potential
from 0 to Vb instead of a pulse: V (t) = Vbθ(t). One gets,

ΨE(t) ∝ dL + dUe
−iEτ/h̄e−ieVbt/h̄ (21)

The interference pattern in the transient regime now os-
cillates in time with frequency eVb/h. This is the normal

effect analogous to the ac Josephson effect in supercon-
ductors advertised above. To conclude this section, the
dynamical control of coherent conductors opens the pos-
sibility for a direct manipulation of quantum mechanical
objects - the phase of the electronic wavefunction - which
gives rise to physical phenomena that have no DC equiv-
alents.

VIII. OUTLOOK AND FUTURE
DEVELOPMENTS

The field of single electron electronics is now at a point
where quantum interference experiments at the single-
electron level are possible71,97. As we have seen above,
on-chip experiments with individual electrons can now be
performed, similar to those realised with single photons
on optical tables. When combined with quantum inter-
ferometers, these building blocks will form the basis for
the next generation of quantum electronic circuits and a
multitude of novel experiments not accessible with stan-
dard DC voltage sources can be envisioned. For instance
when combining single electron voltage pulses with MZ
type interferometers, strikingly different behaviours are
predicted compared to the static case. Depending on the
number of electron charges contained in a voltage pulse
the visibility of the current oscillations can be higher than
for the static case201,202.

An interesting feature of the physics of voltage pulses
is that it allows probing quantities which are hardly ac-
cessible by other means. One example is the full counting
statistics (FCS) of a mesoscopic conductor. When a sin-
gle charge can be trapped for a relatively long time, such
as in quantum dots, single charge detection allowed for
measurements of cumulants up to 15th order. For sin-
gle flying electrons this is presently out of reach. Up
to now, only cumulants up to third order have been ac-
cessible for mesoscopic conductors203–205. Using a dy-
namical scheme, however, it has been proposed that by
simply measuring the average current, the FCS should
be accessible206. This can be realised by injecting peri-
odic voltage pulses into a quantum conductor and a MZ
interferometer which are capacitively coupled through
one arm of the interferometer. The propagating elec-
tron wave packet in the quantum conductor will couple
to the electron wave packet propagating in one arm of
the MZ interferometer and induce an additional phase
shift which can be accessed via the average current. By
changing the relative time delay between the two electron
wave packets, the effective coupling can be controlled and
which in turn controls the counting field of the FCS.

The controlled emission of single electron excitations
constitutes also an important step forward towards the
on-demand generation and detection of entangled single-
and few-electron states in mesoscopic structures207. The
coherent partitioning at a QPC or tunnel-coupled wire
leads to an entanglement between the electron wave
functions leaving the two output paths208. Entangle-
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ment could then be demonstrated via violation of Bell’s
inequality209 by measurements of the mean current and
the zero frequency noise.

The ability to generate non-integer charge pulses open
another interesting perspective. As mentioned above, for
the case of integer charge pulses of Lorentzian shape one
can generate a pure electronic excitation97,134. However,
by simply varying the voltage pulse amplitude one can
generate any value of the injected charge. In this case
the generated excitations137–139 cannot be considered as
a pure leviton and interesting new features appear. For
instance, for the case of half-levitons, a Lorentzian charge
pulse containing half an electron charge, remarkable zero-
energy single particle states can be generated210. The
energy distribution function of such a state is symmetric
and sharply peaked at the Fermi energy. As a conse-
quence, one can annihilate effectively a half leviton and
its anti-particle - an anti-half leviton - which can be cre-
ated by reversing the sign of the voltage pulse. Such an
annihilation effect, not possible with ordinary quasipar-
ticles can then be realised by colliding such anti-particles
on a beam splitter. Similarly, when non-integer charge
pulses are injected into a MZ interferometer unusual fea-
tures compared to the static case arise201.

Another research line is the study of interactions in
one-dimensional electron systems211,212. A typical ex-
ample are the chiral edge states of the fractional quan-
tum Hall effect (FQHE). The possibility to inject time-
resolved wave packets, in particular minimal excitation
states by means of levitons, provides a new tool to study
the anyonic statistics. This regime has been considered
theoretically recently213–216 and the question at present
is whether these minimal excitation states can indeed
probe the fractional charge excitations. As levitons must
carry an integer charge, hence involving several Laughlin
quasiparticles, they are believed to leave a signature in
the partition noise. A source of e/3 fractional charges
made of integer charge levitons weakly backscattered by
a QPC at FQHE filling factor ν = 1/3 has been proposed
recently217, which may be used to probe anyonic statis-
tics. This on-demand source of anyons would generate a
Poissonian flux of e/3 charges keeping the time resolved
properties of the integer charge levitons. As shown in
Fig. 24, synchronizing two anyon sources and sending
them to a QPC-beam-splitter should evidence their quan-
tum statistics via HOM correlations or other two particle
interferometry218.

Interactions in one-dimensional electrons systems
can also be probed by time of flight measurements.
Injecting an electron into a one-dimensional elec-
tron system, Coulomb interactions lead to spin-charge
separation219,220 and charge fractionalisation221–223.
This charge fractionalisation as well as the propagation
speed of the created charge excitations depend on the
strength of the Coulomb interaction212. In pioneering
experiments the speed of such excitations has been mea-
sured indirectly from the dispersion relation exploiting
a momentum and energy conserving tunnelling process

FIG. 24. Two Poissonian sources of e/3-anyons are realized
by weakly backscattering integer charge levitons (minimal ex-
citation states). The anyons are sent to a QPC-beam splitter
to provide HOM interference analysed by the cross-correlation
noise spectrum of the current I1 and I2. Introducing a time-
delay τ between the two sources would provide unambiguous
evidence of anyonic bunching properties

between two quantum wires219. Such samples are quite
challenging to realise as two two-dimensional electron gas
systems have to be brought into close contact to allow
tunnelling in between them. More recently this charge
fractionalisation has also been investigated in the quan-
tum Hall edge channels76–80. A conceptually simpler
way to determine the propagation speed of such exci-
tations is to measure directly the time of flight. This
however requires an extremely precise control of emis-
sion and detection of the injected wave packet. With the
development of faster and faster RF electronics this is
now possible80,154. It would hence be interesting to see
what happens to a leviton when injected into a quantum
wire defined by electrostatic gates or into a quantum Hall
edge state. Due to Coulomb interaction this initial wave
packet should fractionalise156 and the resulting quasi-
particle excitations will propagate with different speeds.
For instance for a quantum wire defined by electrostatic
gates, it should be possible to access the propagation
speed of the individual modes of the quantum wire. One
expects that the propagation velocity is strongly renor-
malised due to Coulomb interactions224,225. This has
been experimentally demonstrated very recently226.

Finally let us mention that with the development
of faster and faster radio-frequency (RF) techniques it
should be possible to reach in the near future frequencies
that are comparable to the internal characteristic time
scales that set the quantum dynamics of the quantum
nanoelectronic devices. This field of ultra-fast quantum
nanoelectronics is only at its very beginning as voltage
pulses of 10 ps or shorter have to be generated. This is
highly non-trivial as the generation of such short pulses
using standard RF techniques is already challenging from
a technological point of view. At present RF technology
is limited to the 100 GHz bandwidth. In addition, limits
are set due to the dispersive character of the electrical
lines, which connect the room temperature microwave
electronics with the quantum electronic devices situated
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at very low temperatures. An alternative approach is
to adopt well known techniques from THz optics and
make them compatible with nanoelectronic circuits. Sub-
picosecond electrical pulses can be generated on chip us-
ing photoconductive switches227: The photo switch is il-
luminated by a laser pulse of sub-picosecond duration.
The THz field is then confined near a lithographically
defined metallic transmission line and converted on-chip
into an electrical signal. The width of the generated volt-
age pulse is limited by the electron hole recombination
time which can be as short as 1 ps or even below, depend-
ing on the material properties of the photo switches. Sev-
eral low temperatures transport experiments using this
scheme have been carried out in the past228,229, however
to reach the quantum regime of a nanoelectronic con-
ductor is still a big step away. The challenge here is to
develop efficient photo-switches in order to reduce the
heat generated by the femto second laser. First attempts
have been done in this direction230,231 and in future in-
teresting developments can be expected.

From coherent single electron devices we can certainly
expect in the future many diverse and fascinating devel-

opments. A strong motivation for the field remains to
exploit the fermionic nature of the single particle excita-
tions as well as the study of more exotic single particle
excitations, such as anyons. With the possibility to com-
bine single electron injection and readout will open the
avenue for the realisation of full quantum experiments.
It will allow to access the Full Counting Statistics (FCS)
of electrons partitioned by a well-controlled interferom-
eter and will bring the field of electron quantum optics
to a status similar to that of quantum optics with pho-
tons. We expect the emergence of new concepts at the
crossroads between quantum optics and solid state na-
noelectronics. From the quantum information point of
view, new opportunities for linear quantum optics entan-
glement will emerge that are hardly possible with pho-
tons. Concepts such as universal quantum computing
with loop based architectures as recently proposed for
photonic systems232 might also be more easily accessible
in nanoelectronic devices using ultrashort voltage pulses.
Promising applications of the single-electron physics are
also the possibility to verify very precisely signal shapes
on-chip127, which may find applications in the on-chip
control of quantum systems.
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D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, “An
On-Demand Coherent Single-Electron Source,” Science
316, 1169–1172 (2007).

96 Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto,
Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar,
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