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Introduction

Tungstates and molybdates have multiple properties with interesting applications in various fields. It is well known that these types of materials overcome several phase transitions, thus they attracted considerable attention. For instance the Bi 2 WO 6 compound has two phase transitions: one structural phase transition occurs at 660°C with a change in space group from P2 1 ab to B2cb, and another phase transition takes place at 960°C with the space group changing to A2/m [START_REF] Voronkova | Refinement of Bi 2 WO 6 and Bi 2 MoO 6 polymorphism[END_REF][START_REF] Maczka | Phonon properties of nanosized bismuth layered ferroelectric material-Bi 2 WO 6[END_REF][START_REF] Mcdowell | Unusual High-Temperature Structural Behaviour in Ferroelectric Bi 2 WO 6[END_REF].

Likewise, a phase transition occurs for the Bismuth molybdate Bi 2 MoO 6 compound (space group P2 1 ab ) at 640°C [START_REF] Baux | Oxide ion conductivity in Bi 2 W 1-x ME x O 6-x/2 (ME = Nb, Ta)[END_REF] or 680°C [START_REF] Voronkova | Refinement of Bi 2 WO 6 and Bi 2 MoO 6 polymorphism[END_REF], also this irreversible phase transition takes place with a space group changing to P2 1 /c. Zinc Molybdate ZnMoO 4 (ZMO) is one of the molybdate family and presents some similarities with these Aurivillius-Type compounds.

Electrical Impedance spectroscopy (EIS) was used by many researchers to explain materials behavior: Ben Mohamed et al [START_REF] Ben Mohamed | Electrical properties, phase transitions and conduction mechanisms of the [(C 2 H 5 )NH 3 ] 2 CdCl 4 compound[END_REF] used the EIS to identify the slope change in conductivity, they concluded that the two phase transitions of their compound are accompanied by a change of the conduction mechanism observed in the difference of activation energies. Bourja et al have also determined some phase transitions in the cerium and bismuth mix oxides using the impedance spectroscopy [START_REF] Bourja | Electrical Properties of a CeO 2 -Mix System Elaborated at 600°C[END_REF].

In the last years, zinc molybdate ZnMoO 4 was investigated for its luminescence properties [START_REF] Cavalcante | ZnMoO 4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties[END_REF][START_REF] Spassky | Luminescence investigation of zinc molybdate single crystals[END_REF][START_REF] Nikolaenko | Exited states of the luminescence centers in tungstate crystals[END_REF][START_REF] Ivleva | Growth and properties of ZnMoO 4 single crystals[END_REF], for applications in bolometers, scintillation detectors [START_REF] Mikhailik | Optical and luminescence studies of ZnMoO 4 using vacuum ultraviolet synchrotron radiation[END_REF][START_REF] Arnaboldi | A novel technique of particle identification with bolometric detectors[END_REF][START_REF] Gironi | Performance of ZnMoO 4 crystal as cryogenic scintillating bolometer to search for double beta decay of molybdenum[END_REF][START_REF] Nagornaya | Tungstate and Molybdate Scintillators to Search for Dark Matter and Double Beta Decay[END_REF][START_REF] Beeman | ZnMoO 4 : A promising bolometer for neutrinoless double beta decay searches[END_REF], humidity sensors [START_REF] Raj | Zinc(II) oxidezinc(II) molybdate composite humidity sensor[END_REF], photocatalysis [START_REF] Chen | The Hydrothermal Synthesis of -ZnMoO 4 for UV or Visible-Light-Responsive Photocatalytic Dedradation of Victoria Blue R[END_REF][START_REF] Lv | Metastable monoclinic ZnMoO 4 : hydrothermal synthesis, optical properties and photocatalytic performance[END_REF][19], microwave dielectric devices [START_REF] Guo | Microwave dielectric properties of (1x)ZnMoO 4 -xTiO 2 composite ceramics[END_REF] and battery electrodes [START_REF] Leyzerovich | Electrochemical intercalation of lithium in ternary metal molybdates MMoO 4 (M: Cu, Zn, Ni and Fe)[END_REF].However, this material presents different structures depending on the elaboration conditions. Traditionally two phases -ZnMoO 4 and -ZnMoO 4 , with triclinic and monoclinic structures respectively, have been synthesized by different techniques, such as hydrothermal method [START_REF] Cavalcante | A combined theoretical and experimental study of Accepted Manuscript[END_REF][START_REF] Lv | Metastable monoclinic ZnMoO 4 : hydrothermal synthesis, optical properties and photocatalytic performance[END_REF][START_REF] Jiang | Hydrothermal synthesis of -ZnMoO 4 crystals and their photocatalytic degradation of Victoria Blue R and phenol[END_REF], solid state reaction [START_REF] Sotani | Change in bulk and surface structure of mixed MoO 3 -ZnO oxide by heat treatment in air and in hydrogen[END_REF][START_REF] Kruglyashov | Ionic conductivity of compounds in the system Na 2 MoO 4 -ZnMoO 4[END_REF][START_REF] Manthiram | New A 2+ Mo 4+ O 3 oxides with defect spinel structure[END_REF][START_REF] Am | Research and Development of ZnBO_{4} (B = W, Mo) Crystal Scintillators for Dark Matter and Double Beta Decay Searching[END_REF][START_REF] Bhuvana | Studies on the catalytic oxidation of propylene on ferric molybdate, Reaction Kinetics and Catalysis Letters[END_REF][START_REF] Kurzawa | Reactivity of Zn 3 V 2 O 8 Towards ZnMoO 4 in the Solid State[END_REF], citrate complex precursors [START_REF] Ryu | Synthesis of nanocrystalline MMoO 4 (M = Ni, Zn) phosphors via a citrate complex route assisted by microwave irradiation and their photoluminescence[END_REF], co-precipitation method [START_REF] Sen | Low-temperature synthesis of nano-sized metal molybdate powders[END_REF][START_REF] Peng | A general precipitation strategy for large-scale synthesis of molybdate nanostructures[END_REF][START_REF] Shahri | Controllable synthesis of novel zinc molybdate rod-like nanostructures via simple surfactant-free precipitation route[END_REF], electrospinning calcination method [START_REF] Keereeta | Characterization of ZnMoO 4 nanofibers synthesized by electrospinning-calcination combinations[END_REF] and electrochemistry assisted ablation laser method [START_REF] Liang | ZnMoO 4 Micro-and Nanostructures Synthesized by Electrochemistry-Assisted Laser Ablation in Liquids and Their Optical Properties[END_REF].

In the case of the stabilized α phase, Goake et al. [START_REF] Zhang | Synthesis, morphology and phase transition of the zinc molybdates ZnMoO 4 •0.8H 2 O/ -ZnMoO 4[END_REF] observed a slight change in DSC analyses, they inferred a phase transition at Tc = 735 K or Θc=462°C. This phase transition corresponded to the transformation of a low temperature triclinic structure (the -phase), into a high temperature monoclinic structure (the -phase). The triclinic -phase [START_REF] Söhnel | Zum System Zn/Mo/O. I. Phasenbestand und Eigenschaften der ternären Zinkmolybdate; Struktur von Zn 3 Mo 2 O 9[END_REF][START_REF] Reichelt | Mischkristallbildung im System CuMoO 4 /ZnMoO 4[END_REF] (low temperature phase) into molecular groups MoO 6 . The β-phase was also synthesized directly via hydrothermal route as a metastable phase (obtained at room temperature) [START_REF] Lv | Metastable monoclinic ZnMoO 4 : hydrothermal synthesis, optical properties and photocatalytic performance[END_REF]. The monoclinic β phase was characterized by an indirect band gap around 2.48-2.68eV, and was evaluated as a photocatalytic material [START_REF] Sotani | Change in bulk and surface structure of mixed MoO 3 -ZnO oxide by heat treatment in air and in hydrogen[END_REF]. The triclinic -ZnMoO 4 band gap was determined by Keereeta et al.

[34] with a value of 3.3eV.

This present study reports for the first time the electrical behavior at high temperature of ZMO. The main aim of our study is to investigate the effects of the phase transition on the sintered ZMO pellets conductivity. As a first step, we synthesized the polycrystalline sample, we optimized its crystallization, then, we refined the structure using the Rietveld refinements. Finally, in a second step, electrical impedance spectroscopy was used to characterize the evolution of conductivity as a function of temperature.

II. Experimental section.

Synthesis of the material: Zinc molybdate was synthesized via a co-precipitation method using sodium molybdate (Na Then sodium molybdate solution was gradually added to the zinc nitrate solution. The resulting white precipitate was filtered and washed several times with distilled water and ethanol, and finally, the obtained powder were calcined during 3 hours at 600°C with a cooling rate of 20°C/min.

X-Ray diffraction:

The X-Ray diffraction (XRD) patterns were collected using an Empyrean

Panalytical diffractometer operating at 45 kV/35 mA, using Cu-K radiation with Ni filter, and working in continuous mode with a step size of 0,013°2θ. Data suitable for Rietveld refinements were collected over a range 5-80° 2θ.

Electrical Impedance Spectroscopy (EIS):

The electrical impedance spectroscopy is currently used to describe electrical properties in polycrystalline samples. This technique was recently applied to a phase transition [START_REF] Ben Mohamed | Electrical properties, phase transitions and conduction mechanisms of the [(C 2 H 5 )NH 3 ] 2 CdCl 4 compound[END_REF][START_REF] Bourja | Electrical Properties of a CeO 2 -Mix System Elaborated at 600°C[END_REF]. Our study was performed using an electrical impedance spectrometer (Solartron Impendance meter SI 1260) coupled to an electrical cell operating under air. All Accepted Manuscript measurements were carried out in the temperature range of 100 to 750°C. The ZMO-600 sample was a cylindrical pellet (diameter 13.02±0.1 mm, thickness 2.17 ± 0.05 mm) initially compacted under ambient conditions. The experimental density of 3.87g.cm -3 represents 90% of the theoretical density 4.3g.cm -3 . The pellet was placed between two cylindrical platinum electrodes and was pressed in a specific cell. The cell was placed in an isotherm furnace operating up to 750°C.

The electrical analyses were carried out in the frequency range ( = 2 ) 1 to 10 7 Hz, with an alternating current associated with a maximum voltage of 1 V. The sample was stabilized for 20 minutes at a fixed temperature and the recording time for the frequency range was of 20 minutes. To ensure thermal stabilization, the sample was subjected to three successive measuring cycles (one temperature rise and drop for each cycle). The final impedance data were chosen during heating mode of the third cycle, as being representative of a stabilized sample.

III. Results And Discussion

III.1. X-Ray Diffraction analyses

Figure 1 presents the XRD pattern of the sample thermally treated at 600°C, the identification of this phase was firstly obtained from the comparison with the standard JCPDS files (Joint Committee standards for Powder Diffraction) in which the standard phase ZMO was referenced, This first identification allowed attributing (h,k,l) Miller indices to Bragg peaks. All the diffraction peaks correspond to the ZnMoO 4 P-1 structure according the JCPDS file 70-5387. In order to determine the crystal structure of the as-synthesized ZMO-600 ceramic, Rietveld refinements were performed using General Structure Analysis System (GSAS) Software [START_REF] Larson | General Structure Analysis System (GSAS)[END_REF] accessed through the EXPGUI [START_REF] Toby | EXPGUI, a graphical user interface for GSAS[END_REF] graphical user interface which allows refinement of atomic coordinates, site occupancies and atomic displacement parameters, as well as profile parameters (instrument parameters, background parameters, lattice constants and peak shape). The minimization was carried out using the reliability Where N, P and C are the number of observations, parameters and constraints respectively. The results of the Rietveld refinements are presented in Table 1 where the refined lattice parameters are reported. The initial atom coordinates have been exported from the structural results of authors [START_REF] Reichelt | Mischkristallbildung im System CuMoO 4 /ZnMoO 4[END_REF] on single crystal. These coordinates have been refined: oxygen and zinc/molybdenum coordinates were refined, which led to a significant goodness of fit. Moreover, the fit parameters (R wp , R p , R exp , and χ²) are quite reliable. The main interatomic distances are given in Table 2, All these results are in full agreement with the crystal structure proposed by Reichelt et al. [START_REF] Reichelt | Mischkristallbildung im System CuMoO 4 /ZnMoO 4[END_REF], determined from X-ray diffraction on a single crystal. The Nyquist plots were interpreted and fitted using Zview software [START_REF] Johnson | Zview, impedance software, Version 2.1a[END_REF] by a classical equivalent circuit with impedance including constant phase elements [START_REF] Gouyet | Physical Fractal Structures[END_REF] and resistance in parallel. RC parallel circuits and constant phase elements Z(CPE) were tested on Nyquist experimental data. At low temperature Θ <400°C, the impedance of such parallel R/CPE is well fitted. However, in the high
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temperature range Θ >400°C, the linear contribution at low frequencies corresponds to a specific Warburg model described through a specific impedance Z W depending on the diffusion mechanism at the electrode -material interfaces (Figure 4).

The electrical analyzes were performed by separating the impedances associated with the core of the material (including grain boundaries) and those related to the electrodes (Z and Z W for bulk and Warburg impedances respectively). The corresponding conductivities were determined from the formula: σ = (e/S)/R where S is the section and e is the thickness of the pellet. The electrical impedance Z is given by 1/Z = 1/R + A(j. ) n , where n is an exponent depending on heterogeneity of material (0 n 1), and A is a constant characteristic of polarization (if n=1, A is the classical capacitance).

Table 3 reports the parameters relative to the bulk impedance analysis: the parameters R, A and n are respectively the resistance, the polarization parameter and the exponent characteristic of the CPE term (jω) n . The Warburg element [START_REF] Macdonald | Electrical Response of Materials Containing Space Charge with Discharge at the Electrodes[END_REF][START_REF] Macdonald | Double Layer Capacitance and Relaxation in Electrolytes and Solids[END_REF][START_REF] Barsoukov | Characterization of the electrical response of high resistivity ionic and dielectric solid materials by immittance spectroscopy[END_REF][START_REF] Ho | Application of A C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films[END_REF][START_REF] Mandal | Ionic conductivity enhancement in Gd 2 Zr 2 O 7 pyrochlore by Nd doping[END_REF] can be expressed in a generalized form as follows:

Accepted Manuscript Z W = R W .Tanh [(jA W ω) m ]/([(jA W ω) m )
In this expression, R W is the Warburg resistance depending on diffusion characteristics at the electrode/material interface, m is the characteristic exponent, A W = L 2 /D is related to the chemical diffusion coefficient D (m 2 s -1 ), and to the characteristic length L of reaction process (effective diffusion thickness). Table 4 reports the values of R W , A W and exponent m obtained from this model. 

Impedance vs. Frequency analysis

Figure 5 reports the variation of real and imaginary impedances as a function of frequency and temperature. The real Z' decreases with increasing temperature till a certain fixed frequency suggesting a notable reduction in the bulk resistance. The real impedance Z' attains a plateau at higher frequencies which implies a possible release of space charges meaning the absence of frequency relaxation in the ceramic [START_REF] Macdonald | Note on the parameterization of the constant-phase admittance element[END_REF][START_REF] Wieczorek | Impedance spectroscopy and phase structure of PEO NaI complexes[END_REF]. A peaking behavior can be observed for all the selected spectra, the peak maximum shifts towards higher frequencies as a function of temperature. The imaginary Z" attains a maximum at certain frequency, then it decreases with increasing temperature to a fixed value at higher frequencies with peak broadening. The full width at half maximum (FWHM) calculated from the frequency dependence is greater than 1.141 decade (for ideal Debye type relaxation), this deviation clearly indicates the presence of non-Debye type relaxation in the sample [START_REF] Ortega | Impedance spectroscopy of multiferroic PbZr x Ti 1-x O 3 CoFe 2 O 4 layered thin films[END_REF]. These results explain the presence of relaxation process and the temperature dependence of the relaxation phenomenon in the pellet sample [START_REF] Banarji Behera | Structural and impedance properties of KBa 2 V 5 O 15 ceramics[END_REF]. The relaxation process occurs due to the presence of immobile charges at low temperatures and of additional defects and vacancies at higher temperatures [START_REF] Jonscher | The 'universal' dielectric response[END_REF][START_REF] Suman | Complex impedance studies on tungsten-bronze electroceramic: Pb 2 Bi 3 LaTi 5 O 18[END_REF]. 
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Conductivity analysis

In Figure 6 representing the logarithm of conductivity σ versus 1/T, or logarithm of σ.T versus 1/T, we clearly observe a modification in the temperature range 440 to 500°C. In the linear part of the curves (at low or high temperatures), the activation energies are different. In the transition range from 440 to 500 °C, the progressive variation of conductivity can be interpreted in terms of specific "progressive jumps" characteristic of a first order transition, with coexistence of two phases (the so called α and β phases). We have evaluated the conductivity variation due to the transition, by extrapolating the two linear parts of log(σ) curves at high and low temperatures: close to the transition point, the two lines are separated by a ∆σ/σ relative variation of about 0.45 ±0.05.

This double modification can be interpreted in terms of coupling of the phase transition at Θc = 450°C with the modification of charge carriers associated with two different activation energies: the first one being due to extrinsic initial defects of the material, and the second one being due to major contribution of additional Schottky defects delivering additional mobile oxygen ions. Figure 7 shows the quasi-linear aspects of the curves log(Σ W ) and log(Σ W .T) versus 1/T, where Σ W is the conductance (1/R W ). This can be associated with a classical Arrhenius behavior, with Σ W or Σ W .T proportional to exp(-E W /RT) or exp(-E W '/RT), where E W or E W ' could be the activation barriers for diffusion, at the electrode/material interface. Except in the temperature range 400 °C to 500°C, a linear correlation is clearly observable. The activation energy can be ascribed to the transformation O x = ½ O 2 + V °° + 2.e', occurring at the interfaces material/electrode. For a better understanding of these observations, we report the activation energies for bulk and Warburg (electrodes) components in Table 5. In the case of the bulk component, the transition is observed through the change in activation energies in the two possible representations log(Σ) or log(ΣT). In the case of the Warburg component, no significant change is observed.

Accepted Manuscript

Table 5: Activation energies associated with bulk and Warburg components.

To interpret the electrical transition observed in our ZMO-600 sample: two types of models might be proposed. Generally, in the absence of any phase transition, if we assume that at least two types of charge carriers can coexist, the thermally activated conductivity can be expressed as follows:

σ σ σ σ = (K 1 /

T).exp(-E 1 /RT) + (K 2 /T).exp(-E 2 /RT)

In the case of a material undergoing a phase transition at a temperature T c , each parameter K i , E i (i=1,2) could be subjected to a modification as a function of T.

However, another more classical model could be proposed in competition with the previous one, where K -, K + are in relation with K 1 and K 2 , and where E -, E + are in relation with E 1 and E 2 :

σ σ σ σ - -- -(T<Tc) = (K -/T).exp(-E -/RT) σ σ σ σ + + +

+ (T>Tc) = (K + /T).exp(-E + /RT)
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This model was used to calculate the activation energies in Table 5. However, this simplified model cannot account for changes in the vicinity of the transition point.

It is the reason why we propose now to consider that the phase transition can have a direct consequence on the various types of charge carriers, due to initial extrinsic defects and on additional defects linked to Schottky-like defects, formed during heating the material and in equilibrium with oxygen of air.

To describe the first order transition at T c = 733 K, we postulate a modification of the (K 1 , E 1 ) and (K 2 , E 2 ) terms, occurring in a small temperature range between T c and T up . In the case of a first order transition, a two-phase domain of temperature can be generally observed. Consequently, the K 1 and K 2 terms are subjected to increasing values of ∆K 1 and ∆K 2 , while the enthalpy terms are subjected to decreasing values of -∆Ε 1 and -∆Ε 2 : these last decreasing values correspond to the structural modification allowing larger space for electron (and vacancy) mobilities, and weaker barriers for electron (and vacancy) jumps. In fact, to correctly describe the transition domain between T c and T up , it was necessary to use empirical continuous evolution of these parameters. All parameters describing the phase transition have been reported in Table 6.

Table 6: parameters of modeled conductivity

Figure 8 shows the calculated curve log( ) function of 1/T, fully similar to the experimental curve in the case of the 3 rd thermal cycle.

The functions allowing describing the transition domain: (T-T c )/(T up -T c 

K 1,2 (Tc<T<Tup) = K 1,2 + (K 1,2 ' -K 1,2 ).

IV. Conclusion

In this work, we have observed the phase transition in the ZnMoO 4 ceramics through the study of electrical properties. The bulk conductivity is characterized by a complex modification occurring enthalpies. An additional result was obtained from the evolution of Warburg components: this clearly shows the presence of ionic conduction in the material directly related to oxygen vacancies and electrode reactions. The Warburg signal is characteristic of surface reactions at the electrode.

An activation barrier has been determined for the diffusion mechanism. 
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  index parameters such as Braggs factors (R Bragg ) comparing the calculated and observed intensities (Ical and Iobs), R exp expected factors, R wp and the goodness of fit GoF. All these parameters were used as numerical criteria of the quality of the fit of calculated to experimental diffraction data, and are represented by relations:

Figure 1 :

 1 Figure 1: XRD pattern of α α α α-ZnMoO 4 obtained in room conditions, after thermal treatments at 600°C, during 3 hours.

  the Mo-O distances vary between 1.7076(1) and 1.8050(1) Å and the octahedral Zn-O distances range from 1.9957(1) to 2.1567(1) Å.

Figure 2

 2 illustrates the calculated and observed diffraction profiles of ZnMoO 4 compound.

Figure 2 :Figure 3

 23 Figure 2: Calculated and observed diffraction profiles, from XRD Rietveld refinements of α α α α-ZnMoO 4 thermally treated at 600°C.

Figure 3 :

 3 Figure 3: Nyquist representation for the α α α α-ZnMoO 4 sample, as a function of temperature 300°C Θ Θ Θ Θ 700°C.

Figure 4 :

 4 Figure 4: Fit of Nyquist data obtained at 600°C, for the α α α α-ZnMoO 4 sample, equivalent circuit (inset) with Warburg component.

Figure 5 :

 5 Figure 5: Variation of real and imaginary impedance (i.e Z' and Z'') with frequency at selected temperatures.

Figure 6 :

 6 Figure 6: Evolution of sample conductivity in two Arrhenius representations, (a) log( ) and (b) log( .T) versus 1/T (K -1 ). Activation energies determined in the linear parts of the curves.

Figure 7 :

 7 Figure 7: Evolution of Warburg conductance in two Arrhenius representations: log(Σ Σ Σ Σ) and log(Σ Σ Σ Σ.T) versus 1/T (K -1 )

Figure 8 :

 8 Figure 8: The calculated curve log( ) using the proposed model

  above the transition point (presently Tc = 723 K or Θ c = 450°C). Using a model based on two behaviors of charge carriers, coupled with the phase transition mechanism, we have simulated the conductivity as temperature increases. The hypotheses based on the existence of modification of charge carriers mobilities at the transition point allow simulating a transition domain in which the conductivity progressively varies between the observed transition temperature Θ c = 450°C, and the temperature Θ up close to 500°C, corresponding to the end of transition. Two enthalpies associated with two types of charge carriers have been introduced in the calculation: the transition affects these
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Table 3 : Electrical characteristics of ZMO-600 pellet. Bulk impedance analysis: CPE terms A (in -1 •Hz -n unit) and CPE exponents n, as a function of temperatures

 3 

	300°C Θ Θ Θ Θ 700°C.

Table 4 : Warburg parameters R W , A W and m, as a function of temperatures
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	300°C Θ Θ Θ Θ

Table 1 : Refined structural parameters for triclinic α

 1 

	α α α-ZnMoO 4 phase (space group P-1)

Uiso* is defined as one third of the trace of the orthogonalizedU ij tensor Accepted Manuscript

Table 2 : Main interatomic distances (Å) for theα

 2 

	α α α-ZnMoO 4 compound

Table 3 : Electrical characteristics of ZMO-600 pellet. Bulk impedance analysis: CPE terms A (in -1 •Hz -n unit) and CPE exponents n, as a function of temperatures 300°C

 3 

	Θ Θ Θ Θ 700°C.

Table 5 : Activation energies associated with bulk and Warburg components. Temperature range Activation energies (eV)

 5 

		Arrhenius test	log(σ)	log(σT)
	Bulk characteristic	573< T <733	1.16(7)	1.21(8)
		753< T <973	1.61(10)	1.69(10)
	Warburg component	753< T <953	1.3(0.1)	1.4(0.1)

Table 6 : parameters of modeled conductivity

 6 

	A 1	A 2	Ε Ε Ε Ε 1 (eV) Ε Ε Ε Ε 2 (eV)
	T<Tc (Triclinic) 100 10.10 6	0.93	1.65
	A 1 '	A 2 '	Ε Ε Ε Ε 1 ' (eV) Ε Ε Ε Ε 2 ' (eV)
	T>Tc (Monoclinic) 300 30.10 6	0.83	1.86
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