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Spectral shape optimization for the Neumann
traces of the Dirichlet-Laplacian eigenfunctions

Yannick Privat* Emmanuel Trélat? Enrique Zuazuat

Abstract

We consider a spectral optimal design problem involving the Neumann traces of the
Dirichlet-Laplacian eigenfunctions on a smooth bounded open subset 2 of R". The cost
functional measures the amount of energy that Dirichlet eigenfunctions concentrate on the
boundary and that can be recovered with a bounded density function.

We first prove that, assuming a L' constraint on densities, the so-called Rellich functions
maximize this functional.

Motivated by several issues in shape optimization or observation theory where it is relevant
to deal with bounded densities, and noticing that the L°°-norm of Rellich functions may be
large, depending on the shape of 2, we analyze the effect of adding pointwise constraints
when maximizing the same functional. We investigate the optimality of bang-bang functions
and Rellich densities for this problem. We also deal with similar issues for a close problem,
where the cost functional is replaced by a spectral approximation. Finally, this study is
completed by the investigation of particular geometries and is illustrated by several numerical
simulations.

Keywords: wave equation, boundary observability, Rellich identity, shape optimization, calculus
of variations, spectrum of the laplacian, quantum ergodicity at the boundary.

AMS classification: 35P20, 93B07, 58J51, 49K20.
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1 Introduction

1.1 Motivation

This article is devoted to the investigation of spectral problems involving the Neumann traces of the
Dirichlet-Laplacian eigenfunctions, having applications in shape sensitivity analysis, observation
and control theory.

Let Q be a bounded connected open subset of IR™ with Lipschitz boundary. Consider a Hilbert
basis (¢;)jen+ of L?(£2), consisting of real-valued eigenfunctions of the Dirichlet-Laplacian operator
on 2, associated with the negative eigenvalues (—\;(Q2));jen=. In the whole article, the eigenvalues
A;(©2) will also be denoted A; when there is no need to underline their dependence on 2.

In what follows, since all the geometrical quantities that will be handled are scale-invariant, we
will assume that  satisfies the normalization condition

R(Q) =1 (1)

where R(Q2) denotes the circumradius' of Q. Obviously, other normalization choices would be
possible, but the one we consider allows to slightly simplify the presentation of our results.

The Lipschitz set 92 is endowed with the (n — 1)-dimensional Hausdorff measure H"~*. In the
sequel, measurability of a subset I' C 9 is understood with respect to the measure H"~'. We
will use the notation yr to denote the characteristic function? of the set T, v is the outward unit
normal to 92 and df /Ov is the normal derivative of a function f € H2(2) on the boundary 9.

The starting point is the famous Rellich identity”, discovered by Rellich in 1940 [15], stating
that

1
Vzo € R, 2=— [ (z—xzo,v(x)) (
Aj Joa

99

G@)) @) @)

n other words, the smallest radius of balls containing €.
2The characteristic function xr of the set I" is the function equal to 1 in T" and 0 elsewhere.
3We also mention [30] for a review of Rellich-type identities and their use in free boundary problems theory.



for every C1'! or convex bounded domain §2 of R", where (-,-) is the Euclidean scalar product in
R"”, and for every eigenfunction ¢ of the Dirichlet-Laplacian operator. Let us provide a spectral
interpretation of this identity: let o € IR™ and set

for a.e. x € 01, Az, (x) = (x — 20, v(T)), (3)

the identity (2) states in particular that

* . 1 a¢] ? n—1 __

and moreover, the infimum is reached by every index j € IN*. Therefore, the function a,, acts as a
perfect spectral mirror. We will refer to Rellich function for designating functions of the form (3).
Here and in the sequel, we will use the wording “boundary Neumann energy” of eigenfunctions on
the boundary of Q to denote the right-hand side of (2), by analogy with the so-called Dirichlet
energy in shape optimization.

This leads us to introduce the functional Jy defined by

Jn(a) = inf L a<a¢j)2dﬂnl. (4)

1SN A ov

involving the N first modes of the Dirichlet-Laplace operator, as well as its infinite version J
defined by

jEN* )\

2
voc 1200, Jutw = it [ o(G2) e (5)
(019

2
Note that each integral f@Q a (%) dH™~ ! in the definition of Jy or Js is well defined and

is finite whenever € is convex or has a C'*! boundary”. Interpreting A; as the boundary Neumann
energy of the eigenfunction ¢;, it follows that the functional J, (resp. Jx) measures the worst
amount of Dirichlet eigenfunctions (resp. the worst amount of the N first Dirichlet eigenfunctions)
boundary Neumann energy that can be recovered with the density function a. From (2) and the
considerations above, one has Jy(az,) = Joo(Gz,) = 2.

Looking for the density functions enjoying optimal spectral properties in terms of the boundary
Neumann energy, it appears relevant to maximize either Jy(a) or Ju(a). For this last criterion,
we will see that Rellich functions are natural candidates for solving this problem.

The aim of the ongoing study is to quantify this observation and analyze such problems. In
particular and as underlined in what follows, these issues are connected with several concrete
applications.

As a first result, let us show that, in some sense, the density function involved in the Rellich
identity is the best possible (for maximizing the criterion J.,) when considering a L!-type constraint
on densities.

Theorem 1. Assume that ) either is convex or has a CY' boundary. Then,

2
Ya € L>(09), —00 < Joola) € — [ adH" 1, (6)
n|Q| Jaq

4Indeed , the outward unit normal v is defined almost everywhere, the eigenfunctions ¢; belong to H?(Q) and

N2
their Neumann trace d¢;/0v belongs to L2(9f) for any j > 1. Hence a <aaqif ) € LY (09) for every a € L>®(Q).



and this inequality is an equality for every Rellich function a,, defined by (3) with xg € R". As a
consequence, for a given pg € R, we have

max {Joo(a),a € L>(09) | adH" ! = po} _ 2o (7)
oQ n|Q|

and the mazimum is reached by any function a,, defined from the Rellich function ag, on 0 by

g, () = %(m — z9,v(2)), with xo € R™. (8)

The proof of Theorem 1 is postponed to Section 3.3. An important ingredient of the proof is

1

2
x (%) to a constant as j — +o00

-

the uniform convergence of the Cesaro means of the functions

(see for instance [36, Theorem 7]).

Figure 1: Plot of three Rellich densities (continuous line): for an ellipse (dotted line, left and
middle) with several locations of zy and for an angular sector (dotted line, right). The dotted
figures are plotted in the plane {z = 0}.

The optimal design problems we will deal with are motivated by the following observation: the
maximizers of Problem (7) given by (8) may have an arbitrarily large L>°-norm depending on the
choice of the domain . For instance, fix € > 0 arbitrarily small and assume that 2 is an ellipse
in R? with circumradius equal to 1. Then, the lowest L>®-norm of maximizers given by (8) is
equal to 1/e by choosing a small enough minor semi-axis for Q (see Fig. 2). This claim will be
formalized in Proposition 3 and justifies to consider a modified version of Problem (7), where one
assumes that the density function a(-) is uniformly bounded in L> by some positive constant M.
As will be underlined in the sequel, such a remark also holds for the criterion Jy whenever N is
large enough.

Let us fix some L € (—1,1) and M > 0. Summing-up the previous considerations and noting
that for every a € L>®(99) such that —M < a(-) < M, one has

CMH(09) < / adH" ' < MH 1 (09),
oQ

it is relevant to consider the class of density functions

U v = {a e LX) | —M <a <M ae. in 9Q and / adH" 1 = LM’H”l(ﬁQ)}
a0




Figure 2: Two convex sets with circumradius equal to 1: a lens (solid line) and a disk (dotted
line).

i.e., we consider measurable functions a whose L*-norm is bounded above by M and that have a
prescribed integral.

Computing the supremum of Jy (a) or Ju(a) over Uy, s becomes much more difficult since one
considers additional pointwise constraints. Indeed, the existence of Rellich functions satisfying at
the same time a L° (pointwise upper bound) and a L! (integral) constraints is much dependent
on the geometry of €2, as will be highlighted in the sequel.

Let M >0 and L € (—1,1). We will then analyze the optimization problem

(N-truncated spectral problem) sup Jn(a) (Pwn)

a€Ur v

where N € IN* is given, as well as its asymptotic version as N tends to +oo,

(full spectral problem) sup Joo(a) (Poo)

aeaL,M

According to Theorem 1, natural candidates for solving Problem (P.,) are defined from the
Rellich functions a,, as follows.

Definition 1 (Rellich admissible functions). Let € be as previously and xo € Q. We will say that
the function a., defined by

N ~ LMH" 1 (09)

Ay, (1') - n|Q| <.’E — Zo, V(:E»a (9)

for a.e. x € 99, is a Rellich admissible function of Problem (P) whenever it belongs to the
admissible set Up, pr°.

1.2 Statement of the results

Let us first first state an existence result and highlight the connection between Problems (Py) and

(Pc)-

5In other words whenever —M < Gzy < M a.e. in 0N since the function as, is constructed in such a way that
Joq Gz dH™ ™1 = LMH"~1(09Q).




Proposition 1. Let L € [—1,1] and N € IN*. Assume that Q either is convex or has a CH!
boundary. Then, Problem (Py) has at least one solution ax in Uy nr. Moreover, every sequence
(an)nen+ of mazimizers of Jn inlUp, ar converges (up to a subsequence) for the L> (982, [—M, M])
weak-star topology to a solution of Problem (P,), and

max Je(a)= lim Jy(ay).
acUrp v N—+o0

We will not provide the proof of this result since it is a straightforward adaptation of the
proof of Lemma 2 (see Section 3) for the existence, and of the proof of [13, Theorem 8] for the
I-convergence property.

For the sake of readability, we describe hereafter simplified versions of the main results of this
article under the following assumption of the domain :

Q) is a bounded connected domain of R™ with a C*' boundary. (H)

Further results in the case where €2 is convex will be stated in the body of the article.

Analysis of Problem ('PN). According to Proposition 1, Problem (Px) has at least one solution
ay. In the following result, we aim at describing a};, wondering whether it may be an extremal
point of the convex set HL, M, in other words a function either equal to M or —M a.e. in 9Q). In
control theory, a function enjoying such a property is said to be bang-bang. Uniqueness of solutions
for Problem (Py) can then be inferred from this property.

In [19, 20, 40, 43], the close problem of maximizing

. Ry
prr Jof Qp(x)qﬁy(x) dx

over {p € L>(Q,[0,1]) | [, a = L|Q[} for some given L € (0,1), has been investigated. By using an
analyticity property of the Dirichlet-Laplacian eigenfunctions in €, it has been proved that there
exists a unique optimal set, depending however on N in a very unstable way®. Here, existence and
uniqueness are, by far, more difficult to state and the argument used in the aforementioned articles
cannot be reproduced since the main unknown « is defined on the boundary of 2. Nevertheless,
by exploiting analytic perturbation properties, we prove the existence of a unique optimal set
(depending on N) for generic domains (2.

Theorem A. Let N € IN*. For generic domains Q whose boundary is at least of class C%, Problem
(Pn) has a unique solution which is moreover bang-bang.

A complete version of this theorem is provided in Theorem 2. Here, genericity is understood
in terms of analytic deformations of the domain. This result is proved in Section 2.3.

Analysis of Problem (POC) As a preliminary remark, notice that Problem (P.,) has at least
a solution, as stated in Lemma 2.
The results provided in Theorems 1 and A suggest to investigate the two following issues:

1. for which values of the parameters do the Rellich functions defined by (8) still remain optimal
for Problem (P,)?

6Roughly speaking, the authors highlighted in these articles the so-called spillover phenomenon, saying that the
optimizer for N modes becomes the worst one when adding one mode and considering then N + 1 modes. Such a
phenomenon can be interpreted in terms of L weak star convergence of the sequence of optimizers, as the number
of modes increases.



2. what happens when restricting the search of solutions to bang-bang densities for Problem

(Pso)?
Theorem B (Optimality of Rellich functions). Let Q@ C R™ be a domain satisfying (H). Introduce

. ) . . . n|Q
Ly =minfL, L@} with - L) = 25 5q) mf‘ Lm loa (o)’ (10)
zo

where Lpq (o) denotes the distance from xq to the furthest point of 9Q7 . Then, there exists a Rellich
function ay, (defined by (9)) solving Problem (P) if and only if L € [—LS, L¢].

Note that, according to Theorem 1, the optimality of Rellich functions is equivalent to their
admissibility, in other words the existence of a Rellich function belonging to Uy, ps. Thus, the
number LS () corresponds to the largest possible value of L such that there exists zo € Q for
which —M < a;, < M pointwisely in 2.

Actually, we provide in Section 3.2 a refined version of this result (see Theorem 3) and we
comment on the critical value L¢ and the function fpn involved above, which we even compute
explicitly in some particular cases in Section 4.4.

According to Theorem A, bang-bang functions of Uy, a7, in other words extremal points of Uy, 7,
solve Problem (Py) for generic choices of domains Q. This leads to investigate the relationships
between Problem (P.) and a close version where only bang-bang functions are involved. Let
a be an extremal point of Uy, ps. Then, there exists a measurable subset I' of 9 such that
a = Mxr — Mxsonr = M(2xp — 1) and the L' constraint [,,a = LMH" (9Q) reads in that
case H"1(T) = %H"‘l(ﬁﬂ). We then introduce the optimal design problem

sup  Joo(MxT — Mxaa\r) (PE)
Xr€UrL, m

where Uy, p; denotes the set of extremal points of u L,M, namely

L+1
U v = {Mxp — Mxao\r | T C 002 and HHT) = —;7—[”1(59)} (11)

Of course, one of the main difficulties in that issue is to deal with a hard binary non-convex
constraint on the function a, preventing a prior: the solution to be an element of the family
{@20}gyeq (since Q has a C! boundary, each Rellich function is continuous on 99 and cannot be
an element of Uy, pr whenever L ¢ {—1,1}). As it will be emphasized in the sequel, Problem (P2")
plays an important role when dealing with inverse problems involving sensors. This means that,
among all subsets I' of 02 having a prescribed Hausdorff measure, we want to recover the maximal
part of the “boundary Neumann energy measure”.

We will establish the following result.

Theorem D (no-gap). Let Q be a domain satisfying (H). Under strong assumptions on ) (related
to quantum ergodicity issues), and using the notations of Theorem B above, the optimal values of
Problems (P..) and (PLP) are the same.

A complete version of this result is provided in Theorem 4. Although we do not know whether
Problem (P2") has a solution, the investigation of several particular cases in Section 4.4 let us
make the conjecture that for almost every value of the constraint parameter L, Problem (P"") has
no solution.

"Let x9p € R™. The quantity £50(xo) is defined by £y (z0) = max,ecaq ||z — zo]|-



1.3 Structure of the article

Section 2 is devoted to solving Problem (Py). In Section 3, we focus on Problem (P ), highlighting
an interesting geometric phenomenon that can be measured by Rellich functions.

Relationships between Problems (P..) and (P-") are investigated in Section 4. One shows in
particular that the optimal values of these two problems may coincide under adequate quantum
ergodicity assumptions. We construct maximizing sequences for Problem (7P°"). We also consider
several particular cases (square, disk, angular sector) as an illustration.

Finally, we provide an interpretation of the above problems in terms of shape sensitivity analysis
in Section 5. Other motivations related to observation theory and more specifically to the optimal
location or shape or sensors for vibrating systems (as already shortly alluded) are evoked.

2 Solving of the optimal design problem (Py)

2.1 A genericity result

In this section, we investigate uniqueness issues and the characterization of maximizers. We prove
that Problem (P ) has a unique solution which is moreover bang-bang for generic domains . The
wording “unique solution” means that two solutions are equal almost everywhere in 9f).

Before stating the main result of this section, let us clarify the notion of genericity we will use.
Let o« € IN\{0, 1}. In what follows, we will denote by Diff” the set of C*-diffeomorphisms in R".
We say that a subset Q of R" is a C* topological ball whenever there exists T' € Diff® transforming
the unit ball into 2. We consider the topological space

S, = {T(B(0,1)), T € Diff*}

endowed with the metric induced by that of C*-diffeomorphisms®, making it a complete metric
space. Since our approach is based on analyticity properties, it is convenient to introduce the set
D of domains 2 C R" having an analytic boundary, as well as the subset A, = D N X, of the
topological space X,.

Theorem 2. Let « € N\{0,1} and N € IN*. Consider the property:

(Qn) for every L € [~1,1], the optimal design problem (Px) has a unique solution ay which is
therefore an extremal point of the convex set Uy, pr (in other words, an is bang-bang).

The set of the domains Q € A, for which the property (Qn) holds true is open and dense in A,.

The proof of this theorem is provided in Section 2.3. It is quite lengthy and is based on
genericity arguments, using analytic domain deformations.

Remark 1 (On the uniqueness of solutions). It is notable that the uniqueness property stated in
Theorem 2 for Problem (Py) does not hold whenever 2 is a two-dimensional disk.

Regarding the two-dimensional unit disk Q = D(0;1), it is easily shown that the optimal value
for Problem (Py) is equal to 7L for every N € IN*. Indeed, explicit computations (see Section

8Recall that one can endow Diff® with its topology 7 inherited from the family of semi-norms defined by

pn(T) = sup |&IT ().
zeK,je[L,a]™,|j|<n

for every n € {1,...,a}, K C R™ compact, and T € C*(IR",IR"), making it a complete metric space.



4.4) yield that

2m 2m
o . . 2 . . 2
Jn(a) = min <1<17£1£N/0 a(0) cos(nb)* do, 1<17I11£N ; a(0) sin(nd) d9>
1 27
= 7wL— - sup / a(0) cos(2nb) db| ,
1<n<N |Jo
by combining the Riemann-Lebesgue lemma with the identity min{—=z,z} = —|z| for all z € R.

Hence, one has Jy(a) < 7L for every a € Uy, p, and moreover, the upper bound is reached by
choosing a = L, leading to

max Jy(a) =wL.
ac€Ur v

Moreover, we claim that there exist bang-bang functions of Uy, »s solving problem (Py). Notice
that the case of the disk is particular since the strategy developed within the proof of Theorem 2
does not apply”. Nevertheless, by choosing

P . .
2wt wl 2mi 7wl L 7L

WN = - 5 + ) (05 ) (7'[' - 777) )
z‘:LJ1 ( p p p p U p U p

with p = [M] (the notation [-] standing for the integer part function), one computes for n €

2
{1,...,N},
N . .
1 4 2mnlL 4 2mnL
/ cos(2nf)df = Z(sin( i, 27 )_Sm< i 2mn ))
wN 2n p p D D

) L <4m>
COs =0,
P )= p

K2

Il
| —
B
N
[N}
3
3
t~

since for all n € {1,..., N}, the real number 4nm/p cannot be a multiple of 27 (indeed, 2pm >
2m [MEL] > N +1). We hence infer that one has also f[o’%]\wN cos(2nf) df = 0 and the choice
any = Mxwy — MXjo,2x\wy Yields Jy(an) = wL, according to the expression of Jy above.

It il also interesting to notice that the uniqueness property of maximizers also fails whenever
() is a two-dimensional rectangle. Indeed, the non-uniqueness property is an easy consequence of
the rewriting of the criterion (see Section 4.4), since it can be observed that solutions are only
described by their projections on the vertical or the horizontal axis.

Note that similar issues are investigated in [10, Prop. 1 and Cor. 2].

2.2 Numerical simulations

In this section, we illustrate the previous results by representing the solution a}; of Problem (Py),
whenever it exists. Moreover, according to the proof of Theorem 2 (see Section 2.3), there exist

9Indeed, the proof rests upon the fact that Problem (Py) has necessarily a bang-bang solution whenever the set

of solutions of the equation
B (0¢;\?
E - ﬁ = constant
A \ ov

1N Y
on 0f) is either empty or discrete, for all choices of the family (B;)lgjggv of nonnegative numbers such that

Z;-VZI 5]* = 1. When 2 denotes the two-dimensional unit disk, one shows easily that such a property does not hold
true since the squares of the eigenfunctions normal derivatives involve the square of cosine and sine functions, whose
combination may be constant on intervals.



Lagrange multipliers 3* = (8 )1gj<n € ]Rf such that Zlgjgjv B; =1 and a positive real number
A such that {¢* > A} C {a* = M}, and {¢* < A} C {a* = —M} where

2
o= I(%
N )\j 6V ’
1<GEN
Moreover, for generic domains €2, the previous inclusions are in fact equalities. In the description
of the numerical method, we assume to be in such a case.

The underlying eigenvalue problem is first discretized by using finite elements to compute an

09;
ov

proximation of Problem (Py) writing as a finite-dimensional minimization problem under equality
and inequality constraints. Hence, we determine an approximation of the Lagrange multipliers
B* = (B hgjsn € ]R_IX and A, evaluated by using a primal-dual approach combined with an
interior point line search filter method'’. At the end, the set {a* = M} is plotted by using that

{¢" > A} = {a* = M}.

Practically speaking, the dual problem is solved with the help of a software package for non-
linear optimization, IPOPT combined with AMPL (see [16, 50]).

On Figures 3 and 4 hereafter, we assume that €2 denotes respectively a square and an ellipse.
Problem (Py) is solved for several values of N and L, in the case M = 1.

Regarding the case of Q = [0,7]? (see Figure 3 and Proposition 1) and denoting by a} a
solution of Problem (Py), we know that (al)nven+ converges up to a subsequence to a solution
of Problem (P..), weakly-star in L°°(£2). Moreover, we observe the equipartition of maximizers,
which suggest that (ajy)nven+ converges to a constant density. This is in accordance with the
analysis of Problem (P.,) when Q is a rectangle, see Section 4.

On Figure 4, computations of a} are made for the ellipse of cartesian equation 2 + y?/2 = 1,
for M = 1 and several values of L. According to Proposition 1, (a})nen+ converges up to a
subsequence to a solution of Problem (P..). Although we were not able to determine all maximizers
of Problem (P,), and we do not know all the closure points of (a})ven+, we know that one of
them is given by

2
approximation of the functions ( ) , 1 < j < N on 9d90. This allows us to consider an ap-

N  LH"H00)
a(0,0) (I,y) = m

whenever L < L§ with H"1(0€2) ~ 7.5845 and L§ ~ 0.4142 (by using Theorem B and Proposition
3). The profile of a(g,0) is similar to the left plot of Figure 1. All these considerations suggest that,
unlike the case of the square, the closure points of (a% ) nven+ are non constant densities, looking
more concentrated around the major axis extremities.

2% +9%),  (z,y)€Q,

2.3 Proof of Theorem 2
Define the simplex Iy = {B = (Bj)1<j<n € RY such that Y Bi = 1} . Using standard ar-

guments from convex analysis, one shows that the optimal design Problem (Py) rewrites

_ _ 2
sup Jy(a) = sup inf j(a,B) where j(a,@’):/ a(x) Z 5J<&¢J(w)) dH" L.

a€lly m aclip o B €y 90 1S5eN Aj \ Ov

10The basic idea behind this approach, inspired by barrier methods, is to interpret the discretized optimization
problem as a bi-objective optimization problem with the two goals of minimizing the objective function and the
constraint violation, see [50] for the complete description of the algorithm.

10



Figure 3: Q = [0, 7] and M = 1. Examples of maximizers a’ for Jy. The bold line corresponds to
the set I' = {a}y = M}. Recall that [, adH"' = LMH"~1(9Q) and H"~'(T) = Liqn=1(60).
Rowl: L= —0.6 (i.e. H* " }(T) = 0.2H"1(0Q)); row 2: L = —0.2 (i.e. H""}T) = 0.4H"1(9Q));
row 3: L=0.2 (i.e. H" () = 0.6H""1(9Q)). From left to right: N =20, N =50, N = 90.

Combining the facts that U, 5 and Iy are convex, that the mapping j is linear and continuous
with respect to each variable (regarding the first variable, for § € Iy, the mapping j(-, 5) is
continuous for the weak star topology of L™), one gets the existence of a saddle point (a*, 8*) €
U v x R of j solving this problem, according to the Sion minimax theorem (see [37]).

As a result, by introducing the so-called switching function

oY (é”’) (12)

i \ Ov
1N Y

we obtain that

a5 = max j(a7) with (067 = [ a(w)gt @)

a€Ur m oQ

Solving the optimal design problem of the right-hand side is standard (see for instance [11, Theorem
1]) and leads to the following characterization of maximizers: there exists a positive real number A
such that {¢* > A} C {a* = M}, and {¢* < A} C {a* = —M}. Moreover, if the set I = {—M <
a* < M} has a positive Hausdorff measure, there holds necessarily ¢*(z) = A a.e on I. Assuming
that €2 has an analytic boundary, that is to say 2 € D yields that the squares of normal derivatives
of eigenfunctions are analytic on 9§ according to [34].

With a slight abuse of notation, we denote by 1 the constant function equal to 1 everywhere on

2 2
0f). Introduce the family of functions Fny = <1, (%) sy (ag%) } The conclusion follows

from the following proposition, where we establish that, for a generic Q € A, the family Fy
consists of linearly independent functions when restricted to any measurable subset of 92 of positive

11



Figure 4: Q is the ellipse having as cartesian equation 22 + y?/2 = 1 and M = 1. Examples
of maximizers aj, for Jy. The bold line corresponds to the set I' = {a}, = M}. Recall that
JoqadH" ™! = LMH"1(09) and H"H(I) = LEH"~1(8Q). Rowl: L = —0.6 (ie. H"(T) =
0.2H"1(09)); row 2: L = —0.2 (i.e. H* 1) = 0.4H"1(9Q)); row 3: L = 0.2 (i.e. H" 1) =
0.6H"~1(09)). From left to right: N =20, N =50, N = 90.

H"~l-measure. Indeed, it implies that for a generic Q € A, the level sets of ©* have zero H" -

measure and therefore, every maximizer a* is bang-bang, i.e., equal to —M or M almost everywhere
on 0.

Proposition 2. Let « € N\{0,1} and N € IN*. The set of all domains Q € A, for which the
family Fn consists of linearly independent functions is open and dense in A,

Finally, once we know that, for a generic Q2 € A, every maximizer is bang-bang, the uniqueness
follows from a convexity argument. Indeed, assume the existence of two maximizers a; and as.
Thus, by concavity of Jy, any convex combination of a; and ag solves Problem (Py) which is in
contradiction with the fact that every maximizer is bang-bang.

Proof of Proposition 2. In this proof, we follow the method used in [38, Theorem 1].
In the sequel and for every 1 < j < N, we will denote by ¢; the extension by 0 of the j-th
eigenfunction of the Dirichlet Laplacian to R".

Let us define the function F: RY ¥ — R by

1 Y1 YN
F(yi, -+ ynv+1)) = det :

1 ynegr 0 Ynegn

Our strategy is based on the following remark: assume that the boundary 0f2 is analytic. Then,
by analyticity of F, the property of linear independence of functions of Fy is equivalent to the

12



existence of N points z1, ..., zn in 0 such that

P((Gen) o (o) o (e o (Sem) ) 20

Indeed, by analyticity of 9 and according to [34], the squares of normal derivatives of eigenfunc-
tions are analytic on 02 and therefore, the function

(1,...,z2n) = F ((%(mﬁ){..., (8(;21(3;1\[))2,..., (855(33102,..., (8;7(3;1\;))2>

is analytic on (9)V.

As a consequence of these preliminary remarks, the proof of Proposition 2 follows from the
following lemma. For technical reasons, we need to handle families of domains satisfying moreover
a simplicity assumption on the NV first eigenvalues. Indeed, forgetting this assumption would allow
crossings of eigenvalues branches along the considered paths of domains and would not ensure good
regularity properties of the eigenfunctions with respect to the domain (2.

Lemma 1. The set Xp of domains Q in X, for which the property

Pxn : “the N first eigenvalues of 2 are simple and there exists (x1,...,xx) € (OQ)N such that
(13) holds true”

1s satisfied, is open and dense in .

We will then infer that the set of the domains €2 € A, for which the family Fx consists of
linearly independent functions is open in A, for the induced topology of A, (inherited from Diff®).
Moreover, the density of this set in A, is a consequence of the next approximation result.

Admitting temporarily Lemma 1, we now provide the final (standard) argument to conclude the
proof. It remains to prove that for every Q € X, there exists a domain Q' in A, arbitrarily close
to Q for the topology on ¥,. There exist T € Diff“ and an analytic mapping 7" € Diff® such that
Q =T(B(0,1)), ' = T'(B(0,1)) and T is arbitrarily close to T’ for the X,-topology. Since T'~!
(resp. T'~1) maps Q (resp. ') to B(0,1), the Laplace-Dirichlet eigenvalue problem on € (resp
Q') is equivalent to the eigenvalue problem for a Laplace-Beltrami operator on B(0,1) relative to
the pullback metric g = (gi;(T))1<i,j<n (vesp., ' = (g{;(T))1<i,j<n). These operators on B(0,1)
are elliptic of second order with analytic coefficients with respect to the metrics. Since the N first
eigenvalues of Q and ' are simple, standard arguments (see, e.g., [26]) about parametric families
of operators show that the N first eigenvalues of Q' are arbitrarily close to those of 2, and the N
first eigenfunctions of € are arbitrarily close to those of Q for the C* topology. As a consequence,
(13) holds also true for Q' provided that T be close enough to T for the Diff*-topology.

The desired conclusion follows. O

Proof of Lemma 1. Let us show that X p is nonempty, open and dense in X.

Step 1: ¥p is nonempty. Let (1, -+ ,uq) be a non-resonant sequence'’ of positive real num-
bers and €2 be the orthotope IT}'_; (0, ;7). Then easy computations based on the fact that for

K = (k1,...,ka) € N*?, the (un-normalized) Laplacian-Dirichlet eigenfunction are the functions

d
k;x;
Qa(ml,...,xd)HHSin< x>7
i=1

i

111t means that every nontrivial rational linear combination of finitely many of its elements is different from zero
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show that () satisfies Py. Moreover, as proved in [38], there exists a sequence ()ren € LI
compactly converging'? to Q. For k € N, let us denote by (¢?)j€]N* the Hilbert basis (in L2(Q4))
made of the Laplace-Dirichlet operator eigenfunctions in 2.

Fix j € IN*. According to [2] and since each eigenvalue of ), is simple, the sequence ((bf) kEN
converges uniformly to ¢; on R™. Consequently (Acﬁ?)kem converges locally to A¢; in C°(R").
Using the elliptic regularity (see [3]), we then infer that ¢¥ converges to ¢; in H*(R") '*. Denote
by A* the element of Diff* transforming 2 into QF. Since A* converges to Id in Diff*, one has

. k k
kglfoo @7 o A" — @l 2 (mny = 0.

As a consequence, up to a subsequence, (qu;? o AF)en converges to V¢; almost everywhere
in R™. Finally, according to [34], since Q € A,, for every k € IN, the vectorial function Vd);? is
smooth in Q and in particular continuous. It follows that for k large enough, €, satisfies Py

Step 2: Yp isopenin X,. Fix ) € Xp, a choice of eigenfunctions ¢, ..., ¢ and N points z1,
..., zn such that Py holds true. Assume by contradiction that there exists a sequence (Q)renN
of domains in ¥,\Xp converging to  in 3,. Recall that, according for instance to [2], denoting
by )\f the j-th eigenvalue on € and by d)f the associated eigenfunction extended by 0 on R", the
sequence (A?)kem converges to A;. As a result, the IV first eigenvalues of Q) are simple provided
that k£ be large enough.

In a second time, let us denote by A* the element of Diff* transforming €2 into Q. For k € IN,
introduce the analogous of Fy for £, namely

Fr = {1 (Vol o A")?, oo (Voly o AF)?} . (14)
We claim that
each element of F converges pointwise to Fy in 2, as k tends to +oc. (15)

Indeed, this is obtained by using a similar argument as previously, by reinterpreting the convergence
of (% )ken in X, in terms of a parametric family of operator with smooth coefficients.
It follows that for k large enough, one has

F((VoF (A5 (21)))%, -+, (Vo (Af(zn)))?) # 0.

since F((Vo}(Af(21)))%, -+, (Vo (A (2n)))?) converges to F((Vi(z1))%, -, (Von(zn))?) #
0.
One gets a contradiction since one has 2 belongs to Xp.

Step 3: Xp is dense in X,. Fix Qg € ¥ p with the corresponding z1,--- ,zn, and ; € X,.
According to [38, 47], there exists an analytic curve [0,1] 5 ¢ — A; of C™-diffeomorphisms such
that Ag is equal to the identity, A1(€) = Q1 and every domain ©; = A;(£) has simple spectrum
for ¢ in the open interval (0,1) and for every j € [1, N], the mapping ¢ — /\§- is analytic.. Let us
introduce F} the analogous of Fy for ;.

Moreover, by using analytic perturbation theory arguments (see [20]), we also know that there
exists a choice of eigenfunctions (QSE) je,n] such that, ¢§» o A§- varies analytically with respect to ¢

12Recall that a sequence of domains (Q)reN € 2]&\1 is said to compactly converge to 2 if for every compact
K C (QUQ°), there exists ko € IN such that one has K C (€, UQy) for every k > ko.

13Note that each eigenfunction qﬁ? is supported by the bounded set 2 which allows to apply the stanfdard elliptic
regularity results.
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in C*(Qg). Consequently A¢h o A' is analytic with respect to ¢ in C* (Qp). In particular, it follows
that ¢! o A’ is analytic with respect to ¢ in H 2(Q) (by using elliptic regularity). Using the same
arguments as in step 1, one has that V¢§ o A! is analytic with respect to t successively in L?(Qq)
and almost everywhere in .

We then infer that the mapping

Ut F(1 (VoL (AN (21))2, -, (Voly (A (zn))?)

is analytic from [0, 1] to R. Since ¥(0) # 0, we get that, except for a finite number of values in
[0,1], ¥(t) # 0, and thus Q; is in X p. In particular Xp is dense in %,,. O

3 Solving of the optimal design problem (P..)

3.1 Preliminaries
Let us first prove the existence of solutions for Problem (Ps).

Lemma 2. Assume that () is either conver or has a C*' boundary. Then, Problem (P..) has at
least a solution.

_ N2
Proof. For every j € IN*, the functional a € U, > % fag a (%) dH"~ ! is linear and continuous
J

for the L (99, [—M, M]) weak-star topology. Thus, the functional ZjLJ\i 3> a > Jy(a) is upper
semi-continuous as the infimum of continuous linear functionals. Since Uy, ns is compact for the
L>(0Q, [-M, M]) weak-star topology, the existence of an optimal density a* in U, ar follows. O

The optimal design problem we will investigate in the sequel is motivated by the following
observation about the maximizers given by (8).

Lemma 3. (L°°-norm of mazimizers) Assume that Q has a C' boundary. Then, one has

diam(Q
%() < zoiglgn izg| (x — zo,v(x)) | = moigng" itelg |z — zo|| < R(Q), (16)

where diam(Q) (resp. R())) denotes the diameter (resp. the circumradius) of ).
As a consequence, the lowest L™ -norm among all maximizers of Problem (7) satisfies

diam(2)po f
2n|Q| T aeeRn

~ Po
oo < —.
angL 09) X H‘Q|

Proof. Let us first show the equality. Note that

inf s - < Inf s —
g, s = @) < nf, sup e — ol

by maximality and by using the Cauchy-Schwarz inequality. Let xg € IR" and let z* solve
the problem sup, g (z — o, v(x)). Then, one has necessarily v(z*) = (z* — x0)/||z* — x| and
max, g (r — o, v(7)) = [[2* — x¢]|. Indeed, this is easily inferred by writing

¥ —xg = (¥ — xo,v(x")) v(z") + t(x"),

where t(z*) denotes a vector of the tangent hyperplane to  at x*. Furthermore, the first order
optimality conditions write (z* — g, h) < 0 for every element h of the cone of admissible perturba-
tions. Finally, noting that h = t(z*) is an admissible perturbation yields that necessarily t(z*) =0
and the expected conclusion follows.
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To prove the right-hand side inequality, it suffices to choose for zy the center O of the circum-
radius and we get
inf max |z — 2ol < max ||z — O|| < R().
zo€R™ zcQ €N
To prove the left-hand side inequality, let us introduce two points A and B such that diam(Q) =

[AB]. Since Q has a C! boundary, it follows that v(A) = —v(B) %, and therefore

inf max|{x —xo,v(x))| > inf max |{z—z0,v(z))]

zroER® €N zo€ER™ afE{A,B}

= inf max{|(A —xo,v(A))[,[(B —z0,v(A)) [}
zo€R™

= inf t(A— —(1—-¢t)(B— A
ok, e (t(A—z0) — (1 = t)(B — z0),v(A))
1 i Q

> LB = T
2 2

Finally, the last claim follows directly from the expression of a,, given by (8). O

As a consequence, the lowest L*-norm among all maximizers can be either small or large
depending on the shape of €. Indeed, denoting by D the set of bounded connected domains €2 of
IR™ having as circumradius R(2) = 1, there holds

nf 1 1 d 1
inf — = —— an Sup — =
QeD |Q| ‘Bn| QeD |Q|

+00,

where B,, denotes the Euclidean n-dimensional ball with circumradius 1. The first equality is a
consequence of the standard isoperimetric inequality and the second one is obtained by considering
for © a sequence of particular lenses (namely, ellipses/ellipsoids having for circumradius 1 and a
semi-minor axis tending to 0, see Fig. 2).

It follows that, given Q in D, the solutions a,, of Problem (7) may have an arbitrarily large
L*> norm. In view of reducing the complexity of maximizers, it is relevant to deal with density
functions a(-) that are essentially bounded by a positive constant M. This justifies to consider
Problems (P..) and (P2).

3.2 Optimality of Rellich functions

Next results are devoted to the computation of the optimal value for Problem (P, ) under adequate
geometric assumptions on ).

Theorem 3. Let Q) be a bounded connected domain of R™ either convex or with a CH' boundary.
Let a* be a solution of Problem (P,). Then:

n—1
o one has necessarily Joo(a*) < %Q'((m),

e one has Ian 1(89)
2 n-

max Jo(a) = ———=
aEﬁL,M ( ) n|Q|

if, and only if L € [—L¢, LS, where LS is given by

LS =min < 1, - , with Loa(xg) = sup ess [{x — zg,v(x))|. (17
n Hn—l(ag)zlg]lf{ngag(xo) 20 (20) 1_289 I 0, v(2))] (17)
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Furthermore, in the case where O is CYt, then the expression of LS simplifies into (10).

This proof of this result strongly uses Theorem 1. Both proofs are postponed to Section 3.3.
Let us comment on the condition (17) and the function fyq that is involved. This condition is
equivalent to the existence of a Rellich function a,, (see Def. 1) with xy € Q, belonging to the set
u M. Moreover, one has the following (partial) characterization, also proved in Section 3.3.

Proposition 3. Assume that Q has a C' boundary. Then the expression of Ly, simplifies into
(10). Moreover, if ones assumes that the intersection between Q0 and its circumsphere reduces to

two points, one has
inf ¢ = R(Q2).
2. o0 (z0) = R()
Notice that the conclusion of Proposition 3 is not true in general. Indeed, if one considers
a domain made of a flat triangle whose edges have been smoothed with unit circumradius (for
instance obtained from the triangle plotted on Fig. 5), by choosing a particular test point g
inside Q, one has inf, cr» foq(zo) < diam(Q2) < R(Q).

Figure 5: A flat triangle with unit circumradius.

In Section 4.4, we will investigate the particular cases where (2 is either a rectangle, a disk or
an angular sector in IR?. In particular, we will explicitly compute at the same time the critical
value L¢ in such cases as well as the optimal value for the convexified problem (Po,) when L > L¢,
in other words when the assumptions of Theorem 3 are not satisfied anymore.

3.3 Proofs of Theorems 1, 3 and Proposition 3

2
Proof of Theorem 1. Note that each integral faQ a (%) dH" ! in the definition of J. is

well defined and is finite under the above regularity assumptions on 0.
According to the Rellich identity (2), there holds

sup  Joo(a) adH" ™ > Jo(az,) — gy AH" ™1 =0,

a€L>=(00) n|Q| Jaq n|Q| Jaq

MSince Q is convex or has a Cb! boundary, the outward unit normal v is defined almost everywhere, the
eigenfunctions ¢; belong to H?(Q) and their Neumann trace 0¢;/0v belongs to L2(09Q) for any j > 1. Hence

N2
a (%) € L1(09) for every a € L>®(0Q).
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by using that [, (z — o, v(x)) dH" 1 (z) = [, div(z — z¢) dz = n|Q|.
In order to prove the converse mequahty, we consider Cesaro means of eigenfunctions. Indeed,
introducing the family (41;);en~ of measures

. _ 1 a(b] 2 n—1
w@=3 [ () ™

we have

sup  inf pj(a) = sup inf Zaj/ ( ¢j) dH" !

acLe (99Q) JEN” a€L>(99) (az)€L* (Ry.)
er T a;=1

and by considering particular choices of sequences (a;) en=, we get

N
1
sup inf pi(a) < sup inf — ) wu,(a).
aeLo(90)iEN" "’ aclly o V21 NJZ:: !
According to [36, Theorem 7], the sequence
1 g: 1 (0¢;\°
N &~ X; \ ov
j=1 NeN*

is uniformly bounded and converges uniformly to some positive constant Cq on every compact
subset of 9 for the C%-topology, and in particular weakly in L(£2). As a consequence, considering
a € L*>*(09), we infer that

N N
1 1
1 . E . < 1 E . — n71.
I%fngl N~ Hi(@) < NLHEoo N~ #ila) = Ca /asz “

To compute Cgq, let us use the Rellich identity (2). For o € R", there holds

= NLITOO N Z,uj Qo) = /69 azo AH" ™ = Con|Q),
and therefore Cq = W As a consequence, we infer that
N
e By | WA 2 g ) <0

Combining all the estimates, it follows that

sup (Joo(a) -—

ad’H”1> =0
a€L>(9Q) n|Q Joq

and one easily checks that any function ca,, with ¢ € R reaches the supremum, whence the

inequality (6).
According to (6), one has for a given pg € R,

Ya € L™ (09) | adH™™ = po, Joo(a) < ===
o
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By noting that the right-hand-side is reached by the Rellich function ca,, where ¢ € IR is chosen
in such a way that the integral constraint is satisfied, the expected result follows.

To conclude, it remains to show that J.(a) is finite for every a € L>(£2). To this aim, let
us argue by contradiction, considering a € L*°(f2) and assuming that J..(a) = —co. Then, there
exists an increasing sequence of integers (ji)kew such that uj; (a) - —oo as k — +o0o0. But
according to the aforementioned convergence result, one has u;, (a) — Coq [, adH" !, which is
impossible.

Proof of Theorem 3. The first inequality is obvious, according to Theorem 1, since it can be
recast as

sup Joo(a) < max {Joo(a), a € L>®(09) |

aeaL,M

adH" ! = LMH"—l(aQ)} :
[5}9]

Let us prove the second item. Still using Theorem 1, the equality is true if, and only if
there exists a Rellich admissible function a,, (defined by (9)), in other words a Rellich function
belonging to Up . Recall that [ (x — o, v(2)) dH" Y (z) = [, div(z — z¢)dz = n|Q|, and
therefore [, Gz, dH"™ " = LMH" 1(09Q). To investigate the existence of a Rellich admissible
function, we will then concentrate on the pointwise constraints. The admissibility condition on a,
rewrites

LMH (09
Jzg € R™ | Vz € 09, —-M < 7-:L|Q|()<x —zo,v(x)) < M
or similarly
Jzg € R" | Vo € 00 |L| |{z — zo y(m)>|<&
’ ’ = H1(09)
leading to the condition
L f s — <—01
L] inf sup [(z =m0, v(x))] 1 (00)

We conclude by noting that one must moreover have L € (—1,1) by assumption.

Proof of Proposition 3. This result is a direct consequence of Lemma 3. Indeed, under the
geometric condition on the circumsphere to €2, one easily shows that any diameter of Q2 is also a
diameter of the circumsphere and all inequalities in (16) are equalities, whence the claim.

4 Solving of Problem (P"")

Let us now investigate Problem (P2). Note that

2 2
1 i 1 i
sup inf — XT (8%) dH" ™' < sup inf — a (8%) dH" L.
xr€Ur, m jEN* )\J a0 ov a€ly, jEN* )\J a0 ov

Nevertheless, as an infimum of linear and continuous functions for the usual L> weak-star topology,

2

. . 80, 1. . . .

the mapping a — infjen- )\i I 90 @ (%) dH"~ ' is upper semicontinuous and not lower semicon-
J

tinuous for this topology. Because of this lack of continuity, it is not clear whether the converse
sense holds true or not.
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4.1 A no-gap result

In the sequel, we will consider two kinds of geometric assumptions on the domain 2. Let us make
them precise.

Uniform boundedness (UB) property. There exists A > 0 such that

9%, |1°

o < AN, (18)

Vi e IN¥, H
Lo (89)

Quantum Uniform Ergodicity of Boundary values (QUEB) property. The

2

O+ _ .

sequence of measures )% (%) dH"~! converges vaguely to the uniform measure
J

2

nmld’H”_l as j — +o0.

In the following result, one shows that under several geometric assumption, every maximizing
sequence (xr, )kenN, seen as a Radon measure, has to converge vaguely to a Rellich-admissible
function as k diverges. Nevertheless, the converse sense is not true. This last claim has been
discussed and commented in [13] for another spectral functional.

Theorem 4 (No-Gap). Let Q be a bounded connected domain of R" either with a C1'' boundary,
or convez.

Assume that Q satisfies the (UB) and the (QUEB) properties. Then the optimal values of
Problems (P..) and (P2>) are the same. In particular, one has

‘ 2LH" (09
VL € [-Ly, Ly], sup  Joo(MxT — Mxpo\r) = ¥7
xr€UrL, m TL|Q|

where LS is defined in Theorem 3.

The statement of Theorem 4 can be reformulated as follows: there is no gap between the optimal
values of the problems (P-") and (P..). Moreover, an explicit maximizing sequence (xr, )keN iS
provided in the proof of this theorem, whatever the value of L, although the knowledge of the
optimal value is only known in the case where |L| < L.

Finally, the assumptions of Theorem 4 are not empty. As it will be highlighted in the discussion
on the disk below, these assumptions are satisfied in particular when Q is the unit disk of IR?.

4.2 Comments on the assumptions and the results

The following remarks are in order.
e The two properties (UB)) and (QUEB) depend on the choice of the Hilbert basis (¢;);en-

e The property (UB) holds true for whenever ) is a n-dimensional orthotope Q = (0,7)", a
two-dimensional disk (see Section 4.4), or the flat torus 2 = T".

e Concerning the (QUEB) property, very little is known about it. It is nevertheless notable
that the following close property is well known and referenced.

Weak Quantum Ergodicity of Boundary values (WQEB) property. There

2

exists a subsequence of )\i (%) dH"~ ! converging vaguely to the uniform mea-
J

sure ﬁd?—l"’l.
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It has been proved in particular in [10, 18] that the (WQEB) property holds true in the
flat torus 2 = T™, and in all piecewise smooth ergodic domains 2. More precisely, in these
articles it is shown that for such a domain €2, and for every semi-classical operator A of order
0 on 99, there exists a density one'® subsequence (ji)ren such that

. _ 0 0P 4 _
lim /\.1<A< J"), ]">—— / a(y,n)\/1—|n|2dndH" L,
Tk ov ov ISP Q1= (a0) () Il dn

k——+o0

where S?! is the unit sphere in IR” and a is the symbol of A. It says that the boundary
traces of eigenfunctions are, on the average, distributed in phase space T*(952), according to
(1 — [n|?)*/? ([5]) for the Dirichlet boundary conditions. Finally, one recovers (WQEB) by
choosing a(y,n) = a(y) € L>(9%, [0, 1]).

e Even if the (WQEB) property is satisfied in a large class of domains, very few of them may
satisfy the more restrictive (QUEB) property. Up to our knowledge, the only domain known
to satisfy the (QUEB) property is the Euclidean disk in IR". An interesting issue would
consist in determining a sufficient geometric condition guaranteeing this property.

Let us sum-up what is known about such properties for particular choices of domains €. If
Q is a rectangle with the usual Hilbert basis of eigenfunctions of /A made of products of sine
functions, the (WQEB) property is satisfied but not the (QUEB) property. If Q is a disk of
IR? with the usual Hilbert basis of eigenfunctions of A defined in terms of Bessel functions,
the (QUEB) property holds true. These results are in particular recovered in Section 4.4.
Finally, concerning the three-dimensional Euclidean unit ball, a weak consequence of the
main quantum ergodicity results is the existence of a Hilbert basis of eigenfunctions such
that the (WQEB) is satisfied.

Let us emphasize that general quantum ergodicity (QE) problems for an interior domain or on
the boundary, are widely open, which explains that very few is known on the two issues (UB) and
(QUEB). We refer to [13, 46] for a survey of such issues.

4.3 Proof of Theorem 4

This proof is inspired by [43, Theorem 6], but important adaptations and changes have been
necessary. In the whole proof and for the sake of simplicity, we will assume that M = 1 (the
expected general result will be easily inferred by an immediate adaptation of this proof) and use
the notation M = %ﬂll(am.

We will distinguish between the two cases |L| < L¢ and |L| > L¢,.

First case: |L| < L¢

This case is the hardest one. Assume without loss of generality that xzy = 0. Therefore, according to

Theorem 3, the function 02 3 z — %(:17, v(x)) belongs to Uy, s and is a solution of the convexified
problem (Pe).
Introduce

1 [0\
LI = / — <3> dH"™ !
(1) aQ(XF Xm\F)Aj ey

— ]‘ 8¢J g n—1
= /39(2XF XBQ))\j<8V> dH

15The expression “density one” means that there exists Z C IN* such that #{j € Z | j < N}/N converges to 1 as
N tends to +oo.
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for every j € IN*, so that Joo(xr — xao\r) = infjen+ I;(T).
According to the geometric assumptions on 2 and to Theorem 3, we have

: : 1 8¢] ? n—1 5
sup inf [;(T') < sup inf — al =) dH" =M.
xr€UL a JEN* actiy, TEN a0 ov

To prove that the latter inequality is in fact an equality, we will construct a sequence (xr,,),cn €
(Ur, )N in such a way that (Joo (X1, — Xoo\T,)) ke converges to M.

Let I'g be an open, connected and Lipschitz subdomain of 9 such that H"~1(I'g) = £ H"~1(9Q).
Let us assume that Jo(I'g) < M (either we are done). According to the (QUEB) property, there
exists jo € IN* such that

15(T) > 3 = (3 ~ Joo (o)) (19)

for every j > jo. 7
Since 99 and Ty are supposed to be Lipschitz, then 'y and dQ\I'y satisfy a §-cone property'©.

Consider now two partitions
K K
To=JF and T§=JF, (20)
i=1 i=1
respectively of Ty and TS, such that each F; and ﬁl is a subset of a 0Q)-strata. From the d-cone

property, there exist ¢s > 0 and a choice of family (F;)1<i<x (resp. (£5), ;<) such that, for |Fj|
small enough, one has

Vie{l,--- ,K} (resp. Vie{l,--- ,K}), ﬁ@?ca <resp. (h:ar7r71i(17~)206>7 (21)

where 7; (resp., 7;) is the inradius'” of F; (resp., F}), and diam(F}) (resp., diam(F})) the diameter
of F; (resp., F;). Finally for all i € {1,...,K} (resp., for all i € {1,..., K}), there exist § € F;
(resp., & € F;) such that B(&;,n;/2) C F; C B(&;,m;/cs) (vesp., B(&;,1:/2) C F; C B(&;,1:/cs)),

Now, choosing & and &; as Lebesgue points of the functions (%) , for all j < jg yields

/% <§ M u>> (%) ) -
/\lj (HTL;(FZ) - /F Y(z, l/)d’Hnl(:c)> (?;Z”&))2 +o(|F]) asn — 0,

for all j < jo, € {1,...,K} and

/E (; + ]Y@cw) (afyj(m)f A" (z) =

;j <§1 +/’FZ %(w,w dH"_l(x)> <%(§)> +o(|ﬁ’i\) as 7; — 0,

ov

16We recall that an open smooth surface A in R™ verifies a §-cone property if, for every € A, there exists a
normalized vector &; such that C(y, &z, 8) C A for every y € AN B(z,§), where C(y,£z,8) = {z € R | (z —y,&) >
cos ||z — yl| and 0 < ||z — || < 6}, see, e.g., [27]

7In other words, the largest radius of balls contained in Fj.
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for every i € {1,...,K}. Setting 7 = max < max diam(F;), max diam(Fi)> and using that
1<iKK 1<i<K

SE WY (F) = LEn-1(090) and K 1Y (Fy) = 154 1(99), there holds S5 | o(H L (F))) =
Zfil o(H" (F};)) = o(1) as n — 0. Then,

[ (5 o) (1) e

- Z (/ﬁ Alj (; + Aj(a:,@) dHn—l(HS)) (%?(5)) +o(1) (23)

for every j < jo.
We set

n—1 X r
o= BB [ B @), e k)
HY(F}) M - _ B
and f; = —  t ~z<x,ll>d7—l (z), ie{l,--- K}
F;

Then, for £ > 0 small enough, we define the perturbation I'* of Iy by

K K R
e = (FO\UB(&,Q)> U UB(givgi)v
i=1 i=1

where ¢; and &; are chosen so that H"*(B(&,e;)) = e” 'h; and H" " 1(B(&;,&)) = " '4;. This
is possible provided that

0<e<min| min nH"1(B(&,1)Y ("D min M (B(;, 1)V (D
1<K h;/(n—l) I<i<E gl?/(n—l) '

By the isodiametric inequality'® and a compactness argument, there exists a constant V;,, > 0
(depending only on ) such that H"~(F;) < V,(diam(F;))"~1) for every i € {1,---, K}, and
HL(F;) < Vi (diam(F))™=Y for every i € {1,--- , K}, independent of the considered partitions.
Because of the compactness of 912, there also exists v, > 0 (depending only on ) such that
H"Y(B(z,1)) = v, for all x € Q. Set now &9 = min(1, 05vn/V7ll/(n71)). From (21), one has

A" (B(&, 1) Vn 1
R/ (n—=1) - (1- L)1/(n—1)VT}/(”*1) diam(F;)

K2

> €0,

18The isodiametric inequality states that, for every compact K of the Euclidean space IR™, there holds |K| <
|B(0, diam(K)/2)|. The same result holds, up to a multiplicative constant, for a compact stratified manifold endowed
with the measure H" ! and the geodesic distance on each strata.
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for every i € {1,--- , K}, and )
M (B(&, 1)/ (Y
1/ (n=D) 2 €05

for every i € {1,--- , K}. This perturbation is well defined for ¢ € (0,e0). Moreover,

K

HHTE) = HNTo) = Y IB(Ge)| + ) 1B &)

i=1 i=1

= " 1 — en— 1Zh 4 e IZZ
. . H Y M e
= WD) — 12( _/Fi4<:r,y>d7-[ 1)

K n—1 X r
-t Z (H 2(FZ) + /F %(x,lﬁ d’H”_1>

L+1Hn 1

= H"'(Ty) = (0R).

Low frequencies estimates. Let us write
1 (06, _ 1 (06,\° .
2 J n—1 / J dH™ 1
/s j ( ov ) " o0 A ( ov ) "
1 /0¢ K 1 (06>
— 1—\0 _9 / ( J) /Hn—l +2 / _ <J> den—l
Z B(eeo N ; B(E) N\ OV

- 2
and using that &; and &; are Lebesgue points of the function (‘r);;]) , there holds

I1;(T°)

K Lo 2
I;(T°) Ij(Fo)—QZ“B(Z&)fZ” (3¢J (&)) +o(|BEne))
K c. oz 2 3
3 |B(2£)\;>| (% (€z>) +o(| B, &)))
K

I;(To) — 2e" ! (Z ghfj (a¢] )2 i (a@ ) ) +e" Lo(1), (24)

i=1

by using that Efil o(|B(&;,€:)]) + Z£1 o(|B(&,&:)|) = " o(1) as € — 0, and thus as n — 0.
Thus, according to (22) and (23), and noting that

[1 (; NI V>) (%) e [ L (; . w) (%) 1
;<z\7 <2/Fojj(({g‘iﬂ( )) aH () /m : (%‘iﬂ (x))QdHnl(x)»,
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one has
L) = L(To)+e" (M=) 2" o(1)  asn—0,
for all j < jo and all € € (0,&0). Then, since £ ' < 1, one has
Li(T%) 2 Joo(To) + " HM — Joo(To)) + " To(1)  asn— 0, (25)

for every j < jo and € € (0, 0).

Choosing the subdivisions (F})1<i<x and (Fi>1<i<f< fine enough, in other words 1 > 0 small
enough, allows to write that

n—1

I;(T%) 2 Jao(To) + —— (M — Joo(T0)), (26)

for every j < jo and every € € (0,¢ep).

2
High frequencies estimates. According to (18), the sequence (1 (%) ) is bounded
jeIN*

< 242 (/{m Ixre — X1 dH"—l)

by a constant A > 0 in L*(9f2). As a consequence, one has

1 8¢j 2 n—1
[ o= : (a) I

for all j € IN and every ¢ € (0,&0). Moreover,

|1;(T°) — I;(To)| = 2

K K
[ =l = (YY) =09,
a0 i=1 i=1
and thus |[;(I¢) — I;(To)| < 242"~ 1H"~1(9Q). Finally setting,

€1 =min | € —(M\_JOO(FO)) o
! 0\ 284277 1(0Q) ’

one has, using (30) that
1

L(T%) = M — (M — Joo(To)) (27)

[\)

for every j > jo and every € € (0,e1).

Enfl

Conclusion. We now use the fact that Jo(To) + (1\7— Jo(T0)) < M- %(]\//.7— Joo(T'0)) for
all € € (0,&9) (and thus for € € (0,£1)). Combining (26) and (27) , it follows that

En—l

Joo(I%) 2 Jue(To) + ——(M — Joe(T0)), (28)

for every ¢ € (0,e1). In particular this inequality holds for ¢ such that e"~! = C; min(Cs, M —
Joo(To)), with Cp = 1/8A?H"1(0Q) and Cy = (1/C1) min(1, (csv,)"~1/V,,) which are positive
constants. For this particular value of €, we set I'; = I'*, which ensure to have

Joo(T1) = Joo(To) + % min(Cs, M — J(To)) (M — Jo(To)). (29)
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Notice that the constants only depend on A and 0f2, and by construction I'; satisfies a d-cone
property. L

Now, if J(I'1) > M then we are done. Otherwise we apply the same procedure for I'y.
According to the (QUEB) property, there exist a new jy such that (30) holds with T'y instead of
T'y. This gives a lower bound for the higher modes. The low modes j < jo are bounded below as
before leading to an estimate similar to (26) for I';. Therefore, one gets the existence of I'y such
that (29) holds with I'; replaced by I's and Iy replaced by T'y.

This way, one builds a sequence (I'y),cp such that H"~H(Iy) = ZELH"~1(0Q), as long as

Jo(Tk) < M, and satisfying
. — _
Joo(Trs1) = Joo(Tr) + 71 min(Ca, M — Joo (T)) (M — Joo (T)).

If Joo (Tg) < M for all k € IN, then the sequence (J (I'))ren is increasing, bounded above by J/M\,
and converges to M, which concludes the proof in the case where L < L¢.

Second case: |L| > L&

The proof is very similar to the one in the case L < L¢, and even easier since we do not need to

n’
use sharp estimates for high-frequencies modes. For this reason, we only provide the main steps of
the proof, explaining the (small) changes that must be done to adapt the proof of the first case.
As before, we know by Theorem 3 that there exists a* € HL} wm solving Problem (P.,) and
moreover, Jo(a*) < M (since L¢ is the critical value such that M is the optimal value for this

problem).

Let I'g be an open, connected and Lipschitz subdomain of 99 such that H"~(I'g) = £ H"~1(9Q).

Let us assume that Jo(Tg) < Joo(a*) (otherwise we are done). Thanks to (QUEB) and (UB),
there exists jo € IN* such that
* 1 *

Ij(FO) = Joo(a ) - i(']oo(a’ ) - JOO(FO))7 (30)
for every j > jo. Replacing the quantity g@v, v) by a* in the estimates, we reproduce the proof
and use the same notations as before. Roughly speaking, it suffices to replace everywhere the
number M by J(a*) and the function = — %(m, v) by a*. In particular, this allows to define gq
and €1 as in the first part of the proof.

This way, we build from 'y a new set I'* having a Lipschitz boundary, such that H"~1(T'?) =
H' L (Ty) = LH"1(992) and

e (Low frequencies estimates)

Vj < jo, Ve € (0,¢0), I;(T¢) = Joo(To) +
e (High frequencies estimates)
Vi = Jo, Ve € (0,e1),  L(IF) = Joo(a®) = 5(Joo(@”) = Joo(T0))-
Combining these estimates, it follows that

Ve € (0,e1), Joo(T%) 2 Jo(Tp) +

The end of the proof is then exactly similar to the previous case.
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4.4 Solving Problems (P..) and (P2") in 2D

This section is devoted to stating no-gap type results in particular situations that are not covered by
Theorem 4 and to to move further on the analysis of Problem (72") in such cases. More precisely,
we investigate the two-dimensional cases where () is either a rectangle, a disk or an angular sector.

Case of a rectangle. Let a, 8 be two positive numbers. We investigate here the case where {2 =

(—am/2,ar/2) x (—p7/2,B7/2) and we consider the normalized eigenfunctions of the Dirichlet-
Laplacian defined by

Sn(,y) = w\/onﬁ sin (g (x n %)) sin (g (y + ﬂf)) , (31)

associated to the eigenvalue

n? k2

)\n,k: ?"1'?7

for all (n, k) € (IN*)2. The notations we will use are summarized on Figure 6.

Y
)
- o >
x
23 ,Bﬂ' 0 El
Yy
Figure 6: Case of a rectangle
A straightforward computation yields
40éﬂ . ’I’L2 ) k 7(-5
Jo(a) = f — , = — d
)= o ol (7 L 00 (5 07 )

B[ st (o))

Let us simplify the expression of J..(a). For n € N* and a € U, pr, we set

A gla) = / a(x,y)sin? (k (y—i— 773)) dy
U, B 2
_ w2 (7 (o4 T
By o(a) = /zzuzcl(x’y) sin (a (x—l— 5 )) dx.
Using that %5 Ay 5(a) + & By o(a) > (2 + &) min{Ay, 5(a), By.a(a)}, we have

a? a2

Joo(a) =

inf A By« .
5 o (405(0). B (@)
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The converse inequality is established by letting separately n and k go to 400 in the expression of
Joo(a) and using Riemann-Lebesgue lemma. Therefore, we obtain

Jo(a) = o min (kler]ll\fl A s(a), nienﬂg* Bn’a(a)> . (32)
Proposition 4. Let L = min (%’%) There is no-gap between the optimal values for

Problem (PSP and its converified version (P..), and

Joo(a) T — Moe) = 4 arfii L < L,
max a) = sup Xr — XoO\T') = ¢ (a . c
a€Ur, m - xr€UL, M OO \ %&rﬁ)sgn([/) Zf|L| > Ln'

Finally, there exists a finite set £L C [—1,1] such that the optimal design problem (P-") has a
solution if, and only if L € L.

The proof of this proposition is done in Section A. The precise determination of £ could easily be
done since it is possible to derive from the proof a construction of all solutions. Such a construction,
although a bit technical leads to

+ +2 + +2
L‘:{O,a,a,il}ﬁ{o, p ’B,ﬂ}.
a+pB a+p a+pB a+p
Two examples of solutions are pictured on Figure 7 in the case where « = =1 and L = %}
Finally, it is interesting to note that the conclusion of Lemma 3 does not hold true for such a

choice of domain €. This emphasizes the influence of the regularity of 92 on the positive number
Le.

Figure 7: Two particular solutions for L = 1/2.

Case of the unit disk. We investigate here the case where Q is the unit disk of R? and
we consider the normalized eigenfunctions of the Dirichlet-Laplacian given by the triply indexed
sequence
. | Ror(r)/V2m  ifj=0,
brenr:0) = { TN ) i3 (5)
for j € N, k € N* and m = 1,2, where (r, ) are the usual polar coordinates. The functions Y;,(6)
are defined by Y;1(0) = ﬁ cos(j0) and Y;2(0) = ﬁ sin(j0), and R by
Ji(zjkr)
Rjp(r) = v2 L= (34)
’ |75 (z58)]
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where J; is the Bessel function of the first kind of order j, and z;, > 0 is the k*-zero of J;.
The eigenvalues of the Dirichlet-Laplacian are given by the double sequence of fz?k and are of
multiplicity 1 if j =0, and 2 if j > 1.
Easy computations show that for every a € U, ps, the criterion Ju(a) rewrites, up to a multi-
plicative constant,
27

2w
Jo(a) = min (inf / a(0) cos(nf)? db, inf a(6) sin(nf)? d9> . (35)
nzl Jq nzl Jq
It is notable that all the assumptions of Theorem 3 and Theorem 4 are fulfilled. In the following
proposition, the optimal design problem (7P"") is completely solved in this particular case.

Proposition 5. There is no-gap between the optimal values for Problem (P-") and its converified
version (Ps), and
max Jy(a) =Jo(L)=7L= sup Joo(Mxr)
a€Urp m Xr€UL, m
and Jo(L) = wL. Moreover the optimal design problem (PL") has a solution if and only if
L€ {0,£3,£1}.

This proposition is proved in Section B. Several particular solutions in this case are pictured
on Figure 8.

Figure 8: Particular solutions for L = 1/2.

Remark 2. It is also interesting to raise the same question when 2 is an ellipse. Numerical
simulations suggest in particular that the optimal value behaves differently before and after the
critical value L. On Figure 9, we represent the graph of the optimal value for Problem (P..) with
respect to the constraint parameter L for two ellipses. The optimal values are computed by using
a large number of random elements in HL’M.

Case of an angular sector. We investigate here the case where 2 is the angular sector of R?
defined by
Q={(r,0),-61 <0< 6,0 <r <R},

with 6, € (0, %] and R > 0.

We consider the normalized eigenfunctions (¢y k) (n,k)en=2 of the Dirichlet-Laplacian given by

JTK'TL 1 n 5 .
V2 T, o) n(m(ewl)),
R0y |J7m/291(zn,k)| 26,

Pnk(r,0) =
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Figure 9: Optimal value of J, with respect to L for two ellipses respectively of radius and eccen-
tricity (1,1) and (0.5,2) (dots), predicted behavior given by the Rellich functions (red) and plot
of the straight line L = L¢, where L¢ is the critical value introduced in Theorem 3 (green).

n?
where 2, ;. denotes the k-th zero of the first kind Bessel function Jy,, /¢, , associated to the eigenvalue

2
An ke = z{é—if (see, e.g., [7]).
A tedious but straightforward computation leads to

Jola) = —— inf </0 a(R,H)sin(;;(9+91))2Rd6

- RQQI (n,k)eIN*2 —0,

R?n2n? R er/zel(zn,k%)z (a(r,—01) + a(r, 91))dr
4ZT2L,/€9% 0 |J7/m/291 (2n,)[? r?

for every a € UL’M, with

o 91 R

Urm = {a € L™(0Q, [-M,M)) | / a(R,0)Rdo +/ [a(r,—61) + a(r,61)] dr = (261 + 2)RL} .
—01 0

The situation on the straight sides of the angular sector is a bit intricate because of the presence
of Bessel functions. For this reason, even if we completely solve the convexified optimal design
problem (P..), we only provide a partial answer for Problem (P-).

Proposition 6. Let L& = min{1, ZLHa000 1 - yye pape

? (1+01)tan 61
LH" 1 (0Q) ; c
if L] < Ly,
max Joo(a) = 12 (36)
a€Ur { %ﬂ‘l(ﬁﬂ) Zf L; < |L|

Moreover, if |L| > LS, there is no-gap between the optimal values for Problem (PSP) and its
convezified version (Ps).

Notice that we were not able to conclude in the case where |L| < L¢. The proof of this
proposition is done in Section C.

30



5 Conclusion and further comments

5.1 Relationships with spectral shape sensitivity analysis

Theorem 1 happens to have interesting consequences in terms of spectral shape sensitivity analysis
that provide another motivation of our study. In particular, we will investigate the problem of
minimizing the sensitivity of (Dirichlet-Laplacian) eigenvalues with respect to shape perturbations,
searching whether there exists a domain such that any perturbation of it would make all eigenvalues
decrease.

Assume that € is a bounded connected domain with a boundary at least of class C2. Let
V € W3®(R",R") be a vector field. Then, the mapping &y = Id+V is a diffeomorphism
provided that ||[V]|s,coc < € for some & > 0 small enough (see, e.g., [23]). Moreover, under this
condition, ®v(2) is a bounded connected domain having a C? boundary.

Let us assume that the Dirichlet-Laplacian spectrum of € is simple (in the sense that it consists
of simple eigenvalues). It is well known that this assumption is generic with respect to the domain
Q (see, e.g., [32, 19, 21]).

In a nutshell, the shape derivative of A;(£2), denoted (dA;(£2), V), is the first-order term in the
asymptotic expansion of A\;(®v(Q2)) with respect to V, whenever it exists. Under the previous
assumptions on €2, there holds

i J @ () = (@) [ (00)
00, v) =y ORI [ () v

t\0 ov

and thus 1
Joo(V - v) = —sup —(d); (), V).
iZ1 A
We will provide a partial answer to the following question:

Do there exist bounded connected domains of R™ that are spectrally monotonically sen-
sitive, in the sense that a perturbation V chosen as previously (preserving in particular
the volume of the domain) makes all eigenvalues non-increase/decrease?

It is easy to see that, if ) denotes any minimizer of a Dirichlet-Laplacian eigenvalue, which is for
instance the case whenever 2 denotes a ball according to the Faber-Krahn inequality (see, e.g.,
[23]), a perturbation field V enjoying the property above does not exist.

The following result is a byproduct of Theorem 1, dealing with shape sensitivity of the eigen-
values at the first-order.

Corollary 1. Let us assume that Q@ has a C* boundary and that the spectrum of Q1 consists of
sitmple etgenvalues. Then, one has
sup(dA;(Q),V) >0

j>1
for every vector field V.€ W3>(R", R") such that faQV ~vdH™ 1 = 0. In other words, it is

not possible to make all the eigenvalues \;(Y) decrease at the first order under the action of a
diffeomorphism ®v preserving the volume of €.

Indeed, for a vector field V as in the statement of Corollary 1, let us set a = V - v and consider
the problem

sup{Joo(V-l/) | Vew3*R4RY, V-ve L®0Q) and V~V:O}. (37)
on

According to Theorem 1, there holds J.(V -v) < 0 for every admissible vector field V. Then, the
optimal value of Problem (37) is non-positive which rewrites —sup,>4(dA;(€2), V) < 0.
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Remark 3. In some sense, Problem (P2") can be related to the large family of extremal spectral
problems in shape optimization theory, where one looks for a domain minimizing or maximizing a
numerical functions depending either on the eigenvalues or the eigenfunctions of an elliptic operator
with various boundary conditions and geometric constraints (involving for instance the volume,
perimeter or diameter of the domain). One of the most famous problems within this family is to
minimize the first eigenvalue of the Dirichlet Laplacian operator among open subsets of R™ having
a prescribed Lebesgue measure ¢ > 0. According to the so-called Faber-Krahn inequality, the
solution is known to be the ball of volume c. For a review of such problems, we refer for instance
to [9, 15, 21, 22, 27].

5.2 Interpretation of our results in observation theory

The problem of optimizing the number, the position or the shape of sensors in order to improve the
estimation of the state of the system has been widely investigated, in particular in the engineering
community, with applications, for instance, to structural acoustics, piezoelectric actuators, or
vibration control in mechanical structures. The literature on optimal observation is abundant in
engineering applications, where mainly the optimal location of sensors or controllers is investigated
(see, e.g., [1] for boundary actuators, [14] in the context of electrical impedance tomography), but
not the optimization of their shape. In [3, 17, 35, 51], numerical tools have been developed to solve
a simplified version of the optimal design problem where either the partial differential equation
has been replaced with a discrete approximation, or the class of optimal designs is replaced with
a compact finite-dimensional set.

The problem of optimizing the shape of the sensors, without any restriction on their complexity
or regularity, is infinite-dimensional and has been only little considered. In [19, 20], the authors
investigated the problem of determining the best possible shape and position of the support of a
damping term in the 1D wave equation, and they highlighted the so-called spillover phenomenon
arising when considering spectral approximations. Their approach was spectral, and was based on
Fourier expansions of the solution, as we do in the following.

Let T'> 0. We consider the homogeneous wave equation with Dirichlet boundary condition

8tty(t7x) - Ay(t,li) =0 (ta .Z’) € [07T} X Qa (38)
y(t,z) =0 (t.2) € [0,T] x 00,
It is well known that, for all (y°,y') € H}(Q,C) x L?(Q,C), there exists a unique solution y €
CO([Oa 11, H&(Qa ©)n Cl((ov 1), L2(Qv C)) of (38) such that y(0,z) = yO(x) and 0yy(0,z) = yl (2)
for every z € €.
For a given measurable subset I' C OS2, we consider the observable variable zp defined by
dy

Y(t,z) € [0,T] x 0, =zr(t,z) = XF(ZL’)@(LZ’). (39)

By definition, the observability constant Cp(I") is the largest nonnegative constant C' such that

ay 2 n—1
So(ta)| A, (40)

T
Clw0..00 M@ crerae < [ [ xela)

for any solution y of (38). It may be equal to 0. If Cr(T") > 0 then the system (38)-(39) is said to
be observable'® in time T.

19Tt is well known that observability holds true in large time if I' = {z € 9Q | (z—2°,v(z)) > 0} for some 2° € Q
(proof by multipliers, see [25, 33]). Within the class of C°° domains, observability holds true if (T, T) satisfies the
Geometric Control Condition (GCC) (see [1]), and this sufficient condition is almost necessary. We refer to [18, 52]
for an overview of boundary observability results for wave-like equations.
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From the point of view of applications, I' C 0f2 represents the domain occupied by some sensors
that have been put at the boundary of the domain. The role of the sensors is to achieve some
measurements over a time horizon [0, 7], with which one aims at reconstructing the whole state
of the system over [0,T]. Here, the partial measurement is zr(t,x) = xp(:v)%(t,x), given by
(39), and the complete state if the solution y of (38). Since the solution of the wave equation is
determined by its initial data, the observability inequality (40) ensures that the inverse problem
of reconstructing the whole state from its partial measurement is well-posed, if Cr(T) > 0.

Interpreting C(I") as a quantitative measure of the well-posed character of the aforementioned
inverse problem, one could be led to model the optimal shape of sensors issue as the problem of
maximizing Cr(T). Nevertheless, this constant is deterministic and provides an account for the
worst possible case. Hence, in this sense, it is a pessimistic quantity. In practice, when realizing
a large number of measures, it may be expected that this worst case does not occur so often, and
then we realize that it is more desirable to have a notion of optimal observation in average, for a
large number of experiments. For this reason, we adopt the point of view developed in [43, 42] and
inspired from the works [11, 12], which consists of maximizing what is referred to in these works as
the randomized observability constant. This quantity can be interpreted as an average of the worst
observation L2-norms over almost all initial data.

A spectral expansion of the solution y of Equation (38) leads to the following expression of
Cr(T), namely

2

- S (o evmn . Uiy .
Cr(T) = (aJ)(Blriﬁ // ( e \/» ) Lt x)| dH .

Ssiet(CHERAIS

Making a random selection of all possible initial data for the wave equation (38) consists in
replacing Cr(T") with the so-called random observability constant defined by

+oo
CT,rand(F) = ~1nf / / /61’] J l)\ t BQJ J 71)\ it %(ZL') dHn,:L dt ’
(a@5),(b5)€£2(C) \F v

S FES (@12 +1651%)=1
(41)
where (8% ;)jen+ and (B35 ;) jen- are two sequences of independent random variables on a probability
space (A, A,P) having mean equal to zero, variance equal to 1 and a super-exponential decay (for
instance, independent Bernoulli random variables, see [11, 12] for more details). Here, E is the
expectation in the probability space, and runs over all possible events w.

An obvious remark is that, for any problem consisting of optimizing the observation, the optimal
solution consists of observing the solutions over the whole domain 9€2. This is however clearly not
reasonable nor relevant and in practice the domain covered by sensors is limited, due for instance
to cost considerations. From the mathematical point of view, we model this basic limitation by
considering as the set of unknowns, the set

Vi ={xr|T CoQ and H" ' (T) = LH" (99)}

for some L € [0, 1], and therefore, it is relevant to model the problem of determining the optimal
shape and location of boundary sensors as

Sup{CT,rand(F)7 XT € VL,M}a

which is very close to the optimal design problem (P>") with M = 1, as stated in the next result.
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Proposition 7. Let I' C 992 be measurable. We have

1 od; , N\
=T inf — - n—l 49
CT,rand( ) jlenN* )\j . ( v (LU)) dH ( )

We claim that the approach developed within this article can be adapted without difficulty to
admissible sets of characteristic functions. Moreover, up to slight changes in their formulation, all
the conclusions of this article for Problems (Py), (Ps) and (P2") remain valid.

Remark 4. In [39, 40, 42, 43], where internal subsets were considered to be optimized, a closely
related optimal design problem has been modeled, consisting of maximizing the infimum over all
modes of fw qu(at)2 dx. The study required assumptions on the asymptotics of (;5?, and led to
quantum ergodicity properties, i.e., asymptotic properties of the probability measures ¢; (2)? da.

5.3 Final comments and perspectives

The study developed in this article can be extended in several directions.

e Determination of the maximizers for Problem (P.) when L > L, .. In such a case,
we know that there does not exist any admissible Rellich function (see Definition 1), in other
words there does not exist zo €  such that G, belongs to u M- According to the analysis
performed in Section 4.4 in the case where () is a two-dimensional rectangle, as well as the
numerical computations on ellipses plotted on Fig. 9, we conjecture that a maximizer in such
a case is given by

a* =1(ay,),

where x9 €  and II denotes the truncation mapping defined by II(z) = x whenever 0 < z <
M and II(z) = M if z > M.

e Other boundary conditions. The optimal design problem investigated in this article
involves the Dirichlet-Laplacian eigenfunctions. Considering for instance the second motiva-
tions mentioned in the introduction of this article, namely the optimal location of sensors
issues, it would also be relevant to investigate an optimal design problem involving now either
Neumann or Robin boundary conditions in (38).

In such a case, defining the observable variable zr by (39) is no longer possible. In the case
of Neumann boundary conditions, one has to consider the observable variable

zr(t, @) = xr(@) (Gry(t, x) + Vy(t, ))

where y is the solution of the wave equation with Neumann boundary conditions?".

The observability inequality that must be considered here writes: for all (yo, y1) in H*(£, C) x
L?(Q,C),

T
CrEN oyl @.0)xr2@.0) < /0 /8 (@)@t 2) + [Tyt ) P)am e

20More precisely, y solves

{ Ouy(t,x) — Ay(t,z) =0 V(t,z) € (0,T) x Q,
Avy(t,x) =0 Y(t,x) € (0,T) x 99,
y(oa I) = yo(x)v aty(07x) = yl(x) Vr € Qv

with (y°,y') € H1(Q,C) x L?(Q,C).
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Using a randomization procedure leads to introduce the optimal design problem

1
sup inf / v <q§? + V¢j|2> dH™ 1
o9 Aj

UEHL,AI JEN

where the sequence (¢;);jen now denotes a Hilbert basis of eigenfunctions of the Neumann-
Laplacian operator.

Under appropriate quantum ergodic assumptions on the domain € (see [ , 18]), the sequence

2 1 1 g2y jyn—1
(63 + Lvedann—)
moreover the following identity of Rellich type (see (2))

[ i) (o607 + 'V“’;i)z)dw—%x):z,

holding for every bounded set Q of R" either convex or having a C? boundary. As a conse-
quence, mimicking the reasoning made in the case of Dirichlet boundary conditions, one infers
that the optimal value provided in Theorem 3 still holds true when considering Neumann
boundary conditions.

converges vaguely to the uniform measure \QI dH"~! and we have

Notice that it is also possible to generalize our results to the case of Robin boundary condi-
tions. One then get analogous versions of the main theorems 4 and 2 in such cases.

Generalization of Theorem 2. We think plausible that the result stated in Theorem
2 holds in fact true for all domains connected bounded domain  convex or with a Cl!
boundary, except the disk. In some aspects, such an issue appears close to the famous
problems in shape optimization entitled ”Schiffer conjecture” or ” Pompeiu’s problem” (see,

e.g., [23]).

Investigating such an issue needs another approach and tools as the ones developed within
this article.

Optimal boundary control domain for the wave equation. Investigating the optimal
domain for boundary observability is related to the issue of investigating the optimal domain
for boundary control. Indeed, introduce the boundary control problem

Opw(t,x) — Aw(t,z) =0 V(t,z) € [0,T] x Q,
w(t,z) =0 V(t,z) € (0Q\T) x [0,T7, 43
w(t. z) = u(t, z) W(t.z) € T x [0,7], (43)

w(0,x) = 07(3:), Ow(0,z) = wl(z), VzeQ,

where the control u belongs to L2([0 T] x I, C). The Cauchy problem (43) is well posed for
every initial data (w® w!) € HE(Q,C) x LQ(Q C) and every control u € L?([0,7] x T, C).
By duality, one has that System (43) is controllable in time T if and only if the observation
problem (38)-(39) is observable in time T (see [18]).

Moreover, if Problem (43) is exactly controllable, then applying the so-called Hilbert Unique-
ness Method (HUM, see [29, 28]), an optimal control is given by

ur(t, z) = xr(2)y(t, z)
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where y denotes the solution of (38) with initial conditions (y°,y') minimizing the func-
tional®!

1 (T 1oy’
Fittat) =g [ [ () a6
2 0 T 8V 70
over H}(Q,C) x L%(, C). Let us define the so-called HUM operator

Ar: HYQ,C)x L2(,C) — L*([0,T] x ,C)

(w?, wh) = ur '

(14)
It is relevant to look for an optimal control domain minimizing the norm operator of Ar over
all possible domains I" C 0.

As pointed out in [14], a randomization modeling approach is still relevant in that case.
Nevertheless, the resulting randomized control problem is much more intricate than Problem
(PEP) and its analysis is widely open.

Appendix - Proofs of Propositions 4, 5 and 6

In what follows, we will assume that M = 1 for the sake of readability. The general result will
be easily inferred by an immediate adaptation of the reasonings.

A Proof of Proposition 4

This proof is inspired by [40, Proposition 1 & Theorem 1]. For this reason, we only provide a short
sketch of proof, underlining the main steps.

Let us first solve the convexified optimal design problem (P..). According to the expression of
Jso(a) given by (32), letting n and k going to +oo yields

max Jo(a) < 2 max min (/ a(z,y)dy, 2L7(a + B) —/ a(x,y)dy) ,  (45)
1 USg

a€lr v 71'20‘/6 a€Ur m $,USs
by using that [, a(z,y) dH" ' = 2Lw(a + ) and as a consequence

2 . 2L(a + B)
max Jo(a) < —— max min{t,2Lw(a+B) -t} = ——=
a€ly, v ( ) 772046 te[0,Lm(a+p)] { ( 5) } 71'&5

Observe moreover that both components of the minimum above are equal at the optimum. To
compute the optimal value for the convexified problem, we will use Theorem 3. Let us investigate
the existence of Rellich-admissible functions. A simple computation shows that every Rellich-
admissible function, whenever it exists, is necessarily constant on each side of €2, namely on X,
Y9, X3 and X4. Moreover, for a given zp in Q and when = runs over 912, the quantity (z — xq, V)
is successively equal to the distance of xy to each side of 2. Therefore, it is enough to investigate
the case where o = (0,0) to determine the set of parameters L, « and S for which there exists

21Here, the notation (-,-) ;1 H} stands for the standard duality bracket in H~! and (,-) 2 for the usual inner

product in L2.
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Rellich-admissible functions. In other words, this question comes to determine L, a and 8 such
that the function a* defined by

a+p
a*|21U23 = Li and CL*|22U24 = L

2p

a+p
200’

belongs to ﬂLvl.
It follows that there exists a Rellich-admissible function if, and only if |L| < LS (defined in the
statement of Prop. 4). Moreover, in this case, one has

max Jo(a) = 2@ FH)

. 46
a€Ur M Taf ( )

Let us now investigate the converse case. Assume without loss of generality that 8 < a and

Le (;—fﬁ, 1], the case L € [—1, —;—fﬁ) being treatable in a similar way. Then, one has

/ a(z,y)dy < Per(E;UX3) =207
31UX3

and / a(z,y)de = 2Lw(a+pB)— / a(z,y)dy > 40m — 2w = 20,
3oUXy ¥ UX3

meaning that J(a) < % for every a € Uy, 1, according to (45). The right-hand side in this
inequality is in fact reached by every function a equal to 1 on ¥; U X3, constant on each side ¥4
and Y3, where each constant is chosen in such a way that a belongs to HLJ. Notice that such a
choice is not unique, and easy computations yield that maximizers are given by

Lo+ 8) — Lla+ B) —
azux; = ]-7 Az, = UM and an, = (2 — u)w
@ «@
with € (1= (7din=s =1) L+ (rrityes — 1)
The rest of the proof is a direct adaptation of the results of [10, Theorem 1] and in particular
of the fact that , y
sup / sin (@) de = -2, (47)
wC(—an/2,ar/2)Jw « 2
|w|=Vo

Finally, the necessary and sufficient condition on L guaranteeing the existence of solutions for
the initial optimal design problem follows by using the same Fourier series method as in the proof
of [40, Theorem 1].

B Proof of Proposition 5

The proof of this proposition is inspired by [19, Theorem 3.2] and [10, Theorem 1]. First, notice
that for every a in Uy, as, one has

2m

Jo(a) < lim a(f) cos(nh)?dh = L

n—-4oo 0

and that Jo(L) = Lm, yielding that the optimal value for Problem (P..) is L. Moreover, the
constant function equal to L belongs to Uy, ar since M > 1 and a € Uy, ps reaches 7L if, and only
if 27 2w
inf / a(f) cos(nf)*Rdf = inf / a(0) sin(nf)*Rdf = wL

0 0

n>=1 n>1
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or similarly

2
Vn € IN¥, / a(#) cos(2nd)dd = 0. (48)
0

Considering the Fourier expansion a(f) = L + Z;—:o‘f(aj cos(j8) + 5, sin(j0)), the equality (48)
holds if, and only if ag; =0, Vj > 1.

The no-gap property between the optimal values for Problem (") and its convexified version
(Ps) is a consequence of Theorem 4.

Let us now investigate the no-gap property. Assume that a = 2xp — 1 solves (PEOI’) and

consider a, : 0 — w7 its even part. First, a. is still a solution of (P ) and a.(f) =

L+ Z;;DT a; cos(j0). Setting now a(f) = M, one has

+oo )
a(0) =L+ ) %(1 + (=1)7) cos(56).

Since a solves (P~ ), we have ag; = 0, for all j > 1. Thus, a is necessarily constant equal to
L. Finally since a € Uy p, hence the range of a. is contained in {—1,0,1}, and finally & in
{-1,-1/2,0,1/2,1}. This yields that Problem (7-") has no solution if L ¢ {—1,-1/2,0,1/2,1}.

Conversely, if L € {—1,—1/2,0,1/2,1}, a direct adaptation of the construction of solutions
done in the proof of [10, Theorem 1] or [19, Lemma 3.1] yields the expected conclusion.

C Proof of Proposition 6
Denote by 1, 3o and X3 the subsets of 0 defined by

212890{92—91}, 22:890{9:91} and 23:890{7":]%}.

2
Fixing n € IN* and letting %k tend to +oo shows that the sequence ()\1,c (a“g’;"“) ) (n,k)EN*2

does not converge to a constant on 9€). Therefore, Q2 does not satisfy the (QUEB) property.

We do not know if Q satisfies the (WQEB) property. Anyway, we bypass this difficulty by
showing a weaker version of this property. This is the purpose of the next two lemmas.

The results stated in the two next lemmas are inspired by [13, Proposition 4].

Lemma 4. For s € (0,1), let us denote by F the function [s,1] 5 x — fm We have

s uzﬂ/:ijsfsz'
1 L a(u)x (s, (u)
su inf : du=1
aeg se(0,1) Fis(1) /0 w2vu? — s2

where V = {a € L>([0,1]) |f0 =1}.

Proof. Define the function K : Uy v 2 a = infeeo1) (1) f 2 Z)\XS ”fu) du. Note that K(a =
1) = 1 by definition of F; and that the infimum in the definition of K is reached for every s € (0,1).
As an infimum of linear functions, the function K is concave. Therefore, to prove the lemma, it
is enough to show that the directional derivative of K at @ = 1 in every admissible direction h
satisfies the first-order necessary optimality conditions, namely that dK(a = 1).h < 0 for every

function h defined on [0, 1] such that fo uw)du = 0.
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According to Danskin’s theorem??, we have

1 h(u)x s, (w)
dK(a=1).h = inf = du.
( ) s€(0,1) Fs(l) / u2vu? — 52
By contradiction assume that there exists a function h such that

1
h
1 / (u)X(s,1) () du> 0,
F.(1) Jo wva? =2

for every s € (0,1). One has

1
0</ / duds—/ / dsdu——/hmdxzo,
s=0 Ju= SUV’LL2—82 u=0 Js= OU\/UQ_S2 0 ( )

leading to a contradiction. The conclusion follows. O

7 n—1
Lemma 5. For every a € Uy, v, one has Joo(a) < LHT(@Q)_

_ 2
Proof. Let a € Uy, . We will show the existence of a subsequence of (faﬂ if}zz (é)?f ) d’H”1>

(n,k)eIN*2

n—1
converging to ﬁ [oq alz) dH 1 = L?{Tl(aﬂ)-

2 2
Since ﬁ (‘9922,16) = R%m sin (%(9 + 91)) on X3, the sequence <f23 ;ixz (asg:,;k) d’Hn—1>

converges to ﬁ f23 a(z) dH™ !, according to the Riemann-Lebesgue Lemma.
To conclude the proof, it is enough to prove the existence of a positive number « such that, by
keeping the ratio n/k constant equal to «, there holds

2
lim a(z) (&'D”k) dH" 1 < = a(x)dH™ .

n=+o0 Js s, Ak \ OV 01R? Js,us,

nelN*

2
Setting p = 35~ and introducing ®y, j, : 0,1] > uws 5 n’ 22 (i“};;fg) , one has

1 (Opni(r) 2 1 r
An7k ((3’/ = Gil(l)n’k (E) on El U 22.

Hence, we have to prove that for every p € L>°([—1,1],[—1,1]), there exists o > 0 such that for n
and k chosen as previously,

1 1
im [ p(w)® () du < / (1) du. (49)
n—-4o0o 0 0
According to [31, p. 257], one has fo (u) du = %. Then, taking the weak limit of the

sequence of measures ®,, r(u) du with a ﬁxed ratio n/k, and making this ratio vary, we obtain the
family of probability measures

1 X(s,1) (u>
Fy(1) u2y/u? — 52
22There is however a small difficulty here in applying Danskin’s Theorem, due to the fact that the set [0,1) is

not compact. This difficulty is easily overcome by applying the slightly more general version [6, Theorem D2] of
Danskin’s Theorem, noting that for a = 1 every s € (0, 1) realizes the infimum in the definition of K.

du

fs(u) du =
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parametrized by s € (0, 1).
To prove (49), let us argue by contradiction, by assuming that for every s € (0, 1), one has

1 Y p(w)x(s,1) (w) 1
R ), v e [ e

We obtain a contradiction by using Lemma 4 and the expected conclusion follows. O

In the next lemma, one computes the critical value L¢ introduced in Theorem 3.

Lemma 6. Denote by LS the critical value for the constraint parameter L, as introduced in The-

b ¢ _ 01(1+tanb,)
orem 3. One has LS, = 501) tan by -

Proof. Following the proof of Theorem 3, the critical value L¢ is given by (17). Therefore, the issue
comes to determine the quantity ¢ := min, .o maXxgecp0{x — xo, Vs). For the sake of simplicity, the
notations we will use are summed-up on Figure 10. Writing in polar coordinates xzg = (rg, fp), the
quantity (z — xg, V) is equal to rosin(6; + 6p) on X4, rosin(f; — 0y) on Xy and R — rq cos(bp — 6)
on X3, where we denoted x = (R, 6) in polar coordinates on Y.

Yo

To Ed

X1

Figure 10: Notations

As a consequence, one computes using symmetry arguments

o6 = 05}32}2 max {R* To COS(GO +91),R7 To COS(90 - 91),7’0 sin(91 — 90),7’0 sin(@l +90)}
Oo€[—61,01]
= min max{R —rgcosfy,rgsinf;},
0<ro<R
and the maximum is reached provided that R — rgcosf#y = rgsin#;. It follows that § = %,
leading to the expected conclusion. O

In the following lemma, we compute the optimal value of Problem (P.).

Lemma 7. Let L¢ = 208000 - pye pope

- (1+01)tan 01"
max Joo(a) = (L+[|2‘)Hn—1(aﬂ) if |L| < Lna
aclly AL IO0 p g <L),
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Proof. According to Lemma 5, one has Joo(a) < %1'(80) and according to Lemma 6, the right-

hand side in this inequality is reached by every Rellich-admissible function if |L| < L¢.

Assume now that L > L¢ (the case L < —L¢ being exactly similar). Let us introduce a., as the
solution of the optimal design problem (P..) in the case where L = L;,. One verifies that a. = 1
on X1 UXs and a. = R —rgcos(f) on X3. Let a € Uy, p and let us decompose a as a = a. + h, so
that [*) a(R,0)Rd) = LH"(0Q) — 2R, [*, h(R,O)RdO+ [y, 5 h = (L~ L)H"1(99) and
h <0 on X U Xs.

Let us apply (2) with L = LS. One gets
01 nmw

260,

R 2
R2n27r2 / J7rn/201 (ka %) ﬂ
0

2
0+0 ) Rd6.
22 0% Jo T 20, Gk P2 1 (6+61)

= LEH"1(09) — /
—0,

ao(R, 0)sin (

Using this identity, we claim that J(a) = inf(,, p)en+2 jn,kx(a), where

. 2 01 . nm 2
jn_’k-(a) = RTel \/70 Q(R, 0) S (291(0 + 01)) RdO

’I’L27T2 /R JT{'”L/29 (zn ki)2 dr
+—-—= (1+h(7‘,91)+h(7’,—91))—1 TR —
27217/1@0‘13 0 |J;n/291(zn,k)‘2 r?

N

2 o . nm ? cam—1

—0

(L LHHO) 1 /"1 nw
= 20 720, _elh(R,ﬁ)cos 0 (0+61)) Rd6.

As a consequence and according to the Riemann-Lebesgue lemma, one has

(L + LEYH™1(09) 1 /‘91 nm
< _ -
Jol(a) < 2] 720, Slelll% " h(R,0) cos 0 (0+6,)) RdO
(L + Lg)H"(09)
h 219

Note that the right-hand side in the last inequality is reached by the function a* equal to 1 on
%1 U Xy and constant on X3, where the constant is chosen so that [, a*dH"~! = LH"1(6Q).
We have then proved the expected result. O

It remains now to prove the no-gap result between the optimal values for Problem (P"") and
its convexified version (P ) in the case where L > LS. Since every solution for the convexified
problem (P.) is equal to 1 on X1 U Xy, it is enough to exhibit a sequence (., )men of elements in
Uy, such that a,, =1 on ¥; U, and

lim  inf / am(B,0)sin (PO 00N R — Lyn1(00) - 2n.
m—+00 (n,k)eN*2 J_g, 26,

One refers to the proof of [10, Theorem 1] where the construction of such a sequence is explained.
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