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Comments on the mean flow averaged model
G. Bardan,a) Y. P. Razi, and A. Mojtabi
Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS-INP/UPS, UFR MIG,
Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France

(Received 15 December 2003; accepted 8 September 2004; published online 4 November 2004)

The dynamic behavior of convective motion in a confined porous medium saturated by a pure fluid
under the action of mechanical vibration is studied. A redefinition of vibrational Rayleigh number
is proposed from which we distinguish the domain of validity of the mean flow. The weakly
nonlinear stability analysis performed demonstrates, contrary to published results, that the
bifurcation is of supercritical nature and the subcritical branch does not exist. It is emphasized that,
in order to find the thermal behavior of the system for the onset of convection, we should separate
the vibrational effect from the thermal effect involving the temperature difference. ©2004
American Institute of Physics.[DOI: 10.1063/1.1810771]

I. INTRODUCTION

It is found theoretically and experimentally(Hirata et
al.,1 Shu et al.,2 Charrieret al.,3 Gershuni and Lyubimov,4

Rogers and Schatz5 and Zavarykinet al.6) that interaction of
mechanical vibrations with nonhomogeneity in the density
field gives rise to a new driving force which may set up the
mean flow. We are interested in the influence of vertical me-
chanical vibration, which is characterized byb sin v̂tk, on
the onset of convection in a rectangular porous cavity of
heightH and lengthL saturated by a pure fluid. Our prelimi-
nary research showed that, under vertical vibration parallel to
the temperature gradient, the stabilizing effect would be ob-
tained(quite similar to the effect found out by Gershuni and
Lyubimov4 for a pure fluid medium). This was embodied in
an increase of the critical temperature differenceDT. It
should be noted that the problem depends on two nondimen-
sional parameters, namely, the filtration thermal Rayleigh
numbersRa=gbuKHDT/nad and vibrational Rayleigh num-
ber Rav=Ra2R2A/2sA2v̂2+1d. K is the permeability,n the
viscosity, a the thermal diffusivity, R=bv̂2/g, and A
=DaM /e Pr of the order 10−6 in classical porous media.
Da=K /H2 is the Darcy number,M the volumetric specific
heat ratio, ande the porosity.

To perform an experiment under earth-surface conditions
(Bardan,7 Bardan and Mojtabi8), we should split the vibra-
tional Rayleigh number into two parts: one part which de-
pends on the temperature difference and the other part which
depends on vibrational parameters. The separation of vibra-
tional and thermal parameters in the averaged approach was
proposed in the monographs of Gershuni and Zhukovitski.9

Historically, the independent use of the vibrational Rayleigh
number was proposed in the context of experiments under
weightlessness. However, the improper use of vibrational
Rayleigh number in the case of simultaneous driving mecha-
nisms gives erroneous results, which is the subject of this
paper.

In our previous analysis(Bardan and Mojtabi10), we kept

the vibrational Rayleigh number fixed and searched for the
critical values of Rayleigh number. Unfortunately, the analy-
sis suffers from two major shortcomings, which are as fol-
lows.

(1) In an experiment, we cannot fix the vibrational Ray-
leigh number and change the thermal Rayleigh number in
order to find the effect of vibration on the onset of convec-
tion; both Ra and Rav depend onDT.

(2) The confined porous cavity heated from below, un-
dergoing the mechanical vibration, constitutes a dynamic
system in which the resulting convective motion may have a
harmonic or subharmonic response. So, our formulation
should show that it is valid only under high-frequency and
small amplitude vibration; which indeed is characterized by
a harmonic response.

This is why we replace Rav by PvRa2 from which the
limit of the mechanical parameter is found, beyond which
the harmonic response ceases to exist.

We underline that, by using the modified vibrational pa-
rameterPv (which does not depend onDT), the results of the
stability analysis(linear and weakly nonlinear) changes dras-
tically. Only underPv formulation, may we find the validity
domain of the mean flow model and its limitations; it is not
a question of parameter definition.

II. MEAN FLOW EQUATIONS

The equations of the mean motion given by Bardan and
Mojtabi10 are rewritten by setting Rav=PvRa2. Pv
=R2A/2sA2v̂2+1d is a vibrational parameter that does not
depend onDT,

= ·U = 0, s1d

A
]U

]t
+ U = − = P + RaTk + PvRa2WT · = sTkd, s2d

]T

]t
+ sU · = dT = =2T, s3da)Author to whom correspondence should be addressed. Electronic mail:
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= ∧ Tk = = ∧ WT , s4d

= ·WT = 0. s5d

The boundary conditions are in accordance with the
physical statement of the problems(12)–(15)and (6),

WT ·n = 0 s6d

on ]V (n is the outside normal vector).

III. LINEAR STABILITY

The linear stability analysis shows that the conductive
state becomes unstable at the critical Rayleigh number value
Rac given by

Rac = S i2 + j2AL
2

2i2Pv
DS1 −Î1 − 4p2Pv

i2 + j2AL
2

AL
2 D , s7d

whereAL=L /H is the aspect ratio. The number of cells of the
emerging convective flow is linked with the valuesi and j ,
i.e., i is the number of cells along thex axis andj along the
z axis. We may conclude from this equation that there is a
limit value Pvl

for the vibrational parameter:

Pvl
=

1

4p2FS i

AL
D2

+ j2G . s8d

Dealing with the first primary bifurcation points, the
minimum value of the critical Rayleigh number is obtained
for j =1.

The critical Rayleigh number does not exist when
Pv. Pvl

. Figures 1 and 2 show howPvl
depends onAL andi.

In the limit case of an infinite layer, we haveAL< i
→` and a finite value ofPvl

still exists. This limit will also
concern the case studied in Gershuniet al.11

A scale analysis is given below to demonstrate that the
limit in Pv comes from the validity domain of the time-
averaged formulation.

IV. SCALE ANALYSIS

Noting v=v̂H2/a, the governing equations for a Bouss-
inesq fluid in a saturated porous medium under vertical vi-
bration may be written as

= ·u = 0, s9d

A
]u

]t
+ u = − = p + Rauk + RRau sinsvtdk , s10d

]u

]t
+ su · = du = =2u s11d

with the boundary conditions

u ·n = 0 on]V, s12d

u = 1 for z= 0, ∀ x, s13d

u = 0 for z= 1, ∀ x, s14d

]u

]x
= 0 for x = 0 andAL, ∀ z. s15d

In the limiting case of high frequency and small ampli-
tude of vibration with respect to some references, we may
adopt the time-averaged formulation. In this section, these
references are defined and complete the explanation given in
Gershuni and Lyubimov.4 If the fields are decomposed into
two parts, one with slow evolution with time and the other
with fast evolution with time, for a given functionf, the
temporal average over a periodt of vibration is defined as
F=et−t/2

t+t/2fssdds and we may write

FIG. 1. Critical Rayleigh number Rac of the first primary bifurcation point is
the aspect ratioAL. In the Rav formulation, Rac→` when Rav→`, Bardan
and Mojtabi(Ref. 10). In thePv formulation, there exists a limit valuePvl
which cannot be exceeded.

FIG. 2. Critical Rayleigh numbers corresponding to the synchronous modes
i =5, i =4, i =3, i =2, andi =1 plotted vsPv for Al =5. Inset: Enlargement for
PvP f0,0.002g.
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u = Ustd + u8svtd, u = Tstd + u8svtd, p = Pstd + p8svtd.

s16d

By substituting(16) in the system(9)–(11) and using the
fact that the average of oscillating fields over a period is
zero, we find two coupled systems of equations, one govern-
ing the rapid time evolution and the other governing the slow
time evolution(averaged system). The closure for the aver-
aged system comes from a relation between these two sys-
tems. In order to resolve the closure issue, the oscillating
momentum equation is considered:

A
]u8

]t
+ u8 = − = p8 + Rau8k − RRaT sinsvtdk

− RRau8 sinsvtdk + RRau8 sinsvtdk .

s17d

If we considerT@u8 and T<1, under high frequency
one can write: unsteady term<buoyancy term(containing
T), which in nondimensional form implies that

Osu8d <
RRa

Av
. s18d

Moreover, the order of unsteady term is bigger than the
order of viscous term, which results in

OsAvd @ 1. s19d

The oscillating energy equation gives the oscillating
temperature scale:

]u8

]t
+ U · = u8 + u8 · = u8 + u8 · = T − u8 · = u8 = =2u8.

s20d

Unsteady term and convective term(containingT) are of
the same order:

Osu8d <
RRa

Av2 . s21d

In addition, the order of unsteady term is bigger than the
order of diffusion term:

Osvd @ 1. s22d

Reconsidering the first assumptionT@u8 and replacing
the corresponding scales, we may write

OsRd ! OSAv2

Ra
D ! 1. s23d

It follows that there existsPvl
<OsA3v4/Ra2d. The

physical interpretation ofPvl
is related to the harmonic and

subharmonic response of the system. ForPv. Pvl
, there is

only subharmonic response.
Figure 3 represents the harmonic or subharmonic do-

main. Beyond the stars the time-averaged formulation is
valid.

V. NONLINEAR ANALYSIS

The amplitude equation(24) is established in thePv for-
mulation following the same method as in Bardan and
Mojtabi,10

a
]K

]ts2d = bKsm + cK2d s24d

with m=sRa−Racd /«2 the bifurcation parameter,

a =
p2si2 + j2AL

2d2fAL
2 + pAsi2 + j2AL

2dg
4i2AL

3 , s25d

b = −
p2si2 + j2AL

2df2p2si2 + j2AL
2d2 − i2AL

2Racg
4i2AL

3Rac

, s26d

c =
p6si2 + j2AL

2d4f2p2si2 + j2AL
2d2 − i2AL

2Racg
32i4AL

7 . s27d

Whenc.0 (respectively,c,0), the bifurcation is super-
critical and stable(respectively, subcritical and unstable) as
−bm /a,0 (respectively, −bm /a.0). Whatever the mode
considered and whatever the aspect ratio,c, which has a
positive value forPv=0, remains positive asPv, Pvl

. In the
Pv formulation, the existence ofPvl

does not allow the bifur-
cation to become subcritical and unstable.

VI. CONCLUSION

The most important findings under the limiting case of
high-frequency and small amplitude of vibration are summa-
rized as follows.

(1) In order to interpret the results of the onset of con-
vection correctly, we must separate the vibrational parameter
from the thermal parameter involvingDT.

FIG. 3. For a chosen pairsAL-Pvd, the figure indicates the numberi of cells
on the emerging branch of the synchronous solution. For a fixedAL value,
the crossover values ofPv between the synchronous and subharmonic solu-
tions are given by the stars. For allPv under the stars, the first primary
bifurcation gives rise to synchronous solutions.
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(2) The stability diagramsRac−Pvd reveals that for each
mode, there exists a limiting value ofPv which provides the
maximum limit for achieving the stabilizing effect in the
harmonic mode.

(3) The weakly nonlinear stability analysis shows that
bifurcations remain supercritical in the domain of validity of
the mean flow formulation.

We can say that, under gravity conditions, some pub-
lished results in the Rav formulation could lead to erroneous
conclusions as the results deal with harmonic solutions
which cease to exist. By using thePv formulation, the exis-
tence of a harmonic solution is guaranteed.
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