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Abstract

Adaptive regularized framework using cubics has emerged as an alternative to line-search
and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity
amongst second-order methods. In this paper, we propose and analyze the use of an iter-
ation dependent scaled norm in the adaptive regularized framework using cubics. Within
such scaled norm, the obtained method behaves as a line-search algorithm along the quasi-
Newton direction with a special backtracking strategy. Under appropriate assumptions, the
new algorithm enjoys the same convergence and complexity properties as adaptive regular-
ized algorithm using cubics. The complexity for finding an approximate first-order stationary
point can be improved to be optimal whenever a second order version of the proposed algo-
rithm is regarded. In a similar way, using the same scaled norm to define the trust-region
neighborhood, we show that the trust-region algorithm behaves as a line-search algorithm.
The good potential of the obtained algorithms is shown on a set of large scale optimization
problems.

Keywords: Nonlinear optimization, unconstrained optimization, line-search methods,
adaptive regularized framework using cubics, trust-region methods, worst-case complexity.

1 Introduction

An unconstrained nonlinear optimization problem considers the minimization of a scalar function
known as the objective function. Classical iterative methods for solving the previous problem
are trust-region (TR) [8, 20], line-search (LS) [10] and algorithms using cubic regularization.
The latter class of algorithms has been first investigated by Griewank [15] and then by Nesterov
and Polyak [18]. Recently, Cartis et al [5] proposed a generalization to an adaptive regularized
framework using cubics (ARC).

The worst-case evaluation complexity of finding an ǫ-approximate first-order critical point
using TR or LS methods is shown to be computed in at most O(ǫ−2) objective function or
gradient evaluations, where ǫ ∈]0, 1[ is a user-defined accuracy threshold on the gradient norm
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[17, 14, 7]. Under appropriate assumptions, ARC takes at most O(ǫ−3/2) objective function or
gradient evaluations to reduce the gradient of the objective function norm below ǫ, and thus it is
improving substantially the worst-case complexity over the classical TR/LS methods [4]. Such
complexity bound can be improved using higher order regularized models, we refer the reader
for instance to the references [2, 6].

More recently, a non-standard TR method [9] is proposed with the same worst-case com-
plexity bound as ARC. It is proved also that the same worst-case complexity O(ǫ−3/2) can be
achieved by mean of a specific variable-norm in a TR method [16] or using quadratic regular-
ization [3]. All previous approaches use a cubic sufficient descent condition instead of the more
usual predicted-reduction based descent. Generally, they need to solve more than one linear
system in sequence at each outer iteration (by outer iteration, we mean the sequence of the
iterates generated by the algorithm), this makes the computational cost per iteration expensive.

In [1], it has been shown how to use the so-called energy norm in the ARC/TR framework
when a symmetric positive definite (SPD) approximation of the objective function Hessian is
available. Within the energy norm, ARC/TR methods behave as LS algorithms along the
Newton direction, with a special backtracking strategy and an acceptability condition in the
spirit of ARC/TR methods. As far as the model of the objective function is convex, in [1] the
proposed LS algorithm derived from ARC enjoys the same convergence and complexity analysis
properties as ARC, in particular the first-order complexity bound of O(ǫ−3/2). In the complexity
analysis of ARC method [4], it is required that the Hessian approximation has to approximate
accurately enough the true Hessian [4, Assumption AM.4], obtaining such convex approximation
may be out of reach when handling nonconvex optimization. This paper generalizes the proposed
methodology in [1] to handle nonconvex models. We propose to use, in the regularization term of
the ARC cubic model, an iteration dependent scaled norm. In this case, ARC behaves as an LS
algorithm with a worst-case evaluation complexity of finding an ǫ-approximate first-order critical
point of O(ǫ−2) function or gradient evaluations. Moreover, under appropriate assumptions, a
second order version of the obtained LS algorithm is shown to have a worst-case complexity of
O(ǫ−3/2).

The use of a scaled norm was first introduced in [8, Section 7.7.1] for TR methods where it
was suggested to use the absolute-value of the Hessian matrix in the scaled norm, such choice
was described as “the ideal trust region” that reflects the proper scaling of the underlying
problem. For a large scale indefinite Hessian matrix, computing its absolute-value is certainly
a computationally expensive task as it requires a spectral decomposition. This means that for
large scale optimization problems the use of the absolute-value based norm can be seen as out
of reach. Our approach in this paper is different as it allows the use of subspace methods.

In fact, as far as the quasi-Newton direction is not orthogonal with the gradient of the
objective function at the current iterate, the specific choice of the scaled norm renders the ARC
subproblem solution collinear with the quasi-Newton direction. Using subspace methods, we
also consider the large-scale setting when the matrix factorizations are not affordable, implying
that only iterative methods for computing a trial step can be used. Compared to the classical
ARC, when using the Euclidean norm, the dominant computational cost regardless the function
evaluation cost of the resulting algorithm is mainly the cost of solving a linear system for
successful iterations. Moreover, the cost of the subproblem solution for unsuccessful iterations
is getting inexpensive and requires only an update of a scalar. Hence, ARC behaves as an
LS algorithm along the quasi-Newton direction, with a special backtracking strategy and an
acceptance criteria in the sprite of ARC algorithm.

2



In this context, the obtained LS algorithm is globally convergent and requires a number of
iterations of order ǫ−2 to produce an ǫ-approximate first-order critical point. A second order
version of the algorithm is also proposed, by making use of the exact Hessian or at least of a
good approximation of the exact Hessian, to ensure an optimal worst-case complexity bound
of order ǫ−3/2. In this case, we investigate how the complexity bound depends on the quality
of the chosen quasi-Newton direction in terms of being a sufficient descent direction. In fact,
the obtained complexity bound can be worse than it seems to be whenever the quasi-Newton
direction is approximately orthogonal with the gradient of the objective function. Similarly to
ARC, we show that the TR method behaves also as an LS algorithm using the same scaled norm
as in ARC. Numerical illustrations over a test set of large scale optimization problems are given
in order to assess the efficiency of the obtained LS algorithms.

The proposed analysis in this paper assumes that the quasi-Newton direction is not orthog-
onal with the gradient of the objective function during the minimization process. When such
assumption is violated, one can either modify the Hessian approximation using regularization
techniques or, when a second order version of the LS algorithm is regarded, switch to the classi-
cal ARC algorithm using the Euclidean norm until this assumption holds. In the latter scenario,
we propose to check first if there exists an approximate quasi-Newton direction, among all the
iterates generated using a subspace method, which is not orthogonal with the gradient and that
satisfies the desired properties. If not, one minimizes the model using the Euclidean norm until
a new successful outer iteration is found.

We organize this paper as follows. In Section 2, we introduce the ARC method using a
general scaled norm and derive the obtained LS algorithm on the base of ARC when a specific
scaled norm is used. Section 3 analyses the minimization of the cubic model and discusses the
choice of the scaled norm that simplifies solving the ARC subproblem. Section 4 discusses first
how the iteration dependent can be chosen uniformly equivalent to the Euclidean norm, and
then we propose a second order LS algorithm that enjoys the optimal complexity bound. The
section ends with a detailed complexity analysis of the obtained algorithm. Similarly to ARC
and using the same scaled norm, an LS algorithm in the spirit of TR algorithm is proposed in
Section 5. Numerical tests are illustrated and discussed in Section 6. Conclusions and future
improvements are given in Section 7.

2 ARC Framework Using a Specific Mk-Norm

2.1 ARC Framework

We consider a problem of unconstrained minimization of the form

min
x∈Rn

f(x), (1)

where the objective function f : Rn → R is assumed to be continuously differentiable. The ARC
framework [5] can be described as follows: at a given iterate xk, we define mQ

k : Rn → R as an
approximate second-order Taylor approximation of the objective function f around xk, i.e.,

mQ
k (s) = f(xk) + s⊤gk +

1

2
s⊤Bks, (2)

where gk = ∇f(xk) is the gradient of f at the current iterate xk, and Bk is a symmetric local
approximation (uniformly bounded from above) of the Hessian of f at xk. The trial step sk
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approximates the global minimizer of the cubic model mk(s) = mQ
k (s) +

1
3σk‖s‖3Mk

, i.e.,

sk ≈ arg min
s∈Rn

mk(s), (3)

where ‖.‖Mk
denotes an iteration dependent scaled norm of the form ‖x‖Mk

=
√

x⊤Mkx for all
x ∈ R

n and Mk is a given SPD matrix. σk > 0 is a dynamic positive parameter that might be
regarded as the reciprocal of the TR radius in TR algorithms (see [5]). The parameter σk is
taking into account the agreement between the objective function f and the model mk.

To decide whether the trial step is acceptable or not a ratio between the actual reduction
and the predicted reduction is computed, as follows:

ρk =
f(xk)− f(xk + sk)

f(xk)−mQ
k (sk)

. (4)

For a given scalar 0 < η < 1, the kth outer iteration will be said successful if ρk ≥ η, and
unsuccessful otherwise. For all successful iterations we set xk+1 = xk+sk; otherwise the current
iterate is kept unchanged xk+1 = xk. We note that, unlike the original ARC [5, 4] where the
cubic model is used to evaluate the denominator in (4), in the nowadays works related to ARC,
only the quadratic approximation mQ

k (sk) is used in the comparison with the actual value of
f without the regularization parameter (see [2] for instance). Algorithm 1 gives a detailed
description of ARC.

Algorithm 1: ARC algorithm.

Data: select an initial point x0 and the constant 0 < η < 1. Set the initial
regularization σ0 > 0 and σmin ∈]0, σ0], set also the constants 0 < ν1 ≤ 1 < ν2.

for k = 1, 2, . . . do
Compute the step sk as an approximate solution of (3) such that

mk(sk) ≤ mk(s
c
k) (5)

where sck = −δckgk and δck = argmin
t>0

mk(−tgk) ;
if ρk ≥ η then

Set xk+1 = xk + sk and σk+1 = max{ν1σk, σmin};
else

Set xk+1 = xk and σk+1 = ν2σk;
end

end

The Cauchy step sck, defined in Algorithm 1, is computationally inexpensive compared to
the computational cost of the global minimizer of mk. The condition (5) on sk is sufficient for
ensuring global convergence of ARC to first-order critical points.

From now on, we will assume that first-order stationarity is not reached yet, meaning that
the gradient of the objective function is non null at the current iteration k (i.e., gk 6= 0). Also,
‖ · ‖ will denote the vector or matrix ℓ2-norm, sgn(α) the sign of a real α, and In the identity
matrix of size n.
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2.2 An LS Algorithm Inspired by the ARC Framework

Using a specific Mk-norm in the definition of the cubic model mk, we will show that ARC
framework (Algorithm 1) behaves as an LS algorithm along the quasi-Newton direction. In
a previous work [1], when the matrix Bk is assumed to be positive definite, we showed that
the minimizer sk of the cubic model defined in (3) is getting collinear with the quasi-Newton
direction when the matrix Mk is set to be equal to Bk. In this section we generalize our proposed
approach to cover the case where the linear system Bks = −gk admits an approximate solution
and Bk is not necessarily SPD.

Let sQk be an approximate solution of the linear system Bks = −gk and assume that such

step sQk is not orthogonal with the gradient of the objective function at xk, i.e., there exists

an ǫd > 0 such that |g⊤k s
Q
k | ≥ ǫd‖gk‖‖sQk ‖. Suppose that there exists an SPD matrix Mk such

that Mks
Q
k =

βk‖s
Q
k ‖2

g⊤k sQk
gk where βk ∈]βmin, βmax[ and βmax > βmin > 0, in Theorem 4.1 we will

show that such matrix Mk exists. By using the associated Mk-norm in the definition of the
cubic model mk, one can show (see Theorem 3.3) that an approximate stationary point of the
subproblem (3) is of the form

sk = δks
Q
k , where δk =

2

1− sgn(g⊤k s
Q
k )

√

1 + 4
σk‖s

Q
k ‖3Mk

|g⊤k sQk |

. (6)

For unsuccessful iterations in Algorithm 1, since the step direction sQk does not change, the
approximate solution of the subproblem, given by (6), can be obtained only by updating the
step-size δk. This means that the subproblem computational cost of unsuccessful iterations
is getting straightforward compared to solving the subproblem as required by ARC when the
Euclidean norm is used (see e.g., [5]). As a consequence, the use of the proposed Mk-norm in
Algorithm 1 will lead to a new formulation of ARC algorithm where the dominant computational
cost, regardless the objective function evaluation cost, is the cost of solving a linear system for
successful iterations. In other words, with the proposed Mk-norm, the ARC algorithm behaves
as an LS method with a specific backtracking strategy and an acceptance criteria in the sprite
of ARC algorithm, i.e., the step is of the form sk = δks

Q
k where the step length δk > 0 is chosen

such as

ρk =
f(xk)− f(xk + sk)

f(xk)−mQ
k (sk)

≥ η and mk(sk) ≤ mk(−δckgk). (7)

The step lengths δk and δck are computed respectively as follows:

δk =
2

1− sgn(g⊤k s
Q
k )

√

1 + 4
σkβ

3/2
k ‖sQk ‖3

|g⊤k sQk |

, (8)

and

δck =
2

g⊤k Bkgk
‖gk‖2

+

√

(

g⊤k Bkgk
‖gk‖2

)2
+ 4σkχ

3/2
k ‖gk‖

(9)
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where χk = βk

(

5
2 − 3

2 cos(̟k)
2 + 2

(

1−cos(̟k)
2

cos(̟k)

)2
)

and cos(̟k) =
g⊤k sQk

‖gk‖‖s
Q
k ‖

. The Mk-norms of

the vectors sQk and gk in the computation of δk and δck have been substituted using the expressions
given in Theorem 4.1. The value of σk is set equal to the current value of the regularization
parameter as in the original ARC algorithm. For large values of δk the decrease condition (7)
may not be satisfied. In this case, the value of σk is enlarged using an expansion factor ν2 > 1.
Iteratively, the value of δk is updated and the acceptance condition (7) is checked again, until
its satisfaction.

We referred the ARC algorithm, when the proposed scaled Mk-norm is used, by LS-ARC as
it behaves as an LS type method in this case. Algorithm 2 details the final algorithm. We recall
again that this algorithm is nothing but ARC algorithm using a specific Mk-norm.

Algorithm 2: LS-ARC algorithm.

Data: select an initial point x0 and the constants 0 < η < 1, 0 < ǫd < 1,
0 < ν1 ≤ 1 < ν2 and 0 < βmin < βmax. Set σ0 > 0 and σmin ∈]0, σ0].

for k = 1, 2, . . . do
Choose a parameter βk ∈]βmin, βmax[;

Let sQk be an approximate solution of Bks = −gk such as |g⊤k s
Q
k | ≥ ǫd‖gk‖‖sQk ‖ ;

Set δk and δck respectively using (8) and (9);
while condition (7) is not satisfied do

Set σk ← ν2σk and update δk and δck respectively using (8) and (9);
end

Set sk = δks
Q
k , xk+1 = xk + sk and σk+1 = max{ν1σk, σmin};

end

Note that in Algorithm 2 the step sQk may not exist or be approximately orthogonal with the
gradient gk. A possible way to overcome this issue can be ensured by modifying the matrix Bk

using regularization techniques. In fact, as far as the Hessian approximation is still uniformly
bounded from above, the global convergence will still hold as well as a complexity bound of
order ǫ−2 to drive the norm of the gradient below ǫ ∈]0, 1[ (see [5] for instance).

The complexity bound can be improved to be of the order of ǫ−3/2 if a second order version
of the algorithm LS-ARC is used, by making Bk equals to the exact Hessian or at least being
a good approximation of the exact Hessian (as in Assumption 4.2 of Section 4). In this case,
modify the matrix Bk using regularization techniques such that the step sQk approximates the

linear system Bks = −gk and |g⊤k s
Q
k | ≥ ǫd‖gk‖‖sQk ‖ is not trivial anymore. This second order

version of the algorithm LS-ARC will be discussed in details in Section 4 where convergence and
complexity analysis, when the proposed Mk-norm is used, will be outlined.

3 On the Cubic Model Minimization

In this section, we assume that the linear system Bks = −gk has a solution. We will mostly
focus on the solution of the subproblem (3) for a given outer iteration k. In particular, we
will explicit the condition to impose on the matrix Mk in order to get the solution of the ARC
subproblem collinear with the step sQk . Hence, in such case, one can get the solution of the ARC
subproblem at a modest computational cost.
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The step sQk can be obtained exactly using a direct method if the matrix Bk is not too
large. Typically, one can use the LDLT factorization to solve this linear system. For large
scale optimization problems, computing sQk can be prohibitively computationally expensive. We

will show that it will be possible to relax this requirement by letting the step sQk be only an
approximation of the exact solution using subspace methods.

In fact, when an approximate solution is used and as far as the global convergence of Al-
gorithm 1 is concerned, all what is needed is that the solution of the subproblem (3) yields a
decrease in the cubic model which is as good as the Cauchy decrease (as emphasized in condition
(5)). In practice, a version of Algorithm 2 solely based on the Cauchy step would suffer from
the same drawbacks as the steepest descent algorithm on ill-conditioned problems and faster
convergence can be expected if the matrix Bk influences also the minimization direction. The
main idea consists of achieving a further decrease on the cubic model, better than the Cauchy
decrease, by projection onto a sequence of embedded Krylov subspaces. We now show how to
use a similar idea to compute a solution of the subproblem that is computationally cheap and
yields the global convergence of Algorithm 2.

A classical way to approximate the exact solution sQk is by using subspace methods, typically
a Krylov subspace method. For that, let Lk be a subspace of Rn and l its dimension. Let Qk

denotes an n × l matrix whose columns form a basis of Lk. Thus for all s ∈ Lk, we have
sk = Qkzk, for some zk ∈ R

l. In this case, sQk denotes the exact stationary point of the model
function mQ over the subspace Lk when it exists.

For both cases, exact and inexact, we will assume that the step sQk is not orthogonal with

the gradient gk. In what comes next, we state our assumption on sQk formally as follows:

Assumption 3.1 The model mQ
k admits a stationary point sQk such as |g⊤k s

Q
k | ≥ ǫd‖gk‖‖sQk ‖

where ǫd > 0 is a pre-defined positive constant.

We define also a Newton-like step sNk associated with the minimization of the cubic model

mk over the subspace Lk on the following way, when sQk corresponds to the exact solution of
Bks = −gk by

sNk = δNk s
Q
k , where δNk = arg min

δ∈Ik
mk(δs

Q
k ), (10)

where Ik = R+ if g⊤k s
Q
k < 0 and Ik = R− otherwise. If sQk is computed using an iterative

subspace method, then sNk = Qkz
N
k , where zNk is the Newton-like step , as in (10), associated to

the following reduced subproblem:

min
z∈Rl

f(xk) + z⊤Q⊤
k gk +

1

2
z⊤Q⊤

k BkQkz +
1

3
σk‖z‖3Q⊤

k MkQk
. (11)

Theorem 3.1 Let Assumption 3.1 hold. The Newton-like step sNk is of the form

sNk = δNk s
Q
k , where δNk =

2

1− sgn(g⊤k s
Q
k )

√

1 + 4
σk‖s

Q
k ‖3Mk

|g⊤k sQk |

. (12)
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Proof. Consider first the case where the step sQk is computed exactly (i.e., Bks
Q
k = −gk). In

this case, for all δ ∈ Ik, one has

mk(δs
Q
k )−mk(0) = δg⊤k s

Q
k +

δ2

2
[sQk ]

⊤Bk[s
Q
k ] +

σ|δ|3
3
‖sQk ‖3Mk

= (g⊤k s
Q
k )δ − (g⊤k s

Q
k )

δ2

2
+ (σk‖sQk ‖3Mk

)
|δ|3
3

. (13)

If g⊤k s
Q
k < 0 (hence, Ik = R+), we compute the value of the parameter δNk at which the

unique minimizer of the above function is attained. Taking the derivative of (13) with respect
to δ and equating the result to zero, one gets

0 = g⊤k s
Q
k − (g⊤k s

Q
k )δ

N
k + σk‖sQk ‖3Mk

(

δNk
)2

, (14)

and thus, since δNk > 0,

δNk =
g⊤k s

Q
k +

√

(

g⊤k s
Q
k

)2
− 4σk(g

⊤
k s

Q
k )‖s

Q
k ‖3Mk

2σk‖sQk ‖3Mk

=
2

1 +

√

1− 4
σk‖s

Q
k ‖3Mk

g⊤k sQk

.

If g⊤k s
Q
k > 0 (hence, Ik = R−),and again by taking the derivative of (13) with respect to δ

and equating the result to zero, one gets

0 = g⊤k s
Q
k − (g⊤k s

Q
k )δ

N
k − σk‖sQk ‖3Mk

(

δNk
)2

, (15)

and thus, since δNk < 0 in this case,

δNk =
g⊤k s

Q
k +

√

(

g⊤k s
Q
k

)2
+ 4σk(g

⊤
k s

Q
k )‖s

Q
k ‖3Mk

2σk‖sQk ‖3Mk

=
2

1−
√

1 + 4
σk‖s

Q
k ‖3Mk

g⊤k sQk

.

From both cases, one deduces that δNk = 2

1−sgn(g⊤k sQk )

√

√

√

√1+4
σk‖s

Q
k

‖3
Mk

|g⊤
k

s
Q
k

|

.

Consider now the case where sQk is computed using an iterative subspace method. In this
cas, one has sNk = Qkz

N
k , where z

N
k is the Newton-like step associated to the reduced subproblem

(11). Hence by applying the first part of the proof (the exact case) to the reduced subproblem
(11), it follows that

zNk = δ̄Nk z
Q
k where δ̄Nk =

2

1− sgn((Q⊤
k gk)

⊤zQk )

√

1 + 4
σk‖z

Q
k ‖3

Q⊤
k

MkQk

|(Q⊤
k gk)⊤zQk |

,

where zQk is a stationary point of the quadratic part of the minimized model in (11). Thus, by

8



substituting zNk in the formula sNk = Qkz
N
k , one gets

sNk = Qk













2

1− sgn((Q⊤
k gk)

⊤zQk )

√

1 + 4
σk‖z

Q
k ‖3

Q⊤
k

MkQk

|Q⊤
k gk)⊤zQk |

zQk













=
2

1− sgn(g⊤k Qkz
Q
k )

√

1 + 4
σk‖Qkz

Q
k ‖3Mk

|g⊤k Qkz
Q
k |

Qkz
Q
k

=
2

1− sgn(g⊤k s
Q
k )

√

1 + 4
σk‖s

Q
k ‖3Mk

|g⊤k sQk |

sQk .

In general, for ARC algorithm, the matrix Mk can be any arbitrary SPD matrix. Our goal,
in this section, is to determine how one can choose the matrix Mk so that the Newton-like step
sNk becomes a stationary point of the subproblem (3). The following theorem gives explicitly the
necessary and sufficient condition on the matrix Mk to reach this aim.

Theorem 3.2 Let Assumption 3.1 hold. The step sNk is a stationary point for the subproblem

(3) if and only if there exists θk > 0 such that Mks
Q
k = θk

g⊤k sQk
gk. Note that θk = ‖sQk ‖2Mk

.

Proof. Indeed, in the exact case, if we suppose that the step sNk is a stationary point of the
subproblem (3), this means that

∇mk(s
N
k ) = gk +Bks

N
k + σk‖sNk ‖Mk

Mks
N
k = 0, (16)

In another hand, sNk = δNk s
Q
k where δNk is solution of g⊤k s

Q
k − (g⊤k s

Q
k )δ

N
k + σk‖sQk ‖3Mk

|δNk |δNk = 0
(such equation can be deduced from (14) and (15)). Hence, we obtain that

0 = ∇mk(s
N
k ) = gk − δNk gk + σk|δNk |δNk ‖sQk ‖Mk

Mks
Q
k

=
(

1− δNk
)

gk +

(

σk‖sQk ‖3Mk

g⊤k s
Q
k

|δNk |δNk

)(

g⊤k s
Q
k

‖sQ‖2Mk

Mks
Q
k

)

=

(

σk‖sQk ‖3Mk

g⊤k s
Q
k

|δNk |δNk

)(

gk −
g⊤k s

Q
k

‖sQk ‖2Mk

Mks
Q
k

)

.

Equivalently, we conclude that Mks
Q
k = θk

g⊤k sQk
gk where θk = ‖sQk ‖2Mk

> 0. A similar proof applies

when a subspace method is used to compute sQk .

The key condition to ensure that the ARC subproblem stationary point is equal to the
Newton-like step sNk , is the choice of the matrix Mk which satisfies the following secant-like

equation Mks
Q
k = θk

g⊤k sQk
gk for a given θk > 0. The existence of such matrix Mk is not problematic

as far as Assumption 3.1 holds. In fact, Theorem 4.1 will explicit a range of θk > 0 for which
the matrix Mk exists. Note that in the formula of sNk , such matrix is used only through the

9



computation of the Mk-norm of sQk . Therefore an explicit formula of the matrix Mk is not

needed, and only the value of θk = ‖sQk ‖2Mk
suffices for the computations.

When the matrix Mk satisfies the desired properties (as in Theorem 3.2), one is ensured that
sNk is a stationary point for the model mk. However, ARC algorithm imposes on the approximate
step to satisfy the Cauchy decrease given by (5), and such condition is not guaranteed by sNk as
the model mk may be non-convex. In the next theorem, we show that for a sufficiently large
σk, s

N
k is getting the global minimizer of mk and thus satisfying the Cauchy decrease is not an

issue anymore.

Theorem 3.3 Let Assumption 3.1 hold. Let Mk be an SPD matrix which satisfies Mks
Q
k =

θk
g⊤k sQk

gk for a fixed θk > 0. If the matrix Q⊤
k (Bk + σk‖sNk ‖Mk

Mk)Qk is positive definite, then the

step sNk is the unique minimizer of the subproblem (3) over the subspace Lk.

Proof. Indeed, when sQ is computed exactly (i.e., Qk = In and Lk = R
n), then using [8,

Theorem 3.1] one has that, for a given vector s∗k, it is a global minimizer of mk if and only if it
satisfies

(Bk + λ∗
kMk)s

∗
k = −gk

where Bk + λ∗
kMk is positive semi-definite matrix and λ∗

k = σk‖s∗k‖Mk
. Moreover, if Bk + λ∗

kMk

is positive definite, s∗k is unique.

Since Mks
Q
k = θk

g⊤k sQk
gk, by applying Theorem 3.2, we see that

(Bk + λN
k Mk)s

N
k = −gk

with λN
k = σk‖sNk ‖Mk

. Thus, if we assume that Bk + λN
k Mk is positive definite matrix, then sNk

is the unique global minimizer of the subproblem (3).
Consider now, the case where sQk is computed using a subspace method, sinceMks

Q
k = θk

g⊤k sQk
gk

one has that Q⊤
k MkQkz

Q
k = θk

(Q⊤
k gk)⊤zQk

Q⊤
k gk. Hence, if we suppose that the matrix Q⊤

k (Bk +

λN
k Mk)Qk is positive definite, by applying the same proof of the exact case to the reduced

subproblem (11), we see that the step zNk is the unique global minimizer of the subproblem (11).
We conclude that sNk = Qkz

N
k is the global minimizer of the subproblem (3) over the subspace

Lk.
Theorem 3.3 states that the step sNk is the global minimizer of the cubic model mk over

the subspace Lk as far as the matrix Q⊤
k (Bk + σk‖sNk ‖Mk

Mk)Qk is positive definite, where
λN
k = σk‖sNk ‖Mk

. Note that

λN
k = σk‖sNk ‖Mk

=
2σk‖sQk ‖Mk

∣

∣

∣

∣

∣

1− sgn(g⊤k s
Q
k )

√

1 + 4
σk‖s

Q
k ‖3Mk

|g⊤k sQk |

∣

∣

∣

∣

∣

→ +∞ as σk →∞.

Thus, since Mk is an SPD matrix and the regularization parameter σk is increased for unsuc-
cessful iterations in Algorithm 1, the positive definiteness of matrix Q⊤

k (Bk+σk‖sNk ‖Mk
Mk)Qk is

guaranteed after finitely many unsuccessful iterations. In other words, one would have insurance
that sNk will satisfy the Cauchy decrease after a certain number of unsuccessful iterations.

10



4 Complexity Analysis of the LS-ARC Algorithm

For the well definiteness of the algorithm LS-ARC, one needs first to show that the proposedMk-
norm is uniformly equivalent to the Euclidean norm. The next theorem gives a range of choices
for the parameter θk to ensure the existence of an SPD matrix Mk such as Mks

Q
k = θk

g⊤k sQk
gk and

the Mk-norm is uniformly equivalent to the ℓ2-norm.

Theorem 4.1 Let Assumption 3.1 hold. If

θk = βk‖sQk ‖2 where βk ∈]βmin, βmax[ and βmax > βmin > 0, (17)

then there exists an SPD matrix Mk such as

i) Mks
Q
k = θk

g⊤k sQk
gk,

ii) the Mk-norm is uniformly equivalent to the ℓ2-norm on R
n and for all x ∈ R

n, one has

√
βmin√
2
‖x‖ ≤ ‖x‖Mk

≤
√
2βmax

ǫd
‖x‖. (18)

iii) Moreover, one has ‖sQk ‖2Mk
= βk‖sQk ‖2 and ‖gk‖2Mk

= χk‖gk‖2 where χk = βk

(

5
2 − 3

2 cos(̟k)
2 + 2

(

1−cos(̟k)
2

cos(̟k)

)2
)

and cos(̟k) =
g⊤k sQk

‖gk‖‖s
Q
k ‖

Proof. Let s̄Qk =
sQk

‖sQk ‖
and ḡk be an orthonormal vector to s̄Qk (i.e., ‖ḡk‖ = 1 and ḡ⊤k s̄

Q
k = 0)

such that

gk
‖gk‖

= cos(̟k)s̄
Q
k + sin(̟k)ḡk. (19)

For a given θk = βk‖sQk ‖2 where βk ∈]βmin, βmax[ and βmax > βmin > 0, one would like to

construct an SPD matrix Mk such as Mks
Q
k = θkgk

g⊤k sQk
, hence

Mks̄
Q
k =

θkgk

g⊤k s
Q
k ‖s

Q
k ‖

=
θk‖gk‖

g⊤k s
Q
k ‖s

Q
k ‖

(

cos(̟k)s̄
Q
k + sin(̟k)ḡk

)

= βks̄
Q
k + βk tan(̟k)ḡk.

Using the symmetric structure of the matrix Mk, let γk be a positive parameter such as

Mk =
[

s̄Qk , ḡk

]

Nk

[

s̄Qk , ḡk

]⊤
where Nk =

[

βk βk tan(̟k)
βk tan(̟k) γk

]

.

The eigenvalues λmin
k and λmax

k of the matrix Nk are the roots of

λ2 − (βk + γk)λ+ βkγk − (βk tan(̟k))
2 = 0,

11



hence

λmin
k =

(βk + γk)−
√
ϑk

2
and λmax

k =
(βk + γk) +

√
ϑk

2
,

where ϑk = (βk − γk)
2+4 (βk tan(̟k))

2 . Note that both eigenvalues are monotonically increas-
ing as functions of γk.

One may choose λmin
k to be equal to 1

2βk = 1
2

θk
‖sQk ‖2

, therefore λmin
k > 1

2βmin is uniformly

bounded away from zero. In this case, from the expression of λmin
k , we deduce that γk =

2βk tan(̟k)
2 + βk/2 and

λmax
k =

3

4
βk + βk tan(̟k)

2 +

√

1

16
β2
k +

1

2
β2
k tan(̟k)2 + β2

k tan(̟k)4

= βk

(

3

4
+ tan(̟k)

2 +

√

1

16
+

1

2
tan(̟k)2 + tan(̟k)4

)

= βk
(

1 + 2 tan(̟k)
2
)

.

From Assumption 3.1, i.e., |g⊤k s
Q
k | ≥ ǫd‖gk‖‖sQk ‖ where ǫd > 0, one has tan(̟k)

2 ≤ 1−ǫ2d
ǫ2d

. Hence,

λmax
k ≤ βmax

(

1 + 2
1− ǫ2d
ǫ2d

)

≤ 2βmax

ǫ2d

A possible choice for the matrix Mk can be obtained by completing the vectors family {s̄Qk , ḡk}
to an orthonormal basis {s̄Qk , ḡk, q3, q4, . . . , qn} of Rn as follows:

Mk = [s̄Qk , ḡk, q3, . . . , qn]

[

Nk 0
0 D

]

[s̄Qk , ḡk, q3, . . . , qn]
⊤,

where D = diag(d3, . . . , dn) ∈ R
(n−2)×(n−2) with positive diagonal entrees independent from k

. One concludes that for all θk = βk‖sQk ‖2 where βk ∈]βmin, βmax[ and βmax > βmin > 0, the
eigenvalue of the constructed Mk are uniformly bounded away from zero and from above, hence
the scaled Mk-norm is uniformly equivalent to the ℓ2-norm on R

n and for all x ∈ R
n, one has

√
βmin√
2
‖x‖ ≤

√

λmin
k ‖x‖ ≤ ‖x‖Mk

≤
√

λmax
k ‖x‖ ≤

√
2βmax

ǫd
‖x‖.

By multiplying Mks
Q
k = θk

g⊤k sQk
gk from both sides by sQk , one gets

‖sQk ‖2Mk
= θk = βk‖sQk ‖2.

Moreover, using (19) and (20), one has

‖gk‖2Mk
= ‖gk‖2

(

cos(̟k)s̄
Q
k + sin(̟k)ḡk

)⊤ (

cos(̟k)Mks̄
Q
k + sin(̟k)Mkḡk

)

= ‖gk‖2
(

θk cos(̟k)
2

‖sQk ‖2
+ γk sin(̟k)

2 + 2 sin(̟k) cos(̟k)
θk tan(̟k)

2

‖sQk ‖2

)

= βk‖gk‖2
(

cos(̟k)
2 +

5

2
sin(̟k)

2 + 2 sin(̟k)
2 tan(̟k)

2

)

= βk‖gk‖2
(

5

2
− 3

2
cos(̟k)

2 + 2

(

1− cos(̟k)
2

cos(̟k)

)2
)

.
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A direct consequence of Theorem 4.1 is that, by choosing θk > 0 of the form βk‖sQk ‖2 where
βk ∈]βmin, βmax[ and βmax > βmin > 0 during the application of LS-ARC algorithm, the global
convergence and complexity bounds of LS-ARC algorithm can be derived straightforwardly
from the classical ARC analysis [4]. In fact, as far as the objective function f is continuously
differentiable, its gradient is Lipschitz continuous, and its approximated Hessian Bk is bounded
for all iterations (see [4, Assumptions AF1, AF4, and AM1]), the LS-ARC algorithm is globally
convergent and will required at most a number of iterations of order ǫ−2 to produce a point xǫ
with ‖∇f(xǫ)‖ ≤ ǫ [4, Corollary 3.4].

In what comes next, we assume the following on the objective function f :

Assumption 4.1 Assume that f is twice continuously differentiable with Lipschitz continuous
Hessian, i.e., there exists a constant L ≥ 0 such that for all x, y ∈ R

n one has

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖.

When the matrix Bk is set to be equal to the exact Hessian of the problem and under Assumption
4.1, one can improve the function-evaluation complexity to be O(ǫ−3/2) for ARC algorithm
by imposing, in addition to the Cauchy decrease, another termination condition during the
computation of the trial step sk (see [4, 2]). Such condition is of the form

‖∇mk(sk)‖ ≤ ζ‖sk‖2, (20)

where ζ > 0 is a given constant chosen at the start of the algorithm.
When only an approximation of the Hessian is available during the application Algorithm 1,

an additional condition has to be imposed on the Hessian approximation Bk in order to ensure
an optimal complexity of order ǫ−3/2. Such condition is often considered as (see [4, Assumption
AM.4]):

Assumption 4.2 The matrix Bk approximate the Hessian ∇2f(xk) in the sense that

‖(∇2f(xk)−Bk)sk‖ ≤ C‖sk‖2 (21)

for all k ≥ 0 and for some constant C > 0.

Similarly, for LS-ARC algorithm, the complexity bound can be improved to be of the order
of ǫ−3/2 if one includes the two following requirements (a) the sk satisfies the criterion condi-
tion (20) and (b) the Hessian approximation matrix Bk has to satisfy Assumption 4.2. When
our proposed Mk-norm is used, the termination condition (20) imposed on the cubic model mk

can be expressed only in terms of sQk and ∇mQ
k . The latter condition will be required in the

LS-ARC algorithm at each iteration to ensure that it takes at most O(ǫ−3/2) iterations to reduce
the gradient norm below ǫ. Such result is given in the following proposition

Proposition 4.1 Let Assumption 3.1 hold. Let θk = βk‖sQk ‖2 where βk ∈]βmin, βmax[ and
βmax > βmin > 0. Then imposing the condition (20) in Algorithm 2 is equivalent to the following
condition

‖∇mQ
k (s

Q
k )‖ ≤

2 sgn(g⊤k s
Q
k )ζ

−1 + sgn(g⊤k s
Q
k )

√

1 + 4
σkθ

3/2
k

|g⊤k sQk |

‖sQk ‖2. (22)

13



Proof. Since Assumption 3.1 holds and θk = βk‖sQk ‖2 as in (17), Theorem 4.1 implies the

existence of an SPDmatrixMk such thatMks
Q
k = θk

g⊤k sQk
gk. Using suchMk-norm, an approximate

solution of the cubic model mk is of the form sk = δks
Q
k where δk is solution of g⊤k s

Q
k −(g⊤k s

Q
k )δk+

σk‖sQk ‖3Mk
|δk|δk = 0. Hence,

∇mk(sk) = gk +Bksk + σk‖sk‖Mk
Mksk

= gk + δkBks
Q
k + σk|δk|δk‖sQk ‖Mk

Mks
Q
k .

Since Mks
Q
k = θk

g⊤k sQk
gk with θk = ‖sQk ‖2Mk

, one has

∇mk(sk) = gk + δkBks
Q
k +

σk|δk|δk‖sQk ‖3Mk

g⊤k s
Q
k

gk

=

(

1 +
σk|δk|δk‖sQk ‖3Mk

g⊤k s
Q
k

)

gk + δkBks
Q
k .

From the fact that g⊤k s
Q
k − (g⊤k s

Q
k )δk + σk‖sQk ‖3Mk

|δk|δk = 0, one deduces

∇mk(sk) = δk

(

gk +Bks
Q
k

)

= δk∇mQ
k (s

Q
k ).

Hence, the condition (20) is being equivalent to

‖∇mQ
k (s

Q
k )‖ ≤

ζ

δk
‖sk‖2 = ζ|δk|‖sQk ‖2.

We note that the use of an exact solver to compute sQk implies that the condition (22) will
be automatically satisfied for a such iteration. Moreover, when a subspace method is used to
approximate the step sQk , we note the important freedom to add an additional preconditioner
to the problem. In this case, one would solve the quadratic problem with preconditioning until
the criterion (22) is met. This is expected to happen early along the Krylov iterations when the
preconditioner for the linear system Bks = −gk is good enough.

Algorithm 3 summarized a second-order variant of LS-ARC, referred here as LS-ARC(s),

which is guaranteed to have an improved iteration worst-case complexity of order ǫ−3/2 (see
Theorem 4.2).

The Hessian approximation Bk (as required by Assumption 4.2) involves sk, hence finding
a new matrix Bk so that the new sQk satisfies Assumption 3.1 using regularization techniques is
not trivial as sk is unknown at this stage. A possible way to satisfy Assumption 4.2 without
modifying Bk is by choosing sQk as the first iterate to satisfy (22) when using a subspace method

to solve the linear system Bks = −gk. Then, one checks if sQk satisfies Assumption 3.1 or

not. If sQk violates the latter assumption, one runs further iterations of the subspace method
until Assumption 3.1 will be satisfied. If the subspace method ends and Assumption 3.1 is still
violated, one would restore such assumption by minimizing the cubic model using the ℓ2-norm
until a successful outer iteration is found.

For the sake of illustration, consider the minimization of the objective function f(x, y) =
x2−y2 for all (x, y) ∈ R

2, starting from x0 = (1, 1), with σ0 = 1, and Bk being the exact Hessian

14



Algorithm 3: LS-ARC(s) Algorithm.

In each iteration k of Algorithm 2:

Let sQk be an approximate solution of Bks = −gk such as |g⊤k s
Q
k | ≥ ǫd‖gk‖‖sQk ‖ and the

termination condition

‖∇mQ
k (s

Q
k )‖ ≤

2 sgn(g⊤k s
Q
k )ζ

−1 + sgn(g⊤k s
Q
k )

√

1 + 4
σkβ

3/2
k ‖sQk ‖3

|g⊤k sQk |

‖sQk ‖2

is satisfied for a given constant ζ > 0 chosen at the beginning of the algorithm.

of the problem during the application of the algorithm. One starts by checking if sQ0 = (−1,−1)
(i.e., the exact solution of the linear system B0s = −g0) is a sufficient descent direction or
not. Since the slop g⊤0 s

Q
0 is equal to zero for this example, the algorithm has to switch to the

ℓ2-norm and thus s0 will be set as a minimizer of the cubic model with the ℓ2-norm to define the
cubic regularization term. Using a subproblem solver (in our case the GLRT solver from GALAHAD

[12], more details are given in Section 6), one finds the step s0 = (−0.4220, 2.7063) and the
point x1 = x0 + s0 is accepted (with f(x1) = −13.4027). Computing the new gradient g1 =
(1.1559,−7.4126) and the quasi-Newton direction sQ1 = (−0.5780,−3.7063), one has |g⊤1 s

Q
1 | =

20.5485 ≥ ǫd‖g1‖‖sQ1 ‖ = 0.0205 where ǫd = 10−3 (hence Assumption 3.1 holds). We perform

then our proposed LS strategy along the direction sQ1 to obtain the step s1. For this example,

except the first one, all the remaining iterations k satisfy the condition |g⊤k s
Q
k | ≥ ǫd‖gk‖‖sQk ‖.

We note that the regarded minimization problem is unbounded from below, hence f decreases
to −∞ during the application of the algorithm.

LS strategies require in general to have a sufficient descent direction for each iteration, it
seems then natural that one may need to choose ǫd to be large (close to 1) to target good
performance. However, during the application of LS-ARC(s) and to satisfy Assumption 3.1

(without modifying the matrix Bk), one may be encouraged to use an ǫd small. In what comes
next, we will give a detailed complexity analysis of the LS-ARC(s) algorithm in this case. In

particular, we will explicit how the complexity bound will depend on the choice of the constant
ǫd. The following results are obtained from [2, Lemma 2.1] and [2, Lemma 2.2]:

Lemma 4.1 Let Assumptions 4.1 and 3.1 hold and consider Algorithm 3. Then for all k ≥ 0,
one has

f(xk)−mQ
k (sk) ≥

σk
3
‖sk‖3Mk

, (23)

and

σk ≤ σmax := max

{

σ0,
3ν2L

2(1− η)

}

. (24)

The next lemma is an adaptation of [2, Lemma 2.3] when the proposed Mk-norm is used in the
ARC framework.

15



Lemma 4.2 Let Assumptions 4.1, 4.2 and 3.1 hold. Consider Algorithm 3 with θk = βk‖sQk ‖2
where βk ∈]βmin, βmax[ and βmax > βmin > 0. Then for all k ≥ 0

‖sk‖ ≥
(

‖gk+1‖
L+ C + 2

√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)
1

2

.

Proof. Indeed, using Assumptions 4.1 and 4.2 within Taylor expansion, one has

‖gk+1‖ ≤ ‖gk+1 −∇mk(sk)‖+ ‖∇mk(sk)‖
≤ ‖gk+1 − gk −Bksk − σk‖sk‖Mk

Mksk‖+ ζ‖sk‖2

≤ ‖gk+1 − gk −∇2f(xk)sk‖+ ‖(∇2f(xk)−Bk)sk‖+ σk‖Mk‖3/2‖sk‖2 + ζ‖sk‖2

≤ L‖sk‖2 + C‖sk‖2 + (σk‖Mk‖3/2 + ζ)‖sk‖2.

Using (24), one has

‖gk+1‖ ≤ (L+ C + σmax‖Mk‖3/2 + ζ)‖sk‖2.

Since Assumption 4.2 holds and θk = βk‖sQk ‖2 where βk ∈]βmin, βmax[, then using Theorem 4.1,
the matrix Mk norm is bounded from above by 2βmaxǫ

−2
d . Hence,

‖gk+1‖ ≤
(

L+ C + 2
√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)

‖sk‖2.

Theorem 4.2 Let Assumptions 4.1, 4.2 and 3.1 hold. Consider Algorithm 3 with θk = βk‖sQk ‖2
where βk ∈]βmin, βmax[ and βmax > βmin > 0. Then, given an ǫ > 0, Algorithm 3 needs at most

⌊

κs(ǫd)
f(x0)− flow

ǫ3/2

⌋

iterations to produce an iterate xǫ such that ‖∇f(xǫ)‖ ≤ ǫ where flow is a lower bound on f and
κs(ǫd) is given by

κs(ǫd) =
6
√
2
(

L+ C + 2
√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)3/2

ησminβ
3/2
min

.

Proof. Indeed, at each iteration of Algorithm 3, one has

f(xk)− f(xk + sk) ≥ η(f(xk)−mQ
k (sk))

≥ ησk
3
‖sk‖3Mk

≥ ησminβ
3/2
min

6
√
2
‖sk‖3

≥ ησminβ
3/2
min

6
√
2
(

L+ C + 2
√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)3/2
‖gk+1‖3/2

≥ ησminβ
3/2
min

6
√
2
(

L+ C + 2
√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)3/2
ǫ3/2,
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by using (7), (23), (18), (25), and the fact that ‖gk+1‖ ≥ ǫ before termination. Thus we deduce
for all iterations as long as the stopping criterion does not occur

f(x0)− f(xk+1) =

k
∑

j=0

f(xj)− f(xj+1)

≥ (k + 1)
ησmin

√
βmin

3
√
2
(

L+ C + 2
√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)3/2
ǫ3/2.

Hence, the required number of iterations to produce an iterate xǫ such that ‖∇f(xǫ)‖ ≤ ǫ is
given as follow

k + 1 ≤
6
√
2
(

L+ C + 2
√
2σmaxβ

3/2
maxǫ

−3
d + ζ

)3/2

ησminβ
3/2
min

f(x0)− flow
ǫ3/2

where flow is a lower bound on f . Thus the proof is completed. We note that κs(ǫd) can

be large for small values of ǫd. Hence, although the displayed worst-case complexity bound is of
order ǫ−3/2, the latter can be worse than it appears to be if the value of ǫd is very small (i.e., the
chosen direction is almost orthogonal with the gradient). Such result seems coherent regarding
the LS algorithm strategy where it is required to have a sufficient descent direction (i.e., an ǫd
sufficiently large).

5 TR Algorithm Using a Specific Mk-Norm

Similarly to ARC algorithm, it is possible to render TR algorithm behaves as an LS algorithm
using the same scaled norm to define the trust-region neighborhood. As a reminder in a basic
TR algorithm [8], one computes a trial step pk by approximately solving

min
p∈Rn

mQ
k (p) s. t. ‖p‖Mk

≤ ∆k, (25)

where ∆k > 0 is known as the TR radius. As in ARC algorithms, the scaled norm ‖.‖Mk
may

vary along the iterations and Mk is an SPD matrix.
Once the trial step pk is determined, the objective function is computed at xk + pk and

compared with the value predicted by the model at this point. If the model value predicts
sufficiently well the objective function (i.e., the iteration is successful), the trial point xk + pk
will be accepted and the TR radius is eventually expanded (i.e., ∆k+1 = τ2∆k with τ2 ≥ 1). If
the model turns out to predict poorly the objective function (i.e., the iteration is unsuccessful),
the trial point is rejected and the TR radius is contracted (i.e., ∆k+1 = τ1∆k with τ1 < 1). The
ratio between the actual reduction and the predicted reduction for the TR algorithms is defined
as in ARC (see (4)). For a given scalar 0 < η < 1, the iteration will be said successful if ρk ≥ η,
and unsuccessful otherwise. Algorithm 4 gives a detailed description of a basic TR algorithm.

Note that for the TR subproblem, the solution we are looking for lies either interior to the
trust region, that is ‖pk‖Mk

< ∆k, or on the boundary, ‖pk‖Mk
= ∆k. If the solution is interior,

the solution pk is the unconstrained minimizer of the quadratic model mQ
k . Such scenario can

only happen if mQ
k is convex. In the non convex case a solution lies on the boundary of the trust
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Algorithm 4: TR algorithm.

Data: select an initial point x0 and 0 < η < 1. Set the initial TR radius ∆0 > 0, the
constants 0 ≤ τ1 < 1 ≤ τ2, and ∆max > ∆0.

for k = 1, 2, . . . do
Compute the step pk as an approximate solution of (25) such that

mQ
k (pk) ≤ mk(p

c
k) (26)

where pck = −αc
kgk and αc

k = arg min
0<t≤

∆k
‖gk‖Mk

mQ
k (−tgk);

if ρk ≥ η then
Set xk+1 = xk + pk and ∆k+1 = min{τ2∆k,∆max};

else
Set xk+1 = xk and ∆k+1 = τ1∆k;

end

end

region, while in the convex case a solution may or may not do so. Consequently in practice,
the TR algorithm finds first the unconstrained minimizer of the model mQ

k . If the model is
unbounded from below, or if the unconstrained minimizer lies outside the trust region, the
minimizer then occurs on the boundary of the trust region.

In this section, we will assume that the approximated solution sQk of the linear system
Bks = −gk is computed exactly. Using similar arguments as for ARC algorithm, one can extend
the obtained results when a truncated step is used in the TR algorithm. Under Assumption 3.1,
we will call the Newton-like step associated with the TR subproblem the vector of the following
form

pNk = αN
k s

Q
k , where αN

k = arg min
α∈Rk

mQ
k (αs

Q
k ), (27)

where Rk =]0, ∆k

‖sQk ‖Mk

] if g⊤k s
Q
k < 0 and Rk = [− ∆k

‖sQk ‖Mk

, 0[ otherwise.

Similarly to ARC algorithm, one has the following results:

Theorem 5.1 Let Assumption 3.1 hold.

1. The Newton-like step (27) is of the following form:

pNk = αN
k s

Q
k , where αN

k = min

{

1,− sgn(g⊤k s
Q
k )

∆

‖sQk ‖Mk

}

. (28)

2. When it lies on the border of the trust region pNk is a stationary point of the subproblem

(25) if and only if Mks
Q
k = θ

g⊤k sQk
gk where θk = ‖sQk ‖2Mk

.

3. Let λN
k =

g⊤k sQk
θk

(

1 + sgn(g⊤k s
Q
k )

‖sQk ‖Mk
∆k

)

and assume that pNk lies on the border of the trust-

region. Then, if the matrix Bk + λN
k Mk is positive definite, the step pNk will be the unique

minimizer of the subproblem (25) over the subspace Lk.
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Proof. 1. To calculate the Newton-like step pNk , we first note, for all α ∈ Rk

mQ
k (αs

Q
k )−mQ

k (0) = αg⊤k s
Q
k +

α2

2
[sQk ]

⊤Bk[s
Q
k ]

= (g⊤k s
Q
k )α− (g⊤k s

Q
k )

α2

2
. (29)

Consider the case where the curvature model along the Newton direction is positive, that
is when g⊤k s

Q
k < 0, (i.e., Rk =]0, ∆k

‖sQk ‖Mk

]) and compute the value of the parameter α at which

the unique minimizer of (29) is attained. Let α∗
k denotes this optimal parameter. Taking the

derivative of (29) with respect to α and equating the result to zero, one has α∗
k = 1. Two

sub-cases may then occur. The first is when this minimizer lies within the trust region (i.e.,
α∗
k‖s

Q
k ‖Mk

≤ ∆k), then

αN
k = 1.

If α∗
k‖s

Q
k ‖Mk

> ∆k, then the line minimizer is outside the trust region and we have that

αN
k =

∆k

‖sQk ‖Mk

.

Finally, we consider the case where the curvature of the model along the Newton-like step is
negative, that is, when g⊤k s

Q
k > 0. In that case, the minimizer lies on the boundary of the trust

region, and thus

αN
k = − ∆k

‖sQk ‖Mk

.

By combining all cases, one concludes that

pNk = αN
k s

Q
k , where αN

k = min

{

1,− sgn(g⊤k s
Q
k )

∆k

‖sQk ‖Mk

}

.

2. Suppose that the Newton-like step lies on the border of the trust region, i.e., pNk = αN
k s

Q
k =

− sgn(g⊤k s
Q
k )

∆k

‖sQk ‖Mk

sQk . The latter step is a stationary point of the subproblem (25) if and only

if there exists a Lagrange multiplier λN
k ≥ 0 such that

(Bk + λN
k Mk)p

N
k = −gk.

Substituting pNk = αN
k s

Q
k in the latter equation, one has

λN
k Mks

Q
k =

(

1− 1

αN
k

)

gk. (30)

By multiplying it from left by (sQ)⊤, we deduce that

λN
k =

(

1− 1

αN
k

)

g⊤k s
Q
k

‖sQk ‖2Mk

=
g⊤k s

Q
k

θ

(

1 + sgn(g⊤k s
Q
k )
‖sQk ‖Mk

∆k

)

.
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By replacing the value of λN
k in (30), we obtain that Mks

Q
k = θk

g⊤k sQk
gk where θk = ‖sQk ‖2Mk

> 0.

3. Indeed, when the step pNk lies on the boundary of the trust-region and Mks
Q
k = θk

g⊤k sQk
g.

Then applying item (1) of Theorem 5.1, we see that

(Bk + λN
k Mk)p

N
k = −gk

with λN
k =

g⊤k sQk
θk

(

1 + sgn(g⊤k s
Q
k )

‖sQk ‖Mk
∆k

)

> 0. Applying [8, Theorem 7.4.1], we see that if we

assume that the matrix Bk + λN
k Mk is positive definite, then pNk is the unique minimizer of the

subproblem (25).

Given an SPD matrix Mk that satisfies the secant equation Mks
Q
k = θk

g⊤k sQk
gk, item (3) of

Theorem 5.1 states that the step pNk is the global minimizer of the associated subproblems over
the subspace Lk as far as the matrix Bk + λN

k Mk is SPD. We note that λN
k goes to infinity as

the trust region radius ∆k goes to zero, meaning that the matrix Bk +λN
k Mk will be SPD as far

as ∆k is chosen to be sufficiently small. Since the TR update mechanism allows to shrink the
value of ∆k (when the iteration is declared as unsuccessful), satisfying the targeted condition
will be geared automatically by the TR algorithm.

Again, when Assumption 3.1 holds, we note that unsuccessful iterations in the TR Algorithm
require only updating the value of the TR radius ∆k and the current step direction is kept

unchanged. For such iterations, as far as there exists a matrix Mk such as Mks
Q
k =

βk‖s
Q
k ‖2

g⊤k sQk
gk

where βk ∈]βmin, βmax[ and βmax > βmin > 0, the approximate solution of the TR subproblem
is obtained only by updating the step-size αN

k . This means that the computational cost of
unsuccessful iterations do not requires solving any extra subproblem. We note that during the
application of the algorithm, we will take θk of the form βk‖sQk ‖22, where βk ∈]βmin, βmax[ and
0 < βmin < βmax. Such choice of the parameter θk ensures that the proposed Mk-norm uniformly
equivalent to the l2 one along the iterations (see Theorem 4.1).

In this setting, TR algorithms behaves as an LS method with a specific backtracking strategy.

In fact, at the kth iteration, the step is of the form pk = αks
Q
k where sQk is the (approximate)

solution of the linear system Bks = −gk. The step length αk > 0 is chosen such as

f(xk)− f(xk + pk)

f(xk)−mQ
k (pk)

≥ η and mQ
k (pk) ≤ mQ

k (−αc
kgk). (31)

The values of αk and αc
k are computed respectively as follows:

αk = min

{

1,− sgn(g⊤k s
Q
k )

∆k

β
1/2
k ‖s

Q
k ‖

}

(32)

and

αc
k =















∆k

χ
1/2
k ‖gk‖

if g⊤k Bkgk ≤ 0 or
g⊤k Bkgk
‖gk‖

≥ ∆k

χ
1/2
k

,

g⊤k Bkgk
‖gk‖2

else.

(33)
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where χk = βk

(

5
2 − 3

2 cos(̟k)
2 + 2

(

1−cos(̟k)
2

cos(̟k)

)2
)

and cos(̟k) =
g⊤k sQk

‖gk‖‖s
Q
k ‖

. ∆k is initially

equals to the current value of the TR radius (as in the original TR algorithm). For large values
of αk the sufficient decrease condition (31) may not be satisfied, in this case, the value of ∆k

is contracted using the factor τ1. Iteratively, the value of αk is updated and the acceptance
condition (31) is checked again until its satisfaction. Algorithm 5 details the adaptation of the
classical TR algorithm when our proposed Mk-norm is used. We denote the final algorithm by
LS-TR as it behaves as an LS algorithm.

Algorithm 5: LS-TR algorithm.

Data: select an initial point x0 and the constants 0 < η < 1, 0 < ǫd ≤ 1,
0 ≤ τ1 < 1 ≤ τ2, and 0 < βmin < βmax. Set the initial TR radius ∆0 > 0 and
∆max > ∆0.

for k = 1, 2, . . . do
Choose a parameter βk ∈]βmin, βmax[;

Let sQk be an approximate stationary point of mQ
k satisfying |g⊤k s

Q
k | ≥ ǫd‖gk‖‖sQk ‖;

Set αk and αc
k using (32) and (33);

while condition (31) is not satisfied do
Set ∆k ← τ1∆k, and update αk and αc

k using (32) and (33);
end

Set pk = αks
Q
k , xk+1 = xk + pk and ∆k+1 = min{τ2∆k,∆max};

end

As far as the objective function f is continuously differentiable, its gradient is Lipschitz
continuous, and its approximated Hessian Bk is bounded for all iterations, the TR algorithm is
globally convergent and will required a number of iterations of order ǫ−2 to produce a point xǫ
with ‖∇f(xǫ)‖ ≤ ǫ [14].

We note that the satisfaction of Assumption 3.1 is not problematic. As suggested for LS-
ARC algorithm, one can modify the matrix Bk using regularization techniques (as far as the
Hessian approximation is kept uniformly bounded from above all over the iterations, the global
convergence and the complexity bounds will still hold [8]).

6 Numerical Experiments

In this section we report the results of experiments performed in order to assess the efficiency
and the robustness of the proposed algorithms (LS-ARC and LS-TR) compared with the classical
LS algorithm using the standard Armijo rule. In the latter approach, the trial step is of the
form sk = δkdk where dk = sQk if −g⊤k s

Q
k ≥ ǫd‖gk‖‖sQk ‖ (s

Q
k is being an approximate stationary

point of mQ
k ) otherwise dk = −gk, and the step length δk > 0 is chosen such as

f(xk + sk) ≤ f(xk) + ηs⊤k gk, (34)

where η ∈]0, 1[. The appropriate value of δk is estimated using a backtracking approach with
a contraction factor set to τ ∈]0, 1[ and where the step length is initially chosen to be 1. This
LS method will be called LS-ARMIJO. We implement all the the algorithms as Matlab m-files
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and for all the tested algorithms Bk is set to the true Hessian ∇2f(xk), and ǫd = 10−3 for both
LS-ARC and LS-ARMIJO. Other numerical experiments (not reported here) with different values
of ǫd (for instance ǫd = 10−1, 10−6, and 10−12) lead to almost the same results.

By way of comparison, we have also implemented the standard ARC/TR algorithms (see
Algorithms 1 and 4) using the Lanczos-based solver GLTR/GLRT implemented in GALAHAD [12].The
two subproblem solvers, GLTR/GLRT are implemented in Fortran and interfaced with Matlab
using the default parameters. For the subproblem formulation we used the ℓ2-norm (i.e., for all
iterations the matrix Mk is set to identity). We shall refer to the ARC/TR methods based on
GLRT/GLTR as GLRT-ARC/GLTR-TR.

The other parameters defining the implemented algorithms are set as follows, for GLRT-ARC
and LS-ARC

η = 0.1, ν1 = 0.5, ν2 = 2, σ0 = 1, and σmin = 10−16;

for GLTR-TR and LS-TR

η = 0.1, τ1 = 0.5, τ2 = 2, ∆0 = 1, and ∆max = 1016;

and last for LS-ARMIJO
η = 0.1, and τ = 0.5.

In all algorithms the maximum number of iterations is set to 10000 and the algorithms stop
when

‖gk‖ ≤ 10−5.

A crucial ingredient in LS-ARC and LS-TR is the management of the parameter βk. A possible
choice for βk is |g⊤k s

Q
k |/‖s

Q
k ‖2. This choice is inspired from the fact that, when the Hessian matrix

Bk is SPD, this update corresponds to use the energy norm, meaning that the matrix Mk is set
equals to Bk (see [1] for more details). However, this choice did not lead to good performance
of the algorithms LS-ARC and LS-TR. In our implementation, for the LS-ARC algorithm, we set

the value of βk as follows: βk = 10−4σ
−2/3
k if g⊤k s

Q
k < 0 and 2 otherwise. By this choice, we are

willing to allow LS-ARC, at the start of the backtracking procedure, to take approximately the
Newton step. Similarly, for the LS-TR method, we set βk = 1 and this allows LS-TR to use the
Newton step at the start of the backtracking strategy (as in LS-ARMIJO method).

All the Algorithms are evaluated on a set of unconstrained optimization problems from the
CUTEst collection [13]. The test set contains 62 large-scale (1000 ≤ n ≤ 10000) CUTest prob-
lems with their default parameters. Regarding the algorithms LS-TR, LS-ARC, and LS-ARMIJO,
we approximate the solution of the linear system Bks = −gk using the MINRES Matlab solver.
The latter method is a Krylov subspace method designed to solve symmetric linear systems [19].
We run the algorithms with the MINRES default parameters except the relative tolerance error
which is set to 10−4. We note that on the tested problems, for LS-ARC/LS-TR , Assumption
3.1 was not violated frequently. The restoration of this assumption was ensured by performing
iterations of GLRT-ARC/GLTR-TR (with the ℓ2-norm) until a new successful iteration is found.

To compare the performance of the algorithms we use performance profiles proposed by
Dolan and Moré [11] over a variety of problems. Given a set of problems P (of cardinality |P|)
and a set of solvers S, the performance profile ρs(τ) of a solver s is defined as the fraction of
problems where the performance ratio rp,s is at most τ

ρs(τ) =
1

|P| size{p ∈ P : rp,s ≤ τ}.
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The performance ratio rp,s is in turn defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s > 0 measures the performance of the solver s when solving problem p (seen here as
the function evaluation, the gradient evaluation, and the CPU time). Better performance of the
solver s, relatively to the other solvers on the set of problems, is indicated by higher values of
ρs(τ). In particular, efficiency is measured by ρs(1) (the fraction of problems for which solver s
performs the best) and robustness is measured by ρs(τ) for τ sufficiently large (the fraction of
problems solved by s). Following what is suggested in [11] for a better visualization, we will plot
the performance profiles in a log2-scale (for which τ = 1 will correspond to τ = 0).

We present the obtained performance profiles in Figure 1. Regarding the gradient evaluation
(i.e., outer iteration) performance profile, see Figure 1(a), LS approaches are the most efficient
among all the tested solvers (in more 60% of the tested problems LS methods perform the best,
while GLRT-ARC and GLTR-TR are performing better only in less than 15%). When it comes
to robustness, all the tested approaches exhibit good performance, GLRT-ARC and GLTR-TR are
slightly better.

For function evaluation performance profile given by Figure 1(b), GLRT-ARC and GLTR-TR

show a better efficiency but not as good as LS methods. In fact, in more than 50% of the tested
problems LS methods perform the best while GLRT-ARC and GLTR-TR are better only in less
than 35%. The robustness of the tested algorithms is the same as in the gradient evaluation
performance profile.

In terms of the demanded computing time, see Figure 1(c), as one can expect, GLRT-ARC and
GLTR-TR are turned to be very consuming compared to the LS approaches. In fact, unlike the
LS methods where only an approximate solution of one linear system is needed, the GLRT/GLTR
approaches may require (approximately) solving multiple linear systems in sequence.

For the LS approaches, one can see that LS-TR displays better performance compared to
LS-ARMIJO on the tested problems. The main difference between the two LS algorithms is the
strategy of choosing the search direction whenever g⊤k s

Q
k > 0. In our tested problems, the

obtained performance using LS-TR suggests that going exactly in the opposite direction −sQk ,
whenever sQk is not a descent direction, can be seen as a good strategy compared to LS-ARMIJO.

7 Conclusions

In this paper, we have proposed the use of a specific norm in ARC/TR. With this norm choice,
we have shown that the trial step of ARC/TR is getting collinear to the quasi-Newton direction.
The obtained ARC/TR algorithm behaves as LS algorithms with a specific backtracking strategy.
Under mild assumptions, the proposed scaled norm was shown to be uniformly equivalent to
the Euclidean norm. In this case, the obtained LS algorithms enjoy the same convergence and
complexity properties as ARC/TR. We have also proposed a second order version of the LS
algorithm derived from ARC with an optimal worst-case complexity bound of order ǫ−3/2. Our
numerical experiments showed encouraging performance of the proposed LS algorithms.

A number of issues need further investigation, in particular the best choice and the impact
of the parameter βk on the performance of the proposed LS approaches. Also, the analysis
of the second order version of ARC suggests that taking the Newton direction is suitable for

23



τ

0 1 2 3 4 5 6 7

ρ
s(τ

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Profile: gradient evaluation

LS-ARC
LS-TR
LS-ARMIJO
GLRT-ARC
GLTR-TR

(a) Gradient evaluation.
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(b) Function evaluation.
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Figure 1: Performance profiles for 62 large scale optimization problems (i.e., 1000 ≤ n ≤ 10000).

defining a line-search method with an optimal worst-case complexity bound of order ǫ−3/2. It
would be interesting to confirm the potential of the proposed line search strategy compared to
the classical LS approaches using extensive numerical tests.
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