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5d transition metal oxides offer new opportunities to test our understanding of 

the interplay of correlation effects and spin-orbit interactions in materials in the 

absence of a single dominant interaction. The subtle balance between solid-state 

interactions can result in new mechanisms that minimize the interaction energy, and in 

material properties of potential use for applications. We focus here on the 5d transition 

metal oxide NaOsO3, a strong candidate for the realization of a magnetically driven 

transition from a metallic to an insulating state exploiting the so-called Slater 

mechanism. Experimental results are derived from non-resonant and resonant x-ray 

single crystal diffraction at the Os L-edges. A change in the crystallographic symmetry 

does not accompany the metal-insulator transition in the Slater mechanism and, indeed, 

we find no evidence of such a change in NaOsO3. An equally important experimental 

observation is the emergence of the (300) Bragg peak in the resonant condition with 

the onset of magnetic order. The intensity of this space-group forbidden Bragg peak 

continuously increases with decreasing temperature in line with the square of intensity 

observed for an allowed magnetic Bragg peak. Our main experimental results, the 

absence of crystal symmetry breaking and the emergence of a space-group forbidden 

Bragg peak with developing magnetic order, support the use of the Slater mechanism to 

interpret the metal-insulator transition in NaOsO3. We successfully describe our 

experimental results with simulations of the electronic structure and with an atomic 

model based on the established symmetry of the crystal and magnetic structure. 

Keywords: Metal-insulator transition, x-ray resonant scattering, magnetism, 

Slater insulator  
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I. INTRODUCTION 

The metal-insulator transition, MIT, has been a key topic of condensed matter physics 

since Verwey's pioneering work on magnetite, the prototype of this class of transition [1, 2]. 

The strong interest arises from its deep links to the fundamental interactions of correlated 

electron physics, and poses a major challenge in our understanding of complex systems. Until 

now, 3d transition metal oxides have been widely studied displaying striking phenomena 

including high temperature superconductivity (most notably in cuprates [3] and pnictides [4, 

5]), colossal magnetoresistance [6, 7], and metal-insulator transitions [1, 8]. This variety of 

phenomena stems from the several competing interaction terms associated with the charge, 

orbital and magnetic degrees of freedom.  

Recent studies prove that 5d transition metal compounds are just as fascinating as they 

display several striking physical properties. Due to the larger spatial extent of the 5d orbitals in 

comparison to 3d orbitals, 5d transition metal compounds experience a large crystal field 

splitting of t2g and eg states ( 2 eV above the Fermi energy) and thus, notably, have relatively 

weak electronic correlations according to conventional understanding. While the electron 

correlation, parametrized by the Hubbard correction term U, diminishes in size on descending 

the periodic table from 3d to 5d elements, the spin-orbit interaction increases in value with 

increasing atomic number. In addition, there is a strong p-d hybridization resulting from the 

large orthorhombic distortion that is caused by the octahedral rotation, which affects the 

bandwidth in these simple perovskites. Orthorhombic distortion here refers to the distortion 

from ideal cubic to orthorhombic structure (e.g. tilting and rotation of OsO6 octahedra). To give 

an estimate of such distortions, it is customary to introduce the Goldschmidt tolerance factor 

[9], t, where t = 1 for ideal cubic perovskite structure. The calculated value for NaOsO3 is 

t=0.9077 and similar perovskite compounds have: t(NdNiO3)= 0.913; t(GdFeO3)= 0.9021; 

t(TbMnO3)= 0.8505. In recent studies, focus was mainly on the interplay between the spin-orbit 

coupling, the Coulomb repulsion and the bandwidth in Iridates [10-13] and to a lesser extent in 

Osmates [14-20]. Such a flurry of research in 5d systems has resulted in the discovery of 

topological insulating phases, spin liquid behavior [21] and bulk insulating states [10].  

Particularly intriguing is the nature of the insulating state in these 5d systems. It is 

currently under debate as to whether this is of either Mott [11, 22, 23] or Slater [15-19] 

character. The latter mechanism proposed by Slater more than 50 years ago [24] has the 

emergence of antiferromagnetic ordering as the source of an electron localization that drives 
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the system into an insulating state. This insulating state is very distinct from the metallic phase 

that characterizes the paramagnetic temperature regime above the Neel ordering temperature. 

In such a model, electron correlations do not play any role, which is in contrast to the case of 

the Mott scenario where it is the electron correlations that favor the existence of an insulating 

ground state. However, no clear evidence of a compound supporting a magnetically driven 

metal-insulator “Slater” transition has been found to date. Among the most likely candidates 

that might exhibit a Slater metal-insulator transition, the most promising is the perovskite 

NaOsO3 [16, 17, 19]. 

NaOsO3 undergoes a metal-insulator transition and antiferromagnetic ordering at the 

same temperature, TMIT= TN~410 K. This is a remarkably high temperature for a compound for 

which the Coulomb electronic correlations should be weaker than, or at most, comparable to 

the energy scale of the spin-orbit interaction. The magnetic moment determined by neutron 

refinement is 1 𝜇𝐵 [16], which is less than expected from the nominal valence Os5+ with 3 

electrons singly occupying the t2g levels as predicted from Hund’s rules. A reduced moment is 

suggestive of the itinerant nature of the 5d electrons and of significant hybridization with 

neighboring oxygen orbitals. The NaOsO3 crystallographic and magnetic structures have been 

studied and a G-type antiferromagnet with magnetic moments lying along the c-axis (𝑃𝑛𝑚𝑎 

space group) below TN was reported as well as the presence of a small ferromagnetic moment 

along the b-axis [15, 16]. The magnetic space-group was determined to be Pn’ma’ (#62.448), 

which belongs to the centrosymmetric crystal class m’mm’. Small crystallographic changes 

suggested [16] the absence of a crystallographic phase transition in the vicinity of TN~410 K, 

but there is also an observed anomaly in the a and c lattice constants in the vicinity of TMIT= TN. 

The metal-insulator transition in NaOsO3 is known to be a second order phase transition from a 

metallic (above 410 K) to an insulating state [15, 16]. The concomitant MIT and 

antiferromagnetic ordering, and possible absence of crystallographic symmetry breaking, are 

suggestive of a Slater MIT. However, due to the presence of energetically similar competing 

interactions, a consensus on the nature of the metal-insulator mechanism operating in this 

perovskite is absent. Current literature on NaOsO3 includes pressing arguments for three 

mechanisms, namely, a spin-driven Lifshitz mechanism using a magnetic reconstruction of the 

Fermi surface [25], the aforementioned Slater mechanism [16, 17], and a Mott-Hubbard 

mechanism that is independent of magnetic correlations and is result of an electron localization 

effect controlled by an on-site strong Coulomb interaction that overcomes the delocalization, 

which is determined by measuring the bandwidth [20]. In light of its intriguing properties, 
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NaOsO3 has been the subject of several experimental [15, 16, 19, 26] and theoretical [17, 18, 25] 

studies.  

In order to validate the Slater mechanism, it is important to demonstrate the absence of 

crystallographic symmetry change occurring across the metal-insulator transition. Evidence 

from x-ray and neutron powder diffraction suggests that this crystallographic symmetry 

change is absent. Although, powder diffraction methods are sensitive to lattice distortions, they 

are lesser sensitive to symmetry breaking with only smooth variations of lattice constants. In 

recent years, resonant x-ray scattering has proven to be a powerful technique to detect 

symmetry breaking by measuring weak intensities at forbidden reflections [27] that are 

directly related to the symmetry of the charge density of the resonant atoms. This sensitivity 

arises from the fact that, at resonance, the x-ray scattering is strongly enhanced and 

phenomena that are usually negligible, such as the asphericity of the atomic electron density, 

can be observed. Thus, at resonance, the x-ray scattering factor is no longer a scalar and must 

be treated as an anisotropic tensor (creating an “anisotropy of the tensor of scattering” (ATS) or 

Templeton-Templeton scattering) [28]. As a result, tuning the incident x-ray energy, e.g. to the 

Osmium L3 edge, gives high sensitivity to the Osmium’s coordination with its nearest neighbors, 

as well as to spatial distortions and anisotropies of the Osmium electron density. Resonant 

scattering thus provides the possibility to make a quantitative study of the microscopic 

mechanism causing the MIT by observing the modification of the Os electron density occurring 

across the MIT. 

Henceforth, we have conducted resonant x-ray scattering experiments at the Os L edges 

on a small single crystal of NaOsO3 to determine whether or not there is a change in the 

crystallographic symmetry across MIT. Also, we have focused on the forbidden reflections, 

(300) and (030), and compared the experimental results with simulations performed with the 

FDMNES package [29] as well as with atomic model calculations, which provide direct insight 

into the physical nature of the observed scattering intensity.  

This paper is organized as follows: in Section II and III we describe the sample 

preparation and the x-ray resonant scattering technique used to perform the measurements. In 

Section IV, we present the experimental results that provide evidence of a change in the 

diffracted intensity of the (300) forbidden reflection across the metal-insulator transition. In 

Section V, we compare our observation with the FDMNES simulations and with an atomic 
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model calculation, from which we extract quantitative information on the nature of the change 

in the electronic structure across the phase transition.  

 

II. EXPERIMENTAL DETAILS 

Single crystal samples of NaOsO3 were grown in pressures up to 6 GPa as described in 

Ref. [15]. Several single crystals with sizes of approximately 0.2 mm x 0.3 mm x 0.1 mm were 

oriented with x-ray Laue back reflection and then polished mechanically to have a well-defined 

surface perpendicular to either the [100] or the [010] direction. Further x-ray characterization 

with Cu K radiation in an x-ray diffractometer enabled the selection of high quality crystals, 

having small mosaicity, resulting in rocking curves with several Bragg reflections e.g. (400), 

(600), (220) with full width half maximum of ~ 0.01°.  

Resonant x-ray scattering experiments were carried out in the vicinity of the Osmium L3 

and L2 edges at beamline I16 at the Diamond Light Source. The beamline is equipped with a 6-

kappa diffractometer that can operate in horizontal and vertical scattering geometries, with the 

scattered x-rays in the plane and perpendicular to the plane of the electron storage ring 

respectively. The beamline has a double-bounce silicon harmonic rejection mirror system that 

provides exceptionally high harmonic rejection over a wide energy range. The beamline is 

equipped with a Silicon monochromator with an energy resolution of ~1.5 eV at the energies 

corresponding to the Osmium L edges. The incident radiation was linearly polarized 

perpendicular to the vertical scattering plane (σ polarization) with a beam size of 0.2 mm 

(horizontal) × 0.03 mm (vertical). A graphite (008) crystal was used at the Os L3 edge for 

polarization analysis of the diffracted beam (with the state of polarization denoted by primed 

quantities). For σ − π′ scattering, the suppression of the σ − σ′ channel was approximately 

99.9%, and vice versa. A Pilatus 100 K photon-counting pixel detector was used for the 

measurements performed without polarization analysis. The Pilatus detector pixel size (0.172 

mm x 0.172 mm) results in an estimated momentum resolution of 0.0016 Å-1 and 0.0004 Å-1 for 

measurements performed with incident photon energy of 10.785 keV and 5.2 keV, respectively. 

Throughout the paper we use the symbol  to designate the azimuthal angle, which represents 

a rotation of the sample around a selected diffraction wave vector. The azimuthal angle 

reference position was chosen to be zero when the [100] and the [010] directions are in the 

scattering plane. 
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Diffraction and absorption signals across the Osmium L edges (such as those illustrated 

in Fig.1) are simultaneously recorded from two different regions of interest with the Pilatus 

pixel detector, while measuring the energy dependence of the intensity of the diffraction peaks. 

Sharp multiple scattering contributions to the diffracted intensity were determined and 

minimized by performing several energy dependence scans of the same reflection, with slightly 

different azimuthal angles.  

We complemented this characterization with absorption measurements in transmission 

geometry at the SuperXAS beamline at the Swiss light source in the vicinity of the Osmium L 

edges and crystallographic single crystal diffraction performed with x-rays having an incident 

energy of 16 keV at the Swiss-Norwegian beamline at the ESRF [30].
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III. RESONANT X-RAY SCATTERING 

Resonant x-ray scattering combines the chemical sensitivity of absorption 

(spectroscopy) and the atomic position sensitivity of diffraction. The measured intensity is 

proportional to the square of the unit cell structure factor. To maximize the sensitivity of the 

technique to detect crystallographic symmetry breaking, measurements are typically focused 

on forbidden or weakly allowed reflections. For such diffraction conditions, only the scattering 

originating from the resonant ions (weighted by a phase factor which depends on the atom 

position and the scattering wave vector) contributes to the diffracted intensity. To correctly 

compute the diffraction intensity, all contributions to the x-ray atomic scattering factor f should 

be considered. The most general expression for f is:  

𝑓 =  𝑓𝑜 + 𝑓𝑚 + 𝑓’ + 𝑖𝑓”  

where 𝑓𝑜 corresponds to the classical Thomson scattering of the atom and 𝑓𝑚 is the non-

resonant magnetic scattering amplitude. 𝑓’ and 𝑓” are the two energy-dependent anomalous 

dispersion correction terms of the atomic scattering factor. In particular, 𝑓’and 𝑓” describe 

the resonant scattering amplitude arising from photon assisted electronic transitions between 

core and empty states, with a scattered photon subsequently re-emitted when the electron and 

the core hole recombine [31]. When the photon energy approaches the energy corresponding 

to an absorption edge, the spectroscopy becomes sensitive to the unoccupied states just above 

the Fermi level. These unoccupied states are highly sensitive to the local environment with its 

symmetry and possible distortion (see e.g. Fig. 6a), and provide an indirect probe of the 

corresponding electronic density. This means that, at resonance, the scattering can be strongly 

modified and phenomena that can be usually neglected, such as the asphericity of the atomic 

electron density, can be determined [28, 32, 33]. By determining the dependence of the Bragg 

peak intensity on the x-ray energy, polarization, and azimuthal angle rotation, one can 

distinguish between structural (non-resonant scattering from the 𝑓𝑜 term), electronic (e.g. 

“charge ordering” or “charge disproportionation” and ATS) and spin (magnetic scattering) 

contributions, depending on the chosen reflection (which is simply related to the Fourier 

components of the specific long-range order under investigation). Such sensitivity is due to the 

fact that, at resonance, the x-ray scattering factor is no longer a scalar quantity and should be 

treated as an anisotropic tensor [34]. The tensorial nature of the scattering process offers the 

possibility to directly determine tiny changes in the electronic (or magnetic) structure of the 
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sample with incomparable sensitivity with respect to other techniques such as neutron 

diffraction that are not directly sensitive to electronic ordering.  

Following Ref. [35, 36], in the most general case the structure factor, 𝐹 for a given 

reflection of index (hkl) can be described as: 

  𝐹ℎ𝑘𝑙 = ∑ (−1)𝑄
𝐾,𝑄,𝑞 𝐻−𝑄

𝐾 𝐷𝑄𝑞
𝐾 Ψ𝑞

𝐾 (1) 

The positive integer 𝐾 is the rank of the multipole, and the projection 𝑞 can take 

(2𝐾 + 1) integer values that satisfy the relationship −𝐾 ≤ 𝑞 ≤ 𝐾. The first term 𝐻−𝑄
𝐾  describes 

the dependence of the structure factor on the polarization of the incoming and outgoing x-rays, 

𝐷𝑄𝑞
𝐾  reflects a rotation of the local axes of the sample required to fulfill the selected diffraction 

condition (depending on the orientation of the sample compared to the surface normal) and Ψ𝑞
𝐾 

is given by: 

 Ψ𝑞
𝐾 =  ∑ 𝑒𝑖𝒅.𝝉〈𝑇𝑞

𝐾〉𝑑𝑑   (2) 

where 〈𝑇𝑞
𝐾〉𝑑 is an atomic multipole that represents the electronic origin of the 

scattering, with the index d labeling the position of the resonant ion in the unit cell. 𝝉 = (ℎ𝑘𝑙) is 

the scattering wave-vector. Angular brackets  ...  denote the expectation value of the enclosed 

electronic spherical tensor operator, which is defined in reference [35]. For an electric-dipolar 

(E1-E1) transition, multipoles of rank K up to 2, contribute to the absorption cross section. The 

0th rank term (𝐾 = 0) corresponds to an isotropic atomic charge contribution given for example 

by the presence in the sample of resonant atoms with different non integer valence (e.g. Ni3+ 

and Ni3-, with  being slightly different form zero [27]). Such a charge imbalance is commonly 

referred to as “charge disproportionation”. The 𝐾 = 1 terms correspond to time-odd dipole 

contributions (e.g. a magnetic dipole), and 𝐾 = 2 corresponds to time-even quadrupoles (which 

reflect, for example, the degree of hybridization with neighboring ions, e.g. ATS). 

The structure factors for specific Bragg reflections in NaOsO3 and their angular 

dependence are derived in Appendix C. 
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IV. RESULTS 

For the Slater model of a metal-insulator transition, significant lattice distortions are 

not required to accompany the emergence of the magnetic ordering and the appearance of the 

insulating state. Therefore, the first step to validate the Slater model is to confirm the absence 

of crystallographic symmetry breaking at the metal-insulator transition. A common strategy 

here is to verify the absence of any diffraction intensity at positions in reciprocal space 

corresponding to forbidden reflections for the crystallographic space group of the sample. A 

crystallographic phase transition, such as the one from orthorhombic to monoclinic symmetry, 

such as that observed in some of the perovskite nickelates [27, 37-39], results in the loss of 

some space group specific symmetry elements. This changes the selection rules for forbidden 

reflections, leading to the emergence of a measurable intensity at specific reciprocal lattice 

points. NaOsO3 has already been investigated extensively by x-ray and neutron powder 

diffraction [15, 16]. However, for very tiny deformations, these methods might not be sensitive 

enough to detect a symmetry change in the sample, if not guided by some compelling evidence 

from other experimental results suggesting such a symmetry break. Therefore, in order to test 

whether a crystallographic symmetry break occurs at the metal-insulator transition of NaOsO3, 

we took advantage of the superior sensitivity of single crystal diffraction over powder 

diffraction methods. We performed a systematic search below the Neel temperature TN for a 

diffraction signal at positions in reciprocal space corresponding to forbidden reflections, using 

an x-ray energy of 5.2 keV, which is far from the Osmium absorption edges. This choice of low 

x-ray energy also minimizes intensities arising from “parasitic” signals due to multiple 

scattering of x-rays within the sample due to the limited number of reflections in the Ewald 

sphere. No intensity, from either crystallographic symmetry breaking or non-resonant 

magnetic scattering was observed in a reciprocal lattice scan with an acquisition time of 20 

seconds per point. This indicates the absence of crystallographic symmetry breaking and non-

resonant magnetic scattering, with NaOsO3 remaining in the same 𝑃𝑛𝑚𝑎 space group above 

and below the metal-insulator transition. Such results were subsequently corroborated by x-

ray single crystal structural determination on smaller crystallites, performed at the SNBL 

beamline at the ESRF. 

Having confirmed that no crystallographic symmetry breaking takes place across the 

metal-insulator transition in NaOsO3, we then focused our attention on the observation of 

possible changes in the electron density occurring at the metal-insulator transition. Such a 
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variation in the electron density would provide insight into whether or not a specific electron 

localization pattern occurs, e.g. charge ordering or orbital ordering, as observed in manganites 

[40-48] or nickelates [27, 39]. Such an observation would yield new insight into the nature of 

the metal-insulator transition and shed light upon the validity and, if relevant, on the nature of 

the Slater mechanism in NaOsO3. 

Therefore, we have performed resonant diffraction measurements at x-ray photon 

energies corresponding to the L3 and L2 Osmium edges (2p → 5d electronic dipolar transitions). 

Resonant x-ray diffraction was used to study selected magnetic and ATS (sometimes also called 

“orbital ordering”) diffraction peaks in NaOsO3. The possibility to tune the energy of the 

incident x-rays to the Osmium L edges provides element-specific electronic density distribution 

information that is not directly accessible with any other technique. By selecting a specific 

reflection, we are able to observe a specific component of the distorted charge density. 

 

FIG. 1. (Color online) (Top panel) Energy dependence of the intensity of the (030) forbidden 

reflection at fixed momentum transfer for selected temperatures illustrating the peak intensity 

variation across the MIT at Os L3 (left) and L2 edge (right) edges for ~90°. The x-ray absorption 

spectra (ABS) measured at the same energy range are also shown. Spectra are not corrected for 

absorption. (Bottom panel) Same as above, but for the (300) reflection. The azimuthal angle in 

this case was ~0°. 
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For the specific case of a d3 ion, and in the absence of hybridization, we expect a 

relatively weak intensity for the ATS peaks as the singly occupied t2g orbitals form a 

representation of an angular momentum of 𝐿 =  1 with zero total angular momentum [18], 

which implies almost cubic symmetry. In our experiments we have chosen to focus our 

attention on the (030) and (300) ATS reflections. At such reflections, the strong magnetic 

contribution (in the magnetically ordered phase), which would make the measurements of the 

ATS contribution challenging, is absent. Both reflections were studied above and below the 

metal-insulator transition (TN = TMIT = 410 K). The variation of the intensity of such reflections 

as a function of the x-ray energy, in the vicinity of the L3 and L2 edges is given in Fig. 1. By 

comparing the energy spectra in the metallic (> 410 K) and the insulating phase (< 410 K), we 

have found an important difference between the two (030) and (300) ATS reflections. While the 

(030) reflection displays only a gradual change of intensity as function of temperature, with no 

change in shape, the spectrum of the (300) undergoes a dramatic change across the metal-

insulator transition at TN~411K. At both the L3 and L2 edges, an extra feature appears in the 

spectra in the insulating state (for the L3 edge the relevant feature is indicated by EA in Fig. 1) 

corresponding to the inflection point of the absorption spectrum. This energy typically 

corresponds to an electronic resonance involving the unoccupied 5d orbitals, and to changes 

that could correspond to the emergence of either magnetic ordering or electron structure 

rearrangement.  

To determine the origin of the change in the spectral shape of the (300) reflection at the 

energy EA= 10.878 keV, we performed a characterization of the variation of its intensity as a 

function of the azimuthal angle 𝜓 and also as a function of the polarization of the scattered x-

rays which was then compared with the structure factor expression given by Eq. 1. The 

azimuthal angle dependence presented in Fig. 2, was recorded without a polarization analyzer 

since preliminary measurements with polarization analysis at selected azimuthal angles 

showed intensity only in the rotated 𝜎 − 𝜋′ polarization. The fact that there is no intensity in 

the 𝜎 − 𝜎′ channel indicates that “charge ordering” or “charge disproportionation” (associated 

with the K=0 term in Eq. (1)) cannot contribute to the observed (300) diffracted intensity. 

“Charge ordering” requires the presence of Os atoms in different oxidation states, whose 

scattering would interfere constructively and give a finite intensity in the 𝜎 − 𝜎′ channel. The 

fact that the Os atoms have the same oxidation state is consistent with the reported 

crystallographic structure.  
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Assuming the reported magnetic structure [16] is correct, no magnetic signal 

(contributions from rank K = 1 tensors) should contribute to the (300) reflection as defined by 

the structure factor in Eq. 1. Therefore, we consider only the contribution to the diffracted 

intensity related to the electric quadrupole K = 2 term. Applying symmetry arguments as 

described in the Appendix, one obtains the following expression for the expected azimuthal 

angle dependence for the different polarization channels of this reflection: Fs ¢s = Fp ¢p = 0 and 

𝐹𝜎𝜋′ ∝ 〈𝑇1
2〉′  cos(𝜃) cos (𝜓), where 𝜃 is the Bragg angle, 𝜓 is the azimuthal angle and 〈𝑇1

2〉′  is the 

real part of the tensor 〈𝑇1
2〉. 

The observed azimuthal intensity (Fig. 2) displays within experimental uncertainties, a 

cosine squared modulation, which is consistent with the modulation expected from the space 

group symmetry, Pnma, given that the origin of the signal is ATS (anisotropic scattering).  

However, a magnetic origin for the (300) reflection at EA cannot be excluded a priori. 

Therefore, we measured the variation of the intensity of the (300) reflection, I300(T), across the 

Néel temperature and compared it to that of the (330) magnetic reflection. Both temperature 

evolutions are shown in Fig. 3 as well as a power law fit. We note that I300(T) remains finite, 

albeit weak, above TN (see peak EA in Fig. 1). The origin of this residual intensity is the tail in the 

spectra of the neighboring resonating feature present at EB = 10.888 keV (which we associate to 

ATS scattering because of its weak temperature dependence).  

The fitting of the temperature dependence of the diffracted intensity to a power law 

𝐼 = (1 − 𝑇
𝑇𝑁

⁄ )𝛼ℎ𝑘𝑙  results in an estimate for the critical exponents, 𝛼330 = 0.72 ± 0.06 and 

𝛼300 = 1.7 ± 0.2, respectively, for the two reflections. This finding establishes that the 

temperature dependence of I300(T) and (𝐼330(𝑇))2 have the same critical behavior below TN 

within the experimental accuracy, as 𝛼300~ 2 × (𝛼330) . The two estimated critical exponents 

for the temperature dependence of the two different reflections can be used to draw 

conclusions about the nature of the diffracted intensity for the (300) reflection, namely 

whether it is of magnetic or ATS origin. The (330) reflection is of magnetic origin as established 

in Ref. [16]. If both reflections were of magnetic origin, in the simplest case we would expect 

the critical exponent for both reflections to be the same. In addition, different critical exponents 

have been measured for odd and even rank harmonic satellite reflections in some 

incommensurate magnetic 3d systems [49, 50], which arise from an incommensurate magnetic 
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structure and lattice distortions, respectively. Therefore, different critical exponents strongly 

favor an alternative origin of the diffracted intensity to a magnetic one.  

 

FIG. 2. (Color online) Azimuthal angle dependence of the (300) integrated reflection intensity at 

300 K acquired using the Pilatus pixel detector at the resonant energy EA (closed circles). The 

observed signal is consistent with a 𝜎 − 𝜋′origin (continuous line). 

To completely rule out a magnetic origin in the (300) signal, we looked for intensity in 

the π − π′ polarization channel. The presence (absence) of signal in the π − π′ channel would 

be expected in the case of a magnetic (electric quadrupole) origin. Specifically, π − π′ 

measurements were carried out at several azimuths. The absence of (300) diffracted intensity 

was in the π − π′ channel, indicates the electronic (ATS) nature of the (300) reflection at the 

energy EA. Therefore, our results suggest that, at the resonant energy EA, the (300) intensity 

reflects an induced electronic ordering when the magnetic moments become long range 

ordered. 

Having experimentally established the electronic origin of the (300) reflection, we can 

now compare the temperature evolution of the spectral features of (300) ATS reflection at 

energies EA and EB. By comparing the absorption spectra with the resonant diffraction one (see 

Fig. 1), we see that the energy EA corresponds to electronic transitions to unoccupied states 

next to the Fermi energy, while EB corresponds to electronic transitions to excited states lying 

in the (unoccupied) conductive band. Such excited states are less affected by the occurrence of 
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the phase transition, because their occupation level is not strongly affected by the temperature 

increase. Therefore the resonant x-ray diffraction spectrum at EB is not strongly affected by the 

temperature increase as seen in Fig. 1, whereas the electronic states near the Fermi level show, 

at least for the (300) reflection, a significant change. This change could reflect the opening of an 

insulating gap, which is known to occur at TN [19].  

 

FIG. 3. (Color online) Comparison of the temperature dependent intensity of the (300) ATS and 

(330) magnetic reflections at an x-ray photon energy corresponding to EA= 10.878 keV. The 

estimated critical exponents, 𝛼ℎ𝑘𝑙 for the two reflections are 𝛼330 = 0.72 ± 0.08 and 𝛼300 = 1.7 ±

0.1, respectively. In the inset, the same data in the vicinity of TN and normalized by the intensities 

of the respective reflections measured at T=395 K is shown, demonstrating the critical behavior of 

the two reflections. 
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V. FIRST-PRINCIPLES CALCULATIONS 

a. FDMNES Calculations 

The original model proposed by Slater for a metal-insulator transition does not require 

the presence of electron correlation effects or the presence of the spin-orbit interaction. To 

ascertain whether the NaOsO3 metal-insulator transition follows the Slater mechanism or not, 

we make a comparison between the experimentally observed change in the electron density 

from our resonant diffraction experiment with first-principle calculations in which the 

influence of the spin-orbit interaction and the electron correlations can be optionally taken into 

account. This possibility is offered by the FDMNES package [29, 51, 52] which is based on 

density functional theory (DFT) approach. Taking the large spatial extent of the Osmium 5d 

wave function into consideration means that the density functional theory (DFT) approach is 

appropriate to calculate the final states of the absorption process. We have therefore used the 

FDMNES package to calculate the energy dependence of the observed reflection at the Os L3 and 

L2 edges.  

By comparing the FDMNES simulations with the experimental data we can ascertain if the 

spin-orbit interaction and electron correlations are relevant to describe the physical properties 

of the material. FDMNES is an ab initio code that calculates the x-ray spectroscopic response of 

a sample in the vicinity of an absorption edge. It requires only the crystallographic structure of 

the material, as well as the magnetic structure, if applicable. It is relativistic, and the spin-orbit 

interaction and electron correlations can be selectively taken into account by introducing the 

corresponding correction terms. Therefore, it is straightforward to estimate the influence of, for 

example, the electron correlations on the spectroscopic response of the sample.  

For NaOsO3, we have assumed a G-type magnetic structure with moment parallel to the c-axis 

as reported in Ref. [16] and we have disregarded the weak ferromagnetic component [15], 

since it is negligibly small compared to the antiferromagnetically ordered moment. With 

information on the crystallographic and magnetic structure, the program computes the spin-

polarized electronic density of states of the specified absorbing atom surrounded by 

neighboring atoms within a given distance specified at the beginning of the calculation. 

Subsequently it calculates diffraction spectra for well-defined x-ray polarizations and Bragg 

wave vectors. For our simulations we have used the muffin-tin approximation, with a cluster 

radius around the resonant atom of 6 Å. The simulated diffraction spectra are corrected for self-
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absorption effects as well as the reduction in the x-ray penetration depth and the consequent 

reduction in the scattering volume that occurs as the photon energy is swept across the 

absorption edge [53].  

We have performed simulations at T=300 K, 390 K and 420 K. For the simulations at T=390 K 

and 420 K we have used the atomic positions reported in the supplementary material of Ref. 

[16]. For T~300 K we have use the atomic positions in Ref. [15]. 

It is observed (see Fig 4) that including the effect of the spin-orbit interaction, SOI (which 

applies only to the final states, since the strong spin-orbit interaction for the 2p core orbitals 

states is always accounted for by the splitting into the L2 and L3 manifolds), does not 

substantially change the absorption spectra. The green line in Fig 4 illustrates the simulated 

absorption spectra at the L3 edge for a cluster radius of 6 Å. 

We now focus our attention to the resonant diffraction spectra of the (300) and (030) 

reflections calculated at the L3 edge. We find a good qualitative agreement with the 

experimental data of the (300) and (030) reflections, respectively. FDMNES also calculates a 

cosine dependence on the azimuthal angle for the (300) reflection, which is in agreement with 

the measurements.  

Next, we checked how the simulations of the resonant diffraction spectra are influenced by 

the spin-orbit interaction, SOI. It turns out that including the spin-orbit interaction produces 

only subtle change in the simulations. The subtle differences being (comparing Fig 4a with Fig 

4b, and Fig 4c with Fig 4d): the intensities of the diffraction spectra for 430 K metallic state is 

slightly lower and qualitatively in-line with what is observed experimentally. Additionally, 

inclusion of the presence of magnetic ordering in the simulation also does not produce a 

significant change in the simulated spectra. The weak influence of the presence of magnetic 

ordering can be related to the fact that the structural input already includes the magneto-elastic 

deformations originating from the presence of long range magnetic ordering. 

For the calculations performed at the L2 edge, the agreement with the experimental data 

is similar as that for the L3 edge.  
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FIG. 4. (Color online) FDMNES simulations of the temperature dependence of the intensity 

of the (030) reflection (top line) and of the (300) reflection (bottom line). All plots show energy 

scans at fixed momentum transfer at selected temperatures and x-ray absorption spectrum across 

the Os L3 edge. All simulations were performed with cluster radius of 6 Å. Panels (a) and (b) 

display the simulations for the (030) reflection spectra excluding (no SOI) and including (SOI) the 

effect of the spin-orbit interaction (SOI). Panels (c) and (d) show simulations performed on the 

(300) reflection.  

At both edges, inclusion of the Hubbard correction term (which takes into account the 

electron correlations) also produces only subtle changes between the experimental and 

simulated spectra. At both L2,3 edges, the inclusion of the spin-orbit interaction does not 

appreciably change the simulated spectra. We can therefore infer from our simulations that 

spin-orbit coupling and electron correlations play a minor role in determining the 

experimentally observed significant decrease in (300) intensity in the diffraction spectra across 

the metal-insulator transition. As a result, the (300) spectral change can be ascribed to a 

magneto-elastic distortion occurring in the vicinity of TMI. However, it is not clear from the 

simulations if such changes are driven by the magnetic ordering directly, which would be 

suggestive of the Slater scenario. 
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One of the key experimental observations that could potentially confirm the Slater 

mechanism is the temperature dependence of the intensity of the (300) reflection at the EA 

energy, since this is proportional to the square of the intensity of the magnetic (330) peak. As 

this task lies beyond the current capability of FDMNES, we turn our attention to an atomic 

model calculation, which is described in the next Section. The advantage of such a model is that 

the temperature dependence of the (300) reflection naturally follows from an explicit 

calculation of the atomic multipole 〈𝑇𝑞
2〉 appearing in Eq (2). 

 

b. Atomic model calculation 

The main conclusion drawn in the previous section, namely the weakness of the 

electron correlation effects, motivates us to use an atomic model including multipoles, which 

are defined by discrete symmetries. This approach has the advantage of giving a direct insight 

into the physical origin of the diffracted intensity measured at Os L edges.  

The atomic model calculation first analyses the distortion modes driving the parent 

cubic structure to the observed orthorhombic one. It subsequently shows how the deformation 

of the cubic structure leads to the appearance of diffracted intensity, which violates the 

selection rules of the orthorhombic 𝑃𝑛𝑚𝑎 structure. As a next step, outlined in the Appendix B, 

we consider a medium coupling scheme to obtain the ground state wave-functions for the Os 

atom in the presence of crystal-field potential and spin-orbit coupling. Combining such results 

with a description of the exchange energy represented by a molecular-field, makes it possible to 

calculate the matrix element that gives an estimate of the quadrupole responsible for the 

intensity observed at the (300) reflection as well as its temperature dependence in the vicinity 

of the phase transition temperature. In particular, we demonstrate that an atomic model can 

well describe the (300) intensity including its temperature dependence, directly linking it with 

the appearance of the antiferromagnetic ordering.  

More quantitatively, we utilize the knowledge of the magnetic space-group Pn'ma' to 

calculate unit-cell structure factors (Appendix A) and to perform a symmetry analysis of lattice 

distortions (Appendix B and C). In the first place, we conclude that ATS scattering is due to 

quadrupoles T2
1' at (h, 0, 0), T2

1'' at (h, h, 0) and T2
2'' at (0, k, 0) for h and k odd. Note that 

the quadrupole T2
1'' is not mentioned by Calder et al. [16], most likely due to its negligible 

contribution compared to the magnetic scattering intensity from the magnetic (330) reflection. 
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In order to calculate an expression for the quadrupole we employ analytical techniques. It turns 

out that such results can be conveniently expressed taking into account the lattice deformation 

from the parent cubic phase, involving rotation and tilting of the OsO6 octahedra. Specifically, 

the lattice distortions, depicted in Fig. 5, are classified as octahedral rotation and tilt angles o 

and o (two primary order parameters), respectively, as shown in the right-hand panel of Fig. 5. 

As a consequence, the angles factorize in expressions for the quadrupoles (C3). The intensity of 

the (300) Bragg peak is successfully attributed to the first primary order parameter (octahedral 

rotation described by the angle o). 

 The quadrupole to be compared with experimental data is derived from, 

    T20T ( 
1      0        0
0     2       0
0      0        1

).                     (B2) 

After application of the transformation of coordinates in Eq. C1, one finds 

𝑇2
1′  (𝑥𝑧)  𝐹300 =  {(3/2) 𝑠𝑖𝑛 (2o) 𝑇20T}, 𝑇2

1′′  (𝑦𝑧) =  0, and 𝑇2
2′′  𝐹030  (𝑥𝑦)  =

 0. The latter results mean that the origin of the (030) Bragg peak is the second primary order 

parameter (octahedral tilting, o).  

The precise structure of the spin-orbit coupling and crystal-field potential in a medium 

coupling scheme is derived from symmetry. Likewise, the (030) intensity is accounted for by 

octahedral tilting.  

With such assumptions, it is possible to calculate the saturation value of the quadrupole 

T20 and how it is related to the average magnetic moment Sc. As outlined in the Appendix B, 

it can be shown that T20 is proportional to Sc2 and that within a molecular-field calculation, 

Sc  (1  T/TN)1/2 as the temperature approaches TN. Therefore the intensity of a Bragg peak 

(h, 0, 0) with h odd is proportional to (1  T/TN)2, as observed experimentally.  

This conclusion is also fully consistent with general symmetry arguments based on the 

Landau free-energy decomposition. The irreducible magnetic order parameter which drives the 

transition to the magnetic Pn'ma' space group is one dimensional [54] and therefore can only 

form either bilinear coupling term with time-odd quantity or linear-quadratic term with time-

even quantity transformed by totally symmetric representation of the paramagnetic Pnma 

space group. No other coupling schemes are symmetry allowed. The first option imposes the 

critical behaviour identical with the magnetic order parameter; the second one implies a twice 
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bigger critical exponent. The time-even T2
0 quadrupole does not break any symmetry and 

therefore is allowed to be coupled to the magnetic order parameter with the critical behaviour 

consistent to that observed experimentally. 

We summarize briefly our findings based on our atomic model calculation in Table 1, in 

order to explain the temperature dependence of space group forbidden reflections. First we 

examine the metallic state (T>TN). Above TN, except for the feature EA of the (300) spectra 

(denoted 𝐼300
𝐸𝐴 ), all other measured forbidden reflections have an electronic ATS contribution. 

This contribution is due to the octahedral rotation and tilting associated with the Pnma 

crystallographic structure. 

For the insulating state (T<TN), the feature EB of the (300) spectra (𝐼300
𝐸𝐵 ) and the (030) 

reflection (𝐼030) have a weak ATS intensity and spectral shape dependence, which we ascribe to 

weak temperature dependence of the secondary order parameters 〈𝑇1
2〉𝜃𝑜

′  and 

         

Fig. 5. The chemical structure of NaOsO3 (Pnma) is displayed in the left-hand panel. 

Positioning of almost perfect OsO6 octahedral can be described relative to an undistorted 

reference structure (central panel) with the b-axis normal to the plane of the diagram. The two 

angles 𝜃0 (octahedral rotation) and  𝜑0 (octahedral tilt) used in the text to define the b-axis in the 

distorted structure (left-hand panel) are illustrated in the right-hand panel. Definitions of angles 

that define the rotation and tilt of the O-Os-O axis of an octahedron relative to the crystal axes (a, 

b, c). 
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〈𝑇2
2〉𝑜

′′ . The subscript 𝜃𝑜 highlights their relationship with the octahedral rotation. Conversely, 

the strong temperature dependence of the (330) magnetic reflection intensity 𝐼330 below TN 

reflects the emergence of the antiferromagnetic ordering in the sample. Such long range 

ordering is described by an order parameter representing the average magnetic moment Sc. 

The source of 𝐼300
𝐸𝐴  below TN is a magnetically induced quadrupole T2

0T whose non-zero value 

originates from the asymmetry in the Os charge density due to the octahedral rotations. We 

have also shown that our model successfully describe the 𝐼300
𝐸𝐴  temperature dependence, which 

is proportional to Sc2.  

 

Reflection Contribution T>TN Contribution(s) T<TN Order parameter 

(300)𝐸𝐴
 none magnetically induced ATS T

2
0T ∝Sc

2
 

(300)𝐸𝐵
 ATS ATS  〈𝑇1

2〉𝜃𝑜

′  

(030)  ATS ATS 〈𝑇2
2〉𝑜

′′  

(330)  ATS Magnetism + ATS Sc 

 

Table I. Summary of the origin of the diffracted intensity for the investigated Bragg reflections 

in the vicinity of the Osmium L3,2 edges below and above the metal-insulator transition 

temperature TN determined from our atomic model. For each reflection, the source of the 

diffracted intensity above and below the Neel temperature TN is given. The last column 

summarizes the order parameters and, where relevant, its relation with the average ordered 

antiferromagnetic magnetic moment Sc. 

 

VI. DISCUSSION 

The goal of this work is to clarify the nature of the metal-insulator transition in NaOsO3, 

which has recently been proposed to be of Slater type [16]. The Slater metal-insulator 

transition mechanism relies on the following three conditions: (i) the lack of a significant lattice 
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distortion and absence of crystallographic symmetry breaking, (ii) a negligible role played by 

electron correlation effects and (iii) the opening of the insulating gap being a result of the onset 

of antiferromagnetic ordering. 

As for point (i), our x-ray single-crystal diffraction experiments indicate indeed that NaOsO3 

undergoes an isostructural metal-insulator transition across TN, satisfying the Slater 

requirements. Condition (ii) is also satisfied as the electron correlations are weak [18, 25] and 

our FDMNES simulations suggest that correlations do not influence the resonant scattering 

intensity and can be therefore neglected. Finally, condition (iii) is compatible with our 

observation of the temperature dependence of the (330) and (300) diffracted intensities, which 

reflect the magnetic and electronic ordering, respectively. In particular, the fact that the 

estimated critical exponents for the temperature dependence of these two reflections are 

correlated, indicates that the change in the Os electron density across TN is actually 

magnetically induced. Therefore, our work supports the Slater scenario for the metal-insulator 

transition in NaOsO3. The question that then arises is how exactly the antiferromagnetic 

ordering drives the sample into an insulating state. In order to answer this question, it is 

necessary to look at electronic 𝐼300
𝐸𝐴  diffracted intensity carefully and understand the change in 

its intensity across TN.  

From previous studies on distorted perovskite systems e.g. in Ca2RuO4 [55], a similar change in 

the intensity of a forbidden reflection was attributed to “orbital ordering”, without the need for 

the Slater mechanism. Here, orbital ordering refers to emergence of a broken symmetry state in 

which localized occupied orbitals form a regular pattern, arising solely from crystallographic 

symmetry breaking. In systems where the change in the lattice distortions across TMI is too 

small to detect, this is referred to as an “orbital ordering” phase transition instead of an 

otherwise apparent structural phase transition. However, in the case of NaOsO3, since there is 

no crystallographic symmetry breaking across TN, we can exclude orbital ordering, and we need 

to look for an alternative physical mechanism to explain the source of the change in the 

electronic 𝐼300
𝐸𝐴  diffracted intensity across TN.   

The most likely alternative mechanism for the emergence of 𝐼300
𝐸𝐴  below TN = TMI in the resonant 

diffraction spectra is a change in the Os 5d orbital population. Below TMI i.e. on entering the 

insulating phase, some of the partly occupied states become depopulated due to the opening of 

the insulating gap, thus allowing specific excitation channels to become available for the 
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resonant process. In order to obtain quantitative information on the change in the Os 5d orbital 

population in the vicinity of the metal-insulator transition, it is necessary to measure the 

intensity of several forbidden reflections. These forbidden reflections correspond to the 

different components of the asymmetry of the resonant ion (Os) electron density, and thus 

provide a way to reconstruct its electron density across TMI. This reconstruction process is 

usually quite challenging due to the large number of the intermediate states available for the 

core electron in the excitation process, as well as the presence of strong electron correlations in 

the systems.  However, for the case of NaOsO3, such difficulties are fortunately not so severe. 

This is because the electron correlations are weak in this 5d system and our FDMNES 

simulations suggest that such correlations do not influence the resonant scattering intensity 

and can be therefore neglected. In addition, since deformation of the OsO6 octahedra is very 

small, a simplified analytical calculation of the quadrupoles purely allowed by symmetry can be 

performed. Indeed, this simplified calculation based on our atomic model explains reasonably 

well the temperature dependence observed for the magnetic (330) and forbidden (030) 

diffracted intensities in the vicinity of TN. This model, also finds the electronic 𝐼300
𝐸𝐴  diffracted 

intensity is directly proportional to a single quadrupole component, T2
0T and that its 

temperature dependence increases with the fourth power of the average ordered magnetic 

moment Sc, as observed experimentally. Therefore, using our atomic model, we were able to 

reconstruct the change in the electron density occurring at the metal-insulator transition.  

In order to visualize this change in electron density of the Os ion across TMI, we plot the 

isosurfaces of the 5d electron density of Os ion above and below the TMI (Fig 6c and 6d, 

respectively). Since, the Os5+ 5d shell is unfilled, its charge distribution deviates significantly 

from spherical symmetry in both the metallic and insulating states. In order to plot the 

isosurfaces of 5d electron density, we first need to know the number of electrons per orbital. To 

begin with, in a localized electron picture of the charge distribution for Os5+, one would assume 

that there is one valence electron in each of the t2g orbitals as dictated by Hund’s rules. 

However, for the itinerant 5d system, one would expect substantial p-d hybridization, and a 

more realistic picture is given in Ref. [18], which is based on Local Spin Density Approximation 

(LSDA) ab initio calculations. These calculations performed for the insulating state in NaOsO3 

suggest an occupation of 0.7 electrons per orbital for majority t2g orbitals and an occupation of 

about 0.3 electron per orbital for the majority eg and all the minority d orbitals, which are 

formally unoccupied. We used these values as a starting point to plot an isosurface of the Os 

charge density in the insulating state (see Fig. 6c). In the metallic state, according to our 
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experimental observation combined with our symmetry analysis, the eg states become 

thermally populated leading to a change in the charge density towards a slightly more spherical 

shape (see Fig. 6b) with an occupation of about 0.5 electron per orbital for all the eg orbitals, as 

extracted from the symmetry analysis performed in Section Vb.  

By comparing Fig. 6b and Fig. 6c, it becomes clear that the Os electron density undergoes only a 

minor change in shape at the metal-insulator transition. This result is not surprising as the 

change in the lattice constants and the Osmium-Oxygen bonding angle are of the order of a 

fraction of a percent [16] across TMI. Nevertheless, such small changes can substantially affect 

the resonant x-ray diffraction response of the sample as has been seen from our experiments in 

combination with a detailed symmetry analysis (Section Vb and the Appendix A). Therefore 

resonant x-ray diffraction is an ideally suited technique to detect even the slightest changes 

occurring in the electron density of the resonant ion across TMI. 

 

FIG. 6. (Color online) (a) Isosurface of the 5d electron density of Os ions in the insulating 

state of NaOsO3. The isosurface colors highlight the symmetry relation between the Os ions in the 

unit cell, i.e. Os ions sitting at (0 0 1/2) and at (1/2 0 0) positions are related by a rotation about 

the c-axis of 180°. For clarity only selected Os atom and oxygen (represented as green and red 

spheres for Wyckoff positions 4c and 8d respectively) are shown. (b) and (c) are the reconstructed 

5d electron density distribution for the metallic and the insulating phases, respectively. 
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VII. CONCLUSIONS 

From our single crystal non-resonant and resonant x-ray diffraction experiments, we 

establish that NaOsO3 fulfills the prerequisites of a Slater metal-insulator transition as follows: 

first, no crystallographic symmetric breaking occurs across TMI. Second, the presence of weak 

electron correlations in the 5d NaOsO3 system has been confirmed by the ab initio calculations 

performed with the FDMNES software. Third, the antiferromagnetically driven change of Os 

electron density across TN = TMI results in the opening of the insulating gap. Specifically, it is the 

appearance of the electronic (300) diffracted intensity below TN that reflects the change in the 

Os 5d orbital population across TMI, which has been well explained by our theoretical atomic 

model.  

To conclude, our results favor the Slater mechanism as the origin of the metal-insulator 

transition in NaOsO3. 
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VIII. APPENDIX A 

X-ray and neutron Bragg diffraction experiments have established the chemical 

structure 𝑃𝑛𝑚𝑎 (#62) for NaOsO3, which is often the case for perovskite oxides, with Os ions 

using sites 4𝑎 that possess inversion symmetry, 1̅, and no more. The superstructure is due to 

the cooperative rotation and tilting of the OsO6 octahedra as in the GdFeO3-type perovskite. In 

this appendix we outline the derivation of exact unit-cell structure factors for 

(ℎ00), (0𝑘0) and (ℎℎ0) Bragg peaks.  

An appropriate electronic structure factor is, 

 ΨK
Q = ∑d exp(id • ) TK

Qd,        (A1)  

where the Bragg wavevector  = (h, k, l), and sites labelled d in a cell are occupied by Os 

ions. Universal expressions for F' (𝐸1 − 𝐸1) are written in terms of two quantities AKQ = {(ΨKQ 

 ΨK
Q)/2} and BKQ = {(ΨKQ  ΨK

Q)/2}.  

The metal-insulator transition proceeds without change to the crystal symmetry, and 

the G-type motif of Os magnetic dipoles possesses a commensurate propagation vector k = (0, 

0, 0). Data in Fig. 3 of reference [15] are evidence of weak ferromagnetism. Os ions use sites 4a 

with site symmetry 1̅ in Pnma and they are,  

  (0, 0, 0)1 : (1/2, 1/2, 1/2)2 : (0, 1/2, 0)3 : (1/2, 0, 1/2)4 , 

where arrows indicate relative orientations of dipole moments along the c-axis inferred 

from diffraction data [16]. Sites (1) & (3) and (2) & (4) are related by an anti-translation (0, 

1/2, 0)', while (1) & (2) and (3) & (4) are related by a simple body-centre translation   (1/2, 

1/2, 1/2). 

With this information one finds,  

 ΨKQ  =  [1   (1)h  l (1)Q] 

   x [TKQ  (1)h  k  l  (1)K TK
Q],      (A2) 

where h, k & l are integer Miller indices and  is the time signature. Bulk properties are 

prescribed by ΨKQ evaluated for h = k = l = 0. By taking  = 1 a ferromagnetic motif of dipoles 

(K = 1) parallel to the b-axis is allowed.  
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The result (A2) applies to the calculation of a unit-cell structure factor for magnetic 

neutron diffraction on using  = 1. Bragg peaks are attributed to magnetic dipoles. Reflections 

have been indexed by extinction rules k odd and h  l odd, and they refer to a magnetic moment 

= (0, 0, c ) [16].  

Henceforth, we focus attention on the interpretation of x-ray Bragg diffraction with 

signals enhanced from tuning the primary energy to the energy of a parity-even absorption 

event. In this instance,  = (1)K and ΨK
Q = (1)h  k  l  ΨK

 Q, while the first bracket in (A2) 

demands that (K  Q  h  l) is even. Hence, a motif of antiferromagnetic dipoles (K = 1) 

alternating along the c-axis (Q = 0) can be observed with k odd and h  l odd, in accord with 

neutron diffraction data [16]. Taking Q odd yields the rule h  l even for magnetic multipoles 

with K odd. In this case, 

 ΨKQ =2 [TKQ  (1)k TK
Q] = 2 [TKQ  (1)k TKQ*].             (A3) 

Applied to dipoles (K = 1, Q = ±1), this result says that antiferromagnetic moments along 

the a-axis are visible at k odd (Ψ1a = 42 T1
1) while ferromagnetic moments along the b-axis 

are visible at k even (Ψ1b = 42 T1
1''). Note that Ψ1a and Ψ1b are purely real. Turning 

attention to other components, one finds (ΨKQ  ΨK
Q) = 0 for (h  k  l) odd.  

The last result means AKQ = 0 for (h, 0, 0) with h odd. In consequence, corresponding 

unit-cell structure factors for unrotated polarizations F' = F' = 0. The allowed BKQ possess (K 

 Q) odd, with BK0 = 0 by definition. We find B21 = (4T2
1') and, 

 F' (E1-E1) = cos() cos() T2
1'.      (A4) 

In this (h, 0, 0) structure factor, and all subsequent structure factors, we drop a factor 4 

that comes from the number of Os ions in a unit cell. The origin of the azimuthal angle scan 

( =  0) finds the c-axis and magnetic moments normal to the plane of scattering.   

Structure factors for (h, 0, 0) that we have considered are directly proportional to 𝛹K
Q 

because the Bragg wavevector is parallel to the x-axis as depicted in Fig. 1 of Ref. [36] that 

defines states of polarization in the primary and secondary beams. Hence, B21 =  Ψ21 in the 

derivation of (4) with a minus sign due to rotation by 180° about the c-axis. For (0, k, 0) we 

must allow for a rotation of ΨKQ by 90° about the c-axis, 
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 AK
Q = i sin(Q/2) ΨK

Q and BK
Q = cos(Q/2) ΨK

Q,    (A5) 

for k odd. Non-vanishing ΨKQ possess (K  Q) even, and E1-E1 structure factors are 

determined by A11 =  (i2T1a) and B22 =  (2i T2
2''). For (0, k, 0) with k odd one finds F' = 

0, 

 F' (E1-E1) =  i cos() [(1/2) cos() T1a  i sin() T2
2''],  (A6) 

 F' (E1-E1) =  (i/2) sin(2) sin() T1
a. 

Time-even, T2
2'', and time-odd, T1

a, multipoles in the rotated channel of polarization 

differ by a 90o phase. However, the magnetic moment is observed to be parallel to the c-axis 

leading us to expect T1a  0.  

The third, and last, set of Bragg peaks we consider are indexed by (h, h, 0) with h odd 

[16]. From (A2), ΨKQ = ΨK
Q and the rank and projection of non-vanishing ΨKQ are constrained 

by (K  Q) odd. One needs, 

  AKQ = cos(Q) ΨKQ and BKQ = i sin(Q) ΨKQ.      (A7) 

to evaluate structure factors, which we choose to report as functions of AKQ and BKQ to 

ease complexity of the notation. Using unit cell lengths a  5.392 Å, b  7.608 Å [16] we find   

144.67o.  Of the three contributions to E1-E1 unit-cell structure factors, A10 and B21 are purely 

real and A21 is purely imaginary, with A21  B21  T2
1. We find, 

 F' (E1-E1) =  i sin(2) A21, 

 F' (E1-E1) =  (i/2) cos() sin() A1
0  i sin() cos(2) A2

1  cos() cos() B2
1, 

 F' (E1-E1) = (i/2) sin(2) cos() A10  i sin2() sin(2) A21.     (A8) 

The dipole A1
0  T1

0 does not contribute to diffraction in the rotated channel of 

scattering at the origin of the azimuthal-angle scan. When the c-axis is in the plane of scattering 

( = 90o) the structure factor F'(E1-E1) is a combination of T10 and T2
1, and F' (E1-E1) = 

0. Calder et al. [16] report the result F' (E1-E1) = 0 and it is likely they used  = 90o. In which 

case, data for intensity in the rotated channel are caused by the magnetic dipole and, also, a 

non-magnetic quadrupole, T2
1, that was previously omitted from interpretations of data. 

Note that (h, 0, 0) Bragg peaks are created by the real part of the same quadrupole, i.e., T2
1. 
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APPENDIX B 

In this Appendix we derive a quantitative expression for the quadrupole T20T, which is 

at the origin of the diffracted signal observed at the (300) Bragg peak. In order to do so, we first 

note that besides the large tilting and rotation of the OsO6 octahedra, causing the departure 

from cubic symmetry, the octahedral preserve their shape and are almost perfect. The variation 

of the six bond distances between O and Os is smaller than 0.4% of the largest distance, and the 

OOsO angles are 90o, to a very good approximation [15]. The large orthorhombic distortion 

leaves a hybridization gap of  1.6 eV between t2g and eg antibonding manifolds [26], in addition 

to reducing the t2g bandwidth [15]. Hence, local electronic structure can safely be assigned to 

equally occupied t2g orbitals retaining local cubic symmetry in the OsO6 octahedron. 

The axes of an octahedron depart substantially from the crystal axes, and the 

corresponding distortion, in the form of tilt and rotation of the O-Os-O axis have values o  o  

10° [15]. Taking o = 0° and o = 0° returns to the undistorted structure with orthonormal axes 

(xo, yo, zo) transforming to (a, b, c) with, 

   xo = (coso, 0,  sino),  

 yo = (sino sino, coso, sino coso),      (B1) 

   zo = (coso sino,  sino, coso coso). 

Our analysis of quadrupoles in Pn'ma' that contribute to ATS scattering shows that the 

octahedral rotation accounts for the (300) intensity. This is specifically due to the octahedral 

rotation in tetragonal P4/mbm with Os ions at sites 2a that possess site symmetry 4/m on the b-

axis (Appendix C). The quadrupole to be compared with experimental data is derived from, 

    T20T ( 
1      0        0
0     2       0
0      0        1

).                    (B2) 

This form of the quadrupole is consistent with site symmetry 4/m on the y-axis, with 

elements (𝑥𝑥)  =  (𝑧𝑧) while the element (𝑦𝑦) obeys {(𝑥𝑥)  (𝑦𝑦)  +  (𝑧𝑧)} =  0. After 

application of the transformation of coordinates in Eq. C1, one finds 𝑇2
1′  (𝑥𝑧)  𝐹300 =

 {(3/2) 𝑠𝑖𝑛 (2o) 𝑇20T}, 𝑇2
1′′  (𝑦𝑧)  =  0, 𝑎𝑛𝑑 𝑇2

2′′  𝐹030  (𝑥𝑦)  =  0. The latter results 

means that the origin of the (030) Bragg peak is the second primary order parameter 

(octahedral tilting, o ). In this case, Eq. (B2) is replaced by a quadrupole (𝐶2) that explicitly 
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displays the lower site symmetry 2/m on the x-axis contained in orthorhombic Imma. Lower 

symmetry allows off-diagonal elements in the quadrupole and non-vanishing values for 

elements (𝑥𝑧), (𝑦𝑧) and (𝑥𝑦). However, the value of (𝑥𝑧) from octahedral tilting is not a natural 

source of the temperature dependence of the (300) Bragg peak as we successfully argue in the 

remainder of this subsection.  

In our model, it is assumed that an admixture of excited terms due to the spin-orbit 

interaction can be neglected, so that we are concerned only with the ground term 4F of 

pentavalent Os. Furthermore, the spin-orbit interaction is taken to be appreciably stronger than 

the Jahn-Teller coupling and quenches the latter, to a good approximation.  

In octahedral symmetry, the ground-state of d3 is a half-filled t2g shell with a high-spin 

configuration 𝑆 =  3/2 and L = 3 (4F). Some previous studies of the d3 configuration in cubic 

symmetry were motivated by Cr3 in Al2O3 (pink ruby) [56]. This configuration is robust against 

the strength of the crystal-field energy relative to the spin-orbit coupling, which determines 

Hund's first rule. If the spin-orbit interaction is the dominant force in determining electronic 

states of an Os ion, then the total angular momentum 𝐽 is a good quantum number. Atomic 

states are |𝐽, 1/2, |𝐽, 3/2  with 𝐽 =  3/2 for 4F3/2 (d3). This coupling scheme gained favor in a 

simulation of electronic structure [57], but our measurements on NaOsO3 rule against it for this 

material. Calculations of the quadrupole T20 using 𝐽 =  3/2 in 𝐸1 − 𝐸1 diffraction amplitudes 

for L3 and L2 absorption edges differ by a factor 10 (〈𝑇0
2〉𝐿2

/〈𝑇0
2〉𝐿3

=  10), resulting in a factor 

100 difference in intensity. In contrast, our measured intensities are roughly equal at the two 

edges, and even if we consider the correction of intensity by absorption effects, this would lead 

only to a lower bound of 1/5 in the ratio. Thus, we consider a medium coupling scheme, which 

takes into account the crystal-field potential and spin-orbit coupling, and find L3 and L2 

intensities that match our measurements.  

The ground state of the crystal-field potential is an orbital singlet |2 = [|2  |2]/2 

with states |M = |L = 3, M. The orbital angular momentum in |2 is fully quenched, but it is 

made non-vanishing by a relatively large spin-orbit interaction (𝑺 •  𝑳) with positive . 

Likewise, quadrupoles that create Templeton-Templeton scattering at space-group forbidden 

reflections are proportional to . 

In this coupling scheme, the ground state of 4F belongs to the quadruplet 8 

representation of the double cubic group (the notation U' is also used for this representation 
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[58]). The representation of the group spanned by the components of a dipole is 4. Non-

vanishing matrix elements of a dipole in 8 are allowed if the direct product 8  4 contains 8, 

and  8  4 = (6  7  28). The fact that 8  4 actually contains 8 twice indicates that 

allowed matrix elements are defined by two factors. (This result is usefully contrasted with the 

direct product 5  4, say, that contains 5 once. As a consequence, a dipole in 5 can be 

mapped to a fictitious angular momentum using one unique proportionality factor.). Moreover, 

the 4 component of the direct product 8  8 is symmetric, and thus the dipole must be time-

odd for an odd number of electrons [58-63]. The representations of the group spanned by the 

components of a quadrupole are 3  5. The direct product 8  3 contains 8 once, while 8  

5 contains 8 twice. However, the quadrupole T20 that is required is unique in 3 leaving one 

proportionality factor to be determined by an explicit calculation. 

We denote by |, with  =  1/2,  3/2, the four partners of the quadruplet 8, which 

can be viewed as replacements for |J,  m used in the extreme case of a dominant spin-orbit 

interaction. Keeping in mind the aim to find an expression for the exchange energy acting on an 

Os ion in mind, we choose 

  = 1/2|Sz| = 1/2 = v, and  = 3/2|Sz| = 3/2 = u, 

where u and v are real positive numbers with u  v (actual values of the parameters 𝑢 

and 𝑣 are inferred from measurements. Formally, however, they can be related to crystal-field 

energies and eigenvalues calculated by Lea, Leask and Wolf [64]. With this line of reasoning, u 

and v are functions of a parameter x used by the authors to quantify energies and eigenvalues). 

A singular property of the 8 manifold is that a matrix element of a transverse component of a 

dipole taken between  = 3/2 and  = 3/2 can be different from zero. Applied to the dipole 

operator (𝑳  2𝑺) this property results in Zeeman states not being equally spaced. The 

quadrupole T20 is represented by the operator {3(z)2  15/4} that transforms like 3, where 

(z |) =  | and the constant 15/4= (3/2)(5/2) is the one expected for an operator space 

with maximum projections  =  3/2. The proportionality factor in T20 {3(z)2  15/4} is to be 

determined, in the same way that a reduced matrix-element in the Wigner-Eckart theorem 

must be determined by an explicit calculation. 

Identities  = 1/2|Sz| = 1/2 =  v and  = 3/2|Sz| = 3/2 =  u flow from the 

equivalence of a diad axis of rotation symmetry on the y-axis of the cubic group and time-
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reversal symmetry. A tetrad axis of rotation symmetry on the z-axis forbids off-diagonal matrix 

elements of Sz. Likewise, |T2
0| is independent of the sign of  while, 

  = 1/2|T2
0| = 1/2 =   =  3/2|T2

0| =  3/2. 

Middey et al. [20] conclude from their simulations that t2g orbitals are split by a super-

exchange due primarily to nearest-neighbour Os ions. Our exchange energy is represented by a 

molecular-field value (𝐽·Sc·Sc) with 𝐽 the super-exchange parameter. As a consequence, the 

thermal average of the quadrupole in 8 symmetry is,  

 T20T =  T20 (2/Z) {cosh(Au)  cosh(Av)},                               (B3) 

where T is the temperature, A = {𝐽 Sc/(T2)} and 

 Z = 2 [cosh(Au)  cosh(Av)],                     (B4) 

is the partition function. The factor (1/2) in 𝐴 arises because the molecular field is 

aligned with the crystal c-axis, whereas states | are defined in axes of the reference structure 

depicted in the center panel of Fig. 5. Evidently,  T20 is the saturation value of T20T. For small 

𝐴, 

 T20T   T20 {(u2  v2)/(u2  v2)2} Sc2.                   (B5) 

  

The spin moment is derived from, 

 Sc = (2/Z) {u sinh(Au)  v sinh(Av)},       (B6) 

which leads to, 

 Sc  (1  T/TN)1/2, 

as the temperature approaches TN = {(u2  v2)) 𝐽/(22)}. The intensity of a Bragg peak 

(h, 0, 0) with h odd is proportional to (1  T/TN)2, according to the molecular-field calculation.  

A calculation of the proportionality factor T20 =  = 1/2|T20| = 1/2 is aesthetically 

pleasing, because it demonstrates that T2
0 arises from spin-orbit interaction in the medium 

coupling scheme. To this end, we derive approximations to | using perturbation theory. A d3 

ground state |2;  is a product (|S,   |2) using an orbital singlet |2. Specifically, orbital 
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angular momentum acquires a value by spin-orbit mixing of |2;  and |5,  that are 

separated by an energy o, and a result 2; | Lz |2;    (8/o) is derived from first-order 

perturbation theory (an apparently similar calculation of 𝐿z for pentavalent Os in pyrochlore-

type Cd2Os2O7 omits the contribution linear in  that we report, and use of an erroneous 

relation Lz  2 understandably yields a misleading interpretation of dichroic signals [65]). 

One finds 2; |T20|2;  = 0 for all spin projections , as already mentioned. A spin-

orbit interaction creates admixtures of |2;  and |5; ', where |5 is triply degenerate in 

perfect cubic symmetry (orbital states |2 and |5 are separated by an energy 10 Dq). Addition 

of a tetragonal distortion reduces the degeneracy of |5 to a singlet state |5,  = {|2  

|2}/2, and a pair of Kramers' degenerate states, one component of which is |5,  = [(5) 

|1  (3) |3]/8. All three 5-states mix with |2; 1/2. An off-diagonal matrix element of T20 

between |2; 1/2 and |2; 1/2 is zero, because the two states are related by time-reversal 

and this quadrupole is time-even. Likewise, diagonal matrix elements of T20 are identical. After 

a lengthy calculation, we obtain, 

 T20   14(2/3) (/) 5, ; 3/2| T20 |2; 1/2  2 (/o) 5, ; 1/2| T20 |2; 1/2 

   =  () (/45) (2/3) [(7/)  (1/o)],      (B7) 

which is correct to leading order in . An energy difference (  o) is created by a 

tetragonal addition to the crystal-field potential. The negative sign in T20 applies at the L3 

absorption edge and the plus sign applies at L2.  

Several resources are used in the derivation of (B7) in addition to applications of 

perturbation theory for |. First, the reduced matrix element of a quadrupole operator (Eq. 

(73) in Ref. [35]). Therein unit tensors W(1, 1) and W(1, 3) calculated with fractional parentage 

coefficients for hole states in the d-configuration [66], specifically equation (3.8) and Table 1. 

Unit tensors are reduced matrix-elements of specific operators, e.g., 𝑺 •  𝑳 is an operator 

equivalent for W (1, 1). Matrix elements in Russell-Saunders coupling scheme are best calculated 

with an identity (D.1) in reference [35]. 

The saturation value of the magnetic moment c = Lc  2Sc  [2  (8/o)](u/2) and 

the orbital moment opposes the spin moment in agreement with Hund's third rule. Hence, an 

increase in the coupling parameter  diminishes c, a behaviour which accords with a 
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comprehensive simulation of the influence of the spin-orbit interaction on electronic structure 

[57]. Using (8/o) = 0.2, which is a typical value for orbital angular momentum induced by the 

crystal-field potential, the observed saturation moment c  1.0 implies u  0.79 [16] (published 

estimates of Lc/2Sc include  0.12 [17] and   0.09 [18]). A large covalency, which is 

anticipated in simulations of electronic structure showing strongly hybridized Os 5d and O 2p 

states [17, 18], with antiferromagnetic order causes problems for a quantitative determination 

of magnetic moments by neutron diffraction. Hubbard and Marshall discuss various 

consequences of covalent bonding depending on local crystal symmetry [67]. These include an 

apparent loss of the magnetic moment through full cancellation of unpaired spins at ligands, 

due to their symmetric placement with respect to antiparallel moments on metal ions as in 

magnetic NaOsO3 or, conversely, magnetic contamination of nominally nuclear Bragg peaks 

from less than full cancellation of unpaired spins at ligand sites. A substantial reduction of u 

from its nominal value can stem from strong p-d hybridization, evidence for which is found in 

results recorded by Jung et al. [18] from their simulation of insulating NaOsO3, with a uniform 

30% reduction in the occupation of t2g orbitals, and a similar magnitude for occupations of 

orbitals that are formally unoccupied is found. These findings support the use of u and v as 

empirical quantities. Another small reduction in the magnetic moment comes from the rotation 

and tilt of the octahedron, which is exemplified by the difference between the two structures 

depicted in Figure 5; the reduction factor is (𝑐𝑜𝑠o 𝑐𝑜𝑠o) which is likely to be a 3% effect. 

 

APPENDIX C 

We have successfully argued that diffraction at the space-group forbidden reflection 

(300) can be attributed to an octahedral rotation using P4/mbm. Likewise, diffraction at (030) 

is accounted for by octahedral tilting using Imma. Here, we present the supporting case for this 

assertion and provide additional details of the mode analysis for the distortions, namely 

rotation and tilting. 

The orthorhombic 𝑃𝑛𝑚𝑎 structure is illustrated in Fig. 5; the distorted structure that 

fits NaOsO3 is depicted in the left-hand panel, and it is derived from a reference structure in the 

center panel by rotation and tilting of almost perfect OsO6 octahedra. Angles o and o that 

quantify the rotation and tilting are shown in the right-hand panel and defined specifically in 

equations (B2). These distortions represent two distinct order parameters associated with M3+ 
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(rotation) and R4+ (tilting) irreducible representations of the parent cubic Pm3̅m (#221) space 

group. It is useful to decompose the orthorhombic structure 𝑃𝑛𝑚𝑎 in terms of these primary 

order parameters and consider them separately. This approach reveals the distortions relevant 

to electronic properties discussed in the manuscript. The M3+ (𝜂𝑀 , 0, 0) and R4+ (𝜂𝑅 , 𝜂𝑅 , 0), order 

parameters have tetragonal 𝑃4/𝑚𝑏𝑚 and orthorhombic 𝐼𝑚𝑚𝑎 symmetries, respectively. 

Specifically, 

 for octahedral rotation: 𝑃4/𝑚𝑏𝑚, basis =  {(0, 0, 1), (1, 0, 0), (0, 1/2, 0)} with Os ions at 

sites 2𝑎 and site symmetry 4/𝑚 on the b-axis, and, 

for octahedral tilting: 𝐼𝑚𝑚𝑎, basis = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} with Os ions at sites 4𝑎 

and site symmetry 2/𝑚 on the a-axis, with basis vectors expressed in terms of an orthorhombic 

𝑃𝑛𝑚𝑎 cell. 

Quadrupole contributions engaged in Templeton-Templeton scattering using an 

𝐸1 − 𝐸1 event are, 

        𝑇2
1′  (𝑥𝑧) at (ℎ, 0, 0);  𝑇2

1′′  (𝑦𝑧) at (ℎ, ℎ, 0); 𝑇2
2′′  (𝑥𝑦) at (0, 𝑘, 0).    (C1)  

The quadrupole for octahedral rotation using P4/mbm is provided in the main text in 

equation (B1). The corresponding quadrupole for Imma with rotation symmetry 2/m on the a-

axis is, 

(
𝑝   0   0
0   𝑞   𝑟
0   𝑟   𝑠

),                                                                  (C2) 

with trace (p  q  s) = 0. Rotations using angles o & o defined in (B2) preserve the 

condition on the trace, and the element (yz) = r when rotation angles are set to zero. Complete 

results are, 

 𝑇2
2′′  (𝑥𝑦)  =  (1/2) 𝑠𝑖𝑛o[(𝑞  𝑠) 𝑠𝑖𝑛(2o)  2𝑟 𝑐𝑜𝑠(2o)], 

 𝑇2
1′   (𝑥𝑧)   =  (1/2) 𝑠𝑖𝑛(2o) [𝑝  𝑞 𝑠𝑖𝑛2o  𝑠 𝑐𝑜𝑠2o  𝑟 𝑠𝑖𝑛(2o)], 

     𝑇2
1′′  (𝑦𝑧)  =  (1/2) 𝑐𝑜𝑠o[(𝑞  𝑠) 𝑠𝑖𝑛(2o)  2𝑟 𝑐𝑜𝑠(2o)].        (C3) 

Dependence on o and o in these expressions factorizes, because the two angles are 

associated with two distinct order parameters. 
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