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Abstract

We consider the Activated Random Walk model in any dimension with any sleep rate and

jump distribution, and show that the stabilization properties depend only on the average density of

particles, regardless of how they are initially located on the lattice.

1 Introduction

The concept of self-organized criticality was introduced in the late 80’s to explain the emergence of

critical behavior in steady states without fine tuning of system parameters [2]. Intrinsic relationships

between this phenomenon and that of ordinary phase transition started to unfold in the late 90’s with a

new paradigm: the self-organized critical behavior of a driven-dissipative system is related to ordinary

criticality of a corresponding fixed-energy system that uses the same relaxation mechanism [6]. A central

issue is the density conjecture: the typical density ζs in the steady state of the driven-dissipative system

arguably coincides with the threshold density ζc of the fixed-energy system. Ten years later, the density

conjecture was shown to be false [8] if the relaxation mechanism is the Abelian Sandpile (ASM) on Z
d

for d > 2. This property is attributed to the fact that the ASM dynamics does not wipe out details of

the initial condition by the time a configuration becomes explosive [11].

Some properties of the ASM that indicate bad mixing behavior had already appeared in the literature.

First of all, ζc is defined as the threshold density at which the fixed-energy model becomes unstable,

under the implicit assumption of i.i.d. Poisson distributions. Otherwise, the notion of threshold density

is not even well-defined. Indeed, it turns out that for every d < ζ < 2d − 1 there are some spatially

ergodic states with average particle density ζ that are explosive and some others with same density which

are stabilizable [10].

Stochastic Sandpiles (SSM) and Activated Random Walks (ARW) were introduced as alternative non-

deterministic relaxation mechanisms. The long-range space-time correlations caused by conservation of

particles and the lack of an algebraic structure similar to the ASM make the mathematical analysis

of these models very challenging. It took two decades for the first rigorous results regarding stability

properties of these systems to appear in the literature [7, 16]. Considerable progress for the ARW has

been made in the past three years [3, 4, 5, 17, 19, 20, 21], with the introduction of a number of ad hoc

techniques and tools. Some of these tools were sensitive to assumptions about the initial state, requiring

independence, light tails, etc.

In this paper we study the ARW and prove that the critical density ζc is well-defined and separates two

entire families of spatially ergodic states: those whose density ζ is below ζc, for which configurations

are a.s. stabilizable, and those having density above ζc, for which configurations are a.s. explosive. One

consequence is that all recently-introduced mathematical techniques having special requirements for the

initial state are immediately bootstrapped to general results valid for every ergodic distribution. Another

consequence is to support the general belief that the ARW has much better mixing properties than the
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ASM. The result and technique introduced in this paper do not yield a proof of the density conjecture

for the ARW, but may give one step in that direction.

Sharpness and self-organized criticality. Models of avalanches became a standard example of self-

organized criticality in the context of non-equilibrium steady states. Unlike usual statistical mechanics

systems, these models are not explicitly equipped with a tuning parameter at which a phase transition

is observed. Instead, they are expected to spontaneously drive themselves to a critical steady state,

featuring characteristics of critical systems such as power law statistics and scale invariance.

Three different relaxation procedures have been used in the study of this phenomenon: in the

deterministic sandpile model, sites with at least 2d particles send one to each neighbor; in the stochastic

sandpile, sites with at least N particles send N particles to neighbors chosen at random; in the activated

random walk model, sites with active particles send one particle to a neighbor chosen at random, and

particles can become passive with probability proportional to a parameter λ if they are alone. All these

systems contain mechanisms that cause both spread of activity and a tendency of this activity to die

out, and the system behavior is determined by the balance between these two factors.

Self-organized criticality appears in the corresponding driven-dissipative dynamics: particles are added

to the bulk of a large finite box, and absorbed at its boundary during relaxation, following one of the

above-mentioned mechanisms. A particle is added only after the system globally stabilizes. In this

dynamics, when the average density ζ inside the box is too small, mass tends to accumulate. When it is

too large, there is intense activity and substantial dissipation at the boundary. Within this setting, the

system is attracted to a critical state with an average density ζs.

A new paradigm was introduced in [6], arguing that self-organized criticality in these systems is related

to ordinary phase transition. More precisely, the corresponding conservative systems in infinite volume,

where the density ζ is kept constant, exhibit ordinary phase transition and their critical behavior is

closely related to properties of the self-organized critical system described above. In particular, there is

a threshold density ζc such that the infinite-volume dynamics should fixate for ζ < ζc and remain active

for ζ > ζc, and ζc should coincide with the driven-dissipative stationary density ζs. Since then, a rich

literature appeared, exploring this relation and the principles behind it.

Years later, rigorous results and precise large-scale simulation showed that equality ζc = ζs is false in

general, at least for the deterministic sandpile model [8, 9], indicating that the relation between driven-

dissipative and conservative systems is much more subtle. This is attributed to the fact that the ASM

is very sensitive to the initial state [11], and indeed a robust definition of threshold density for the ASM

is not even possible, as previously shown in [10].

This discovery had two implications. First, it increased interest in the mathematical properties of this

system and its intricate behavior, and propelled debate about how to recover the density conjecture for

the ASM [12, 14]. Second, it increased physical interest in other models such as SSM and ARW, which

are supposed to have stronger mixing properties, for the study of self-organized criticality and analysis

of avalanche statistics. We show that ζc is well-defined for the ARW, providing some support for the

latter claim. We now state the main result of this paper, postponing precise definitions to §2.

Theorem 1. Consider the Activated Random Walk model on the usual graph Z
d for fixed d > 1 with

given sleep rate λ, and given jump distribution p(·). There is a number ζc such that, for any spatially

ergodic distribution ν supported on active configurations with average density ζ, a configuration sampled

from ν is a.s. stabilizable if ζ < ζc and a.s. explosive if ζ > ζc.

In the sequel we situate the above result in the context of existing mathematical literature, and finally

discuss the method of proof and organization of the paper.

Mathematical overview. Several non-trivial bounds for ζc were proved in the past three years. For

d = 1, it was proved in [16] that ζc > 0 for all λ and ζc → 1 as λ → ∞. For d > 2 and λ = ∞, it was also

shown in [18] that µc > 0 and in [4, 5] that µc > 1. For d > 2 and λ > 0 it was shown in [19] that ζc > 0,
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assuming short-range unbiased jump distributions. This was generalized to general jump distributions

in [20], where it was also shown that ζc → 1 as λ → ∞. It was proved in [1, 18] that ζc 6 1 in any

dimension for any λ. For biased jump distributions, it was shown in [21] that, on d = 1, ζc < 1 for every

λ and ζc → 0 as λ → 0, and on d > 2 that ζc < 1 for small λ. The picture on d > 2 was extended in [17]

by showing show that ζc < 1 for every λ and ζc → 0 as λ → 0. For unbiased jumps, it was shown that

ζc → 0 as λ → 0, in [3] for d = 1 and [20] for d > 3. See [15] for a detailed account.

While many of the proofs were robust with respect to the initial state, others were sensitive to it. Some

results in [1, 4, 5, 20, 21] required an i.i.d. field, the proofs in [19] are presented for i.i.d. Poisson (but may

be adapted for states with some spatial mixing and light tails), and some of the results in [20] and [21]

required the initial state to be i.i.d. Bernoulli. With Theorem 1, all these conditions can be waived, and

arguments having special requests for the initial state now produce lower and upper bounds valid for any

other ergodic initial state. A good example is the case of biased walks in dimension d > 2. The proof

in [21] that ζc < 1 for all λ > 0 and i.i.d. Bernoulli initial state was extended to an arbitrary i.i.d. field

in [17], however such an extension now follows directly from this general property.

Comments on the proof and outline of the paper. The idea of the proof is simple, although

its implementation has some subtleties. It uses the characterization of stabilizability in terms of the

Diaconis-Fulton representation, and consists of two stages: first embedding one infinite configuration

into another one with higher density (which is assumed to be fixating) by means of enforced activation,

and then using monotonicity to argue that the embedded configuration is also fixating. The first stage

relies on ergodic properties and on the mass-transport principle.

In §2, we recall usual tools for this system and fix the notation. We quickly describe a continuous-time

evolution and the event of fixation, the Diaconis-Fulton representation and the notion of stabilization

with its main properties, the relation between stabilization and fixation, and finally we state the mass-

transport principle. In §3, we state a theorem equivalent to Theorem 1, briefly sketch its proof, and then

give the proof in three parts: embedding the initial configuration into another one with higher density,

stabilization of the embedded configuration, and finally stabilization of the original configuration.

2 Definitions and tools

To be consistent with most of the existing literature, we describe the ARW evolution as a continuous-time

stochastic process. The ARW system starts with active particles placed in Z
d according to a distribution

ν, and evolves as follows. Active particles perform independent continuous-time random walks on Z
d

with translation-invariant jump distribution p(x, y) = p(y− x), and switch to passive state at rate λ > 0

when they are alone on a site. Passive particles do not move, and are reactivated immediately when

visited by another particle. The law of this evolution is denoted P
ν . By fixation we mean that the

dynamics eventually halts at any finite region, and non-fixation is the opposite event.

In the sequel we introduce notation for this continuous-time evolution, and briefly describe the toppling

operators and their properties, referring the reader to [15] for details. One important difference in

notation between here and [15] is that here we do not necessarily start from a zeroed odometer. One

difference between the terminology of [15] and that of [16, 19] is that we do not replace sleep instructions

by neutral ones, but instead allow for the toppling of a site containing a sleepy particle.

Notation and continuous-time evolution. Let N0 = {0, 1, 2, . . .} and Ns = N0 ∪ {s} with 0 < s <

1 < 2 < · · · . Define |s| = 1, JsK = 0, and |n| = JnK = n for n ∈ N0. Also define s+ 1 = 2 and

n · s =















n, n > 2,

s, n = 1,

undefined, n = 0.
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The state of the ARW at time t > 0 is given by ηt ∈ Σ = (Ns)
Z
d

, and the process evolves as follows. For

each site x, a Poisson clock rings at rate (1 + λ)Jηt(x)K. When this clock rings, the system goes through

the transition η → τxsη with probability λ
1+λ

, otherwise η → τxyη with probability p(y − x) 1
1+λ

. The

transitions are given by

τxyη(z) =















η(x) − 1, z = x,

η(y) + 1, z = y,

η(z), otherwise,

τxsη(z) =

{

η(x) · s, z = x,

η(z), otherwise.

We assume that η0(x) ∈ N0 for all x a.s., and use P
ν to denote the law of (ηt)t>0, where ν denotes the

distribution of η0. We say that (ηt)t>0 fixates if ηt(x) is eventually constant for each fixed x ∈ Z
d.

Diaconis-Fulton and stabilization. We now use η to denote configurations in Σ instead of a

continuous-time process. We say that site x is unstable for the configuration η if η(x) > 1. Otherwise, x

is said to be stable. By toppling site x we mean the application of an operator τxy or τxs to η. Toppling

an unstable site is legal. If η(x) = s, toppling x is not legal but is acceptable (here we are departing from

the original dynamics of the model, but this operation is useful in the proofs), and to that end we define

s− 1 = 0 and s · s = s. Legal topplings are acceptable. If η(x) = 0, toppling x is not acceptable.

Let I = (τx,j)x∈Zd,j∈N be a fixed field of instructions, that is, for each x and j, τx,j equals τxs or τxy

for some y. Let h ∈ (N0)
Z
d

. The toppling operation at x is defined by Φx(η, h) =
(

τx,h(x)+1η, h + δx
)

.

Given a finite sequence α = (x1, . . . , xk), define Φα = Φxk
◦ Φxk−1

◦ · · · ◦ Φx1
. We say that α is a

legal/acceptable sequence of topplings for (η, h) if, for every j = 1, . . . , k, Φxj
is legal/acceptable for

Φx1,...,xj−1
(η, h). Given V ⊆ Z

d, we say that (η, h) is stable in V if every x ∈ V is stable for η. We

write α ⊆ V if x1, . . . , xk ∈ V . We say that α stabilizes (η, h) in V if α is acceptable for (η, h) and

Φα(η, h) is stable in V . Let mα be given by mα(x) =
∑

ℓ 1{xℓ=x}, for all x ∈ Z
d. We write mβ 6 mα if

mβ(x) 6 mα(x) for all x ∈ Z
d, and the same for η 6 η̃.

Lemma 2 (Local abelianness). If α and β are acceptable sequences of topplings for the configuration

(η, h), such that mα = mβ, then Φα(η, h) = Φβ(η, h).

For V ⊆ Z
d, let

mV,η,h(x) = sup{mβ(x) : β ⊆ V legal for (η, h)},

x ∈ Z
d. Notice that mV,η,h(x) = sup{mV ′,η,h(x) : V

′ ⊆ V finite}. Let mη,h = mZd,η,h.

Lemma 3 (Least Action Principle). If α is an acceptable sequence of topplings that stabilizes (η, h) in

V , then mV,η,h 6 mα.

Lemma 4 (Global abelianness). If α and β are both legal toppling sequences for (η, h) that are contained

in V and stabilize (η, h) in V , then mα = mβ = mV,η,h. In particular, Φα(η, h) = Φβ(η, h).

Lemma 5 (Monotonicity). If V ⊆ Ṽ and η 6 η̃, then mV,η,h 6 mṼ ,η̃,h.

A configuration η is said to be stabilizable starting from odometer h if mη,h(x) < ∞ for every x ∈ Z
d,

and it is said to be explosive if mη,h(x) = ∞ for every x ∈ Z
d. The field of instructions I can be made

explicit in the notation, for example, we say that η is I-stabilizable if mη,h;I(x) < ∞ for every x ∈ Z
d.

The letter h can be omitted in all the above notation when h is identically zero.

Stabilization and fixation. We finally state the connection between stabilization for the Diaconis-

Fulton representation and fixation for the continuous-time dynamics. Assume that distribution ν of η0
on N

Z
d

0 is spatially ergodic and has finite density ν(η(o)) < ∞. We further assume that the support of

p(·) generates Zd and not a sublattice. Let I be independent of η0, and distributed as follows. For each

x ∈ Z
d and j ∈ N, choose τx,j as τxy with probability p(y−x)

1+λ
or τxs with probability λ

1+λ
, independently

over x and j. To avoid extra notation, we define the field I on the same probability space P
ν .

Lemma 6. P
ν(fixation of (ηt)t>0) = P

ν(mη0
(o) < ∞) = 0 or 1.
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Mass-transport principle. The mass-transport principle will be used a couple of times in the proof,

and consists of the following. Let f(x, y) = f(x, y;ω) be a non-negative function of two points x, y ∈ Z
d

and the randomness ω. Suppose that, for every translation θ of Zd, the law of θω is the same as the law

of ω (whatever θω means), and moreover f(θx, θy; θω) = f(x, y;ω) for every x, y and a.e. ω. Then

E

∑

y

f(x, y) = E

∑

y

f(y, x), for any x ∈ Z
d.

This identity says that on average the mass sent by x equals the mass received by x, although “mass”

can be any non-negative function. See [13] for proof and applications.

3 Stabilization

Instead of proving Theorem 1 as stated, we consider the following equivalent formulation.

Theorem 7. Let d, λ and p(·) be given. Let ν1 and ν2 be two spatially ergodic distributions for initial

states on Z
d, with respective densities ζ1 < ζ2. If the ARW system is a.s. fixating with initial state ν2,

then it is also a.s. fixating with initial state ν1.

Let us give a brief sketch before moving to the proof.

The proof is algorithmic and has two stages, both stages being infinite. The idea is very simple and is

related to what is sometimes called decoupling. Let η0 and ξ0 be independent and distributed as ν1 and

ν2. In the first stage, we embed η in ξ0. In the second stage, we use the same set of instructions to evolve

both systems; since ξ fixates a.s., so does η, concluding the proof. More precisely, in the first stage we

force each particle of η to move (by waking it up when necessary) until it meets a particle of ξ0; once they

meet, they are paired and will not be moved until the second stage. Even if it takes infinitely many steps

to finish pairing, a.s. every particle in η will eventually be paired and the resulting odometer will be a.s.

finite at every site (if the odometer were infinite somewhere, by ergodicity it would be infinite everywhere,

so every particle in ξ0 would be paired, which implies ζ2 6 ζ1), yielding a configuration η′0 6 ξ0. In the

second stage, we simply evolve the system using the remaining instructions. Since they are independent

of ξ0, η0, and of the instructions used in the first stage, by assumption the remaining instructions a.s.

stabilize ξ0 leaving a locally-finite odometer. By monotonicity of the final odometer with respect to

the configuration, the same set of remaining instructions also stabilizes η′0, again with a locally-finite

odometer. Adding the odometer of both stages would give the final locally-finite odometer given by

stabilization of η0, except that in the first stage we have not followed the toppling rules correctly. But

it still gives an upper bound due to monotonicity of the odometer with respect to waking up particles.

We now turn to the proof. To make the argument precise we will not ‘move’ particles as in the previous

sketch, as the embedding requires an infinite number of topplings. We instead explore the instructions

and define a sequence of configurations in terms of η0, ξ0 and I. We end up concluding that a.s. the result

of this exploration implies that η0 is stabilizable, which in turn implies the statement of the theorem.

Embedding of the smaller configuration. Without loss of generality we can assume that ν1 or ν2
is not only ergodic but also mixing. Let η0, ξ0 and I be given, and take h0 ≡ 0. For k = 1, 2, 3, 4, . . . ,

suppose ηk−1 and hk−1 have been defined. Denote by Ak the set given by

Ak = {x : ηk−1(x) > ξ0(x)},

and consider an arbitrary enumeration

Ak = {xk
1 , x

k
2 , x

k
3 , . . . }.
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Let

(ηk, hk) = lim
j

Φ(xk
1
,xk

2
,...,xk

j
)(ηk−1, hk−1)

in case Ak is infinite – in case it is finite, by ergodicity it is a.s. empty in which case we let (ηk, hk) =

(ηk−1, hk−1). Notice that the condition ηk−1(x) > ξ0(x) is also satisfied when ηk−1(x) = s and ξ0(x) = 0,

so this operation may require waking up particles.

As we go through j = 1, 2, 3, . . . in the above expression, for each j the field m is increased by one unit

at xk
j , so hk is well-defined and satisfies

hk(x) = hk−1(x) + 1Ak
(x).

The limit for η is also well-defined because, for each site x, the sequence decreases for at most one value

j. In case it decreases, it may send one particle to one other site z 6= x. Thus, by a standard use of

the mass-transport principle, a.s. the configuration at each site x increases a finite number of times (the

expected number of times is less than one as can be seen by taking f(x, y) as the indicator of the event

that x ∈ Ak and toppling x sends a particle to y), so the limit ηk is a.s. finite.

We now prove that, if limk hk(o) = ∞ with positive probability then we must have ζ1 > ζ2.

First, we argue that P(h′
0(o) = ∞) = 0 or 1, where

h′
0(x) = lim

k
hk(x).

By the Local Abelianness, (ηk, hk) does not depend on the enumeration of Ak. In particular, ηk and hk

are determined by η0, ξ0 and I in a translation-covariant way, so the random set of sites x for which

h′
0(x) = ∞ is ergodic with respect to translations (this is true only because I is mixing and we assumed

that ν1 or ν2 is mixing). Moreover, the event h′
0(o) = ∞ a.s. implies the event that h′

0(z) = ∞ for

every z such that p(z) > 0. These two facts together imply that, either h′
0(x) = ∞ a.s. for every x, or

h′
0(x) < ∞ a.s. for every x, see [16, proof of Lemma 4]. This proves the zero-one law.

Suppose h′
0(o) = ∞ with positive probability. By the zero-one law we have h′

0(o) = ∞ a.s., which means

that P(lim supk{o ∈ Ak}) = 1. But if o ∈ Ak0
for some k0, then necessarily ηk0−1(o) > ξ0(o) and hence,

by definition of Ak, ηk(o) > ξ0(o) for all k > k0 and therefore lim infk ‖ηk(o)‖ > ‖ξ0(o)‖. On the other

hand, from the mass-transport principle we have E‖ηk(o)‖ = E‖ηk−1(o)‖ = · · · = E‖η0(o)‖ = ζ1 (to

show the first identity, we let fk(x, y) be the indicator that, on step k, x sends a particle to y, and let

fk(x, x) be the number of particles that were present at x at the beginning of stage k and stayed at x).

By Fatou’s Lemma, ζ1 > ζ2.

Since we are assuming ζ1 < ζ2, we must have h′
0(o) < ∞ a.s. Now, as we go through k = 1, 2, 3, . . . , the

value of ηk(o) can decrease only when o ∈ Ak, i.e., only when hk(o) increases. Hence, (ηk(o))k is a.s.

eventually non-decreasing, so it converges. Its limit η′0(o) satisfies η′0(o) 6 ξ0(o), otherwise o would be

in Ak for all large enough k and h′
0(o) would be infinite. By translation invariance, a.s. h′

0(x) < ∞ and

η′0(x) = limk ηk(x) 6 ξ0(x) for every x.

Stabilization of the embedded configuration. In the previous stage we obtained a pair (η′0, h
′
0)

a.s. satisfying h′
0(x) < ∞ and η′0(x) 6 ξ0(x) for every x ∈ Z

d. Let Ĩ be the set of instructions given by

τ̃x,j = τx,h
′

0
(x)+j, x ∈ Z

d, j ∈ N.

that is, the field obtained by deleting the instructions used in the embedding stage described above. Since

the first h′
0(x) instructions have been deleted at each site x, stabilizing a system with the instructions in

Ĩ instead of I is equivalent to starting with odometer at h′
0 instead of h0 ≡ 0.

Now note that the collection of instructions
(

τx,j : x ∈ Z
d, j > h′

0(x)
)

played no role in the construction

of η′0 and h′
0, so they are independent of ξ0 and h′

0. Hence, Ĩ is an i.i.d. field just like I, and it is also
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independent of ξ0.

Therefore, P
[

ξ0 is Ĩ-stabilizable
]

= P
[

ξ0 is I-stabilizable
]

, and the latter equals 1 by assumption. Since

η′0 6 ξ0, we have P
[

η′0 is Ĩ-stabilizable
]

> P
[

ξ0 is Ĩ-stabilizable
]

= 1. This means that a.s. there exists

h′
1 such that, for all finite V ⊆ Z

d and all x ∈ Z
d, mV,η′

0
;Ĩ(x) 6 h′

1(x) < ∞.

Stabilization of the smaller configuration. We now recall some properties from these two stages

to show that η0 is a.s. I-stabilizable with

mη0;I(x) 6 h′
0(x) + h′

1(x) < ∞, ∀ x ∈ Z
d.

In the first stage, the limits η′0 and h′
0, which are determined by η0, ξ0 and I, almost-surely exist and

satisfy h′
0 < ∞ and η′0 6 ξ0. Suppose this event occurs, and let V be a fixed finite set.

If we start from (η0, h0) and perform all topplings in V as well as particle additions to V (coming from

V c), following the same order as in the first stage, only a finite number of operations will be performed,

and we end up with a state that equals (η′0, h
′
0) on V .

By the local Abelian property, we can add the particles first and then topple the sites in V as in the

first stage, obtaining the same result. This means that there is some η̄V > η0 and αV = (x1, . . . , xn)

contained in V such that mαV
= h′

0 on V and

ΦαV
(η̄V , h0) = (η′0, h

′
0) on V.

Now, in the second stage, we showed that a.s. there exists h′
1(x) < ∞ such that mV ′,η′

0
;Ĩ(x) 6 h′

1(x) for

any finite V ′. Suppose this event occurs.

Notice that mV,η′

0
,h′

0
;I(x) = mV,η′

0
;Ĩ(x), that is, to stabilize η′0 in V using the shifted field of instructions

is the same as stabilize η′0 in V using the original field of instructions and shifted odometer. Therefore,

there exists βV = (xn+1, . . . , xm) contained in V such that mβV
6 h′

1 on V and ΦβV
(η′0, h

′
0) is stable in

V .

By the above identity, ΦβV
◦ ΦαV

(η̄V , h0) = ΦβV
(η′0, h

′
0), on V . Since the latter is stable in V , by the

Least Action Principle we have

mV,η̄V ;I(x) 6 mαV
(x) +mβV

(x), for all x ∈ Z
d.

Thus, by monotonicity,

mV,η0;I(x) 6 mV,η̄V ;I(x) 6 mαV
(x) +mβV

(x) 6 h′
0(x) + h′

1(x) < ∞.

We now note that the above bound does not depend on V , so

mη0;I(x) = sup
V finite

mV,η0;I(x) 6 h′
0(x) + h′

1(x) < ∞, ∀ x ∈ Z
d,

which means that η0 is stabilizable, concluding the proof.
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Statist in press, 2017. doi.

[18] E. Shellef. Nonfixation for activated random walks. ALEA Lat Am J Probab Math Stat 7:137–149, 2010.
pdf.

[19] V. Sidoravicius, A. Teixeira. Absorbing-state transition for stochastic sandpiles and activated random

walks. Electron J Probab 22:33, 2017. doi.

[20] A. Stauffer, L. Taggi. Critical density of activated random walks on transitive graphs. Ann Probab to

appear, 2018. arXiv:1512.02397.

[21] L. Taggi. Absorbing-state phase transition in biased activated random walk. Electron J Probab 21:13, 2016.
doi.

8

http://dx.doi.org/10.1214/ECP.v15-1536
http://dx.doi.org/10.1103/PhysRevA.38.364
http://arxiv.org/abs/1508.05677
http://dx.doi.org/10.1007/s10955-013-0909-3
http://dx.doi.org/10.1007/s00440-017-0763-3
http://dx.doi.org/10.1590/S0103-97332000000100004
http://dx.doi.org/10.1007/s10955-009-9918-7
http://dx.doi.org/10.1103/PhysRevLett.104.145703
http://arxiv.org/abs/1211.4760
http://arxiv.org/abs/math-ph/0510060
http://dx.doi.org/10.1103/PhysRevLett.105.019601
http://dx.doi.org/10.1007/s00220-014-2216-5
http://dx.doi.org/10.1017/9781316672815
http://mypage.iu.edu/~rdlyons
http://dx.doi.org/10.1103/PhysRevE.84.066119
http://arxiv.org/abs/1507.04341
http://dx.doi.org/10.1007/s00222-011-0344-5
http://dx.doi.org/10.1214/17-AIHP827
http://alea.impa.br/articles/v7/07-07.pdf
http://dx.doi.org/10.1214/17-EJP50
http://arxiv.org/abs/1512.02397
http://dx.doi.org/10.1214/16-EJP4275

	1 Introduction
	2 Definitions and tools
	3 Stabilization

