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Cornac: Tackling Huge Graph Visualization with
Big Data Infrastructure

Alexandre Perrot and David Auber

Abstract—
The size of available graphs has drastically increased in recent years. The real-time visualization of graphs with millions of edges is a
challenge but is necessary to grasp information hidden in huge datasets. This article presents an end-to-end technique to visualize
huge graphs using an established Big Data ecosystem and a lightweight client running in a Web browser. For that purpose, levels of
abstraction and graph tiles are generated by a batch layer and the interactive visualization is provided using a serving layer and
client-side real-time computation of edge bundling and graph splatting. A major challenge is to create techniques that work without
moving data to an ad hoc system and that take advantage of the horizontal scalability of these infrastructures.
We introduce two novel scalable algorithms that enable to generate a canopy clustering and to aggregate graph edges. These two
algorithms are both used to produce levels of abstraction and graph tiles. We prove that our technique guarantee a quality of
visualization by controlling both the necessary bandwidth required for data transfer and the quality of the produced visualization.
Furthermore, we demonstrate the usability of our technique by providing a complete prototype. We present benchmarks on graphs with
millions of elements and we compare our results to those obtained by state of the art techniques. Our results show that new Big Data
technologies can be incorporated into visualization pipeline to push out the size limits of graphs one can visually analyze.

Index Terms—Computer Society, IEEE, IEEEtran, journal, LATEX, paper, template.
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1 INTRODUCTION

The beginning of the 21st century marked what is now called
the “digital age”. It corresponds to an explosion of the available
digital storage space, mainly in the form of digital disks and
computer hard drives. All this available storage allowed to save all
the data previously lost and to consider generating and recording
much more. This is the phenomenon called “Big Data”.

With it emerged new needs for data storage and analysis and
new technologies to fulfill those needs. The amount data collected
is such that a centralized storage solution is not suitable, leading
to the emergence of data centers, huge warehouses filled with
computers ready to store and process huge amounts of data. On
the software side also, specialized solutions were designed, mainly
in the domain of distributing computing. The leading solution
and de facto standard solution is Hadoop, which combines both a
distributed file system called HDFS and a distributed computing
framework called MapReduce. The collection of raw data is
now mainly done through such systems and directly stored in a
distributed environment. With this in mind, classical centralized
analysis and visualization solutions would require to fetch all
the data locally, limiting their possible application. Using the
already distributed nature of the collected data would allow to
more efficiently process the data without having to transfer it.

Data collected this way can be of many different types, such
as raw text, URLs, images or social media posts. Furthermore, it
is not known in advance what information is to be extracted. A
popular way to model data without a predefined structure is to
use a graph. Social networks, commercial products review, sales
and recommendations or financial transactions are good examples.
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Thus, the arrival of “Big Data” leads to an increase in the number,
variety and size of available graphs.

The huge amount of data to be displayed does not only lead
to problems in terms of screen resolution, but also in terms of
information that the user can acquire in a single visualization. A
standard screen has only a few million pixels. This is significantly
less than the amount of space needed to accurately represent a
graph with several million nodes. Indeed, to be distinguished,
nodes should, at the very least, not occupy adjacent pixels. With
a lower bound of 9 pixels per node, only 200K nodes could be
displayed on a resolution of 1920×1080. Moreover, such a small
screen size does not allow all the visual variables associated with
graph visualization, such as size, color or shape, to be mapped.
When considering edges, this simple observation is reinforced.
Although they may cross, edges will need more pixels to be
displayed in an adequate fashion. An edge requires at least the
screen distance between its extremities. The average distance
between two random points on the screen is on the order of the
screen width. Thus, without overlap, only a few thousand edges
can be drawn on the screen. Considering that edges can overlap
and that a good graph drawing algorithm should generate more
short edges than long edges, this limit can be mitigated somewhat.
With those constraints in mind, a good bound for the largest graph
that can be shown on a 1920×1080 screen would be approximately
1K nodes and 10K edges. This shows that big graphs cannot be
displayed as-is, even if the technology is able to provide decent
framerates.

To visualize graphs with several million nodes and edges,
aggregation is necessary. This step should convey information
from the underlying full-size graph, while allowing real-time
representation and scaling the number of elements to a size that
the screen can display.

In this paper, we present a complete method for visualizing
huge graphs whose drawing is already computed. We incorporate
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the Big Data infrastructure into our visualization environment.
Our method draws from existing multiscale visualization tech-
niques and uses the Big Data infrastructure, as both a computing
and a storage platform, to scale up. This enables us to store,
compute and retrieve huge graphs with hundreds of millions of
elements. Thanks to the horizontal scalability provided by the
Big Data cluster, the only limit to the size of visualized graphs
is the size of the cluster. We contribute a fully distributed and
scalable multilevel aggregation technique, implemented on Spark.
The visualization always takes place with a bounded number of
elements on the screen, thus guaranteeing the client performance.
The visualization client exploiting this architecture is implemented
using Web technologies. It incorporates a variation of Kernel
Density Estimation (KDE) edge bundling to reduce visual clutter.

The paper is organized as follows. First, we present previous
publications about multiscale visualization and visualization on
the Big Data infrastructure. We then explain the method used to
generate the levels of detail, giving benchmarks of our imple-
mentation on Spark and GraphX. Finally, we explain how we
conceived the visualization client to allow interaction with the
generated hierarchy and give an example with the Panama Papers
graph.

2 PREVIOUS WORK

Multiscale visualization has been widely studied. The core idea
of multiscale (also known as multilevel) visualization is to pro-
duce several abstractions of the base dataset. Generally, this is
accomplished by using a clustering algorithm. This step is often
recursive, with the same algorithm being used to generate the
next abstraction from the current one. This visualization paradigm
is tightly linked to Shneiderman’s mantra [3], providing the
“overview” and “details on demand” parts.

Quigley and Eades [4] coined the idea that large graphs could
be represented at a higher level of abstraction to grasp their
structure. They draw graphs using a force-directed algorithm and
a recursive space decomposition. This decomposition can then
be used as a geometrical clustering, in which each level of the
decomposition is a geometrical abstraction of the starting graph.
Their technique computes both the drawing and the clustering
at the same time, so it does not leave the option to change the
drawing algorithm depending on the type of the graph.

Auber et al. [5] proposed the use of this type of visualization
for small world networks. They show that the nature of small
world networks is well suited for recursive clustering and multi-
scale visualization. Using an edge strength metric, they produce
a clustering by removing weak edges. Each remaining connected
component is considered as a cluster. Recursively applying this
technique gives multiple abstraction levels. Furthermore, they
propose the production of quotient graphs from this clustering
for easier visualization. This technique would unfortunately be
difficult to apply to non-small-world graphs without finding an
adequate edge metric.

The adequacy between small-world networks and multiscale
visualization was also demonstrated by van Ham and van Wijk [6].
In this work, the graphs are drawn using a custom force-directed
algorithm. In the visualization, nodes are rendered as 3D spheres
with a constant screen size. When zooming out, nodes draw closer
and spheres begin to intersect, creating a visual fusion of nodes
and highlighting clusters. This technique is then extended with
geometrical clustering based on the Euclidean distance between

nodes, enabling several levels of abstraction for a graph. Finally,
interaction techniques dynamically change the abstraction shown
in an area of interest. Scaling this type of techniques to large
graphs requires non-trivial work to produce an acceptable aggre-
gation, since it depends on a custom drawing algorithm.

Similar ideas were extended by Zinsmaier et al. [7]. They
proposed the use of Kernel Density Estimation (KDE) [8] to enable
the multiscale visualization of large graphs. The visualization of
the nodes’ density highlights the clusters. Edge endpoints are then
moved to the nearest local maximum of the density function. The
combination of those two techniques creates a visual aggregation
of nodes into dense clusters based on geometrical proximity and
routes edges between those dense clusters. When zooming in, the
clusters fall apart and a fine grained structure is revealed. KDE is
known to be a good representation for large point sets, because
it does not suffer from overplot. However, its computational cost
results in trouble scaling up with the number of points.

Abello et al. [9] proposed a complete system for multiscale
visualization. Clustering is precomputed on the desired graph.
Users can then interactively explore the graph by expanding and
contracting clusters. The system treats the amounts of screen
space, main memory and disk space as finite resources, that must
be carefully managed. The whole aggregation and visualization
process is guided by the amount of resources available. However,
this technique recomputes the layout for the visible graph each
time nodes are added or removed.

The TugGraph system [10], by Archambault et al., enables the
exploration of a graph using a precomputed hierarchy and com-
putes a drawing on the fly for the current state of the visualization.
The navigation in the hierarchy is controlled by an antichain in the
cluster tree.

More recently, Nachmanson et al. [11] used the online map
metaphor to navigate large graphs. They took two elements from
online map viewing: tiling and filtering. Tiling is a spatial indexing
scheme that is organized as a pyramid of squares with decreasing
size and has become popular in recent years. Filtering the graph
enables only the most important elements to be shown to the user.
The less important elements will be visible when zoomed. This
method has trouble scaling to large graphs, with a computing time
of 6 h for a graph with 38K nodes and 85K edges.

A comparable tiling scheme was used by Elmqvist et al. [12] to
explore adjacency matrices. This spatial decomposition was very
adequate, due to the space-filling nature of adjacency matrices.

Useful techniques and guidelines for multiscale visualization
have been compiled by Elmqvist and Fekete [13]. In their article,
they formalize several concepts stemming from previous publica-
tions. Most notably, the concept of entity budget emphasizes the
need to limit the number of visual entities displayed, both to keep
interactive frame rates and avoid overflowing the user’s perception.

The increasing size of graphs to be visualized calls for tools
outside the classical desktop visualization paradigm. To this end,
parallel and distributed computing can help a precomputation
phase for multiscale visualization or graph drawing. For exam-
ple, the commercial system Graphistry 1 uses a GPU cluster to
compute graph drawings and analytics. Recently, a few frame-
works emerged enabling very fast computations on graphs with a
moderate size machine, such as GraphCHI [14], X-Stream [15] or
Chaos [16]. While these system achieve very good performance
on many graph algorithms, using them to process data stored in

1. https://www.graphistry.com/
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Fig. 1: The system’s architecture. Data is first stored in the HDFS distributed file system. Graph aggregation of this data is implemented
on top of Spark [1] and GraphX [2]. The result is stored into the HBase distributed NoSQL database. The visualization client requests
visible parts of the graph on the fly through a front server. It implements several interaction techniques to reduce visual clutter.

the cloud requires to transfer the dataset on a client computer
before reinjecting the result into the cloud storage. Furthermore, a
user might not want to install, configure and maintain yet another
specialized system for a single purpose.

The Big Data infrastructure has gained popularity in recent
years as a general computing platform, especially with the emer-
gence of the Apache Hadoop ecosystem and its implementation
of MapReduce [17]. Hadoop v2 introduces YARN (Yet Another
Resource Negotiator), which serves as a resource manager for
the entire cluster. This opens the Hadoop platform to run many
versatile applications.

Perrot et al. [18] have shown how the Hadoop ecosystem can
be used to scale existing visualization techniques to handle more
data. Namely, they use Spark to precompute levels of detail for
a density visualization. The visualization can then be browsed
interactively through a Web browser. Their system comes with
guarantees toward the amount of data transferred on the network,
which helps interactivity.

For graphs more specifically, the Big Data ecosystem has
been used for graph drawing. Arleo et al. [19] implemented
a spring-embedder [20] on top of Giraph and then a multi-
level force-directed algorithm [21]. Their algorithm uses edges
to pass information about neighbors, using Pregel. The distance
that messages are allowed to travel in the graph is a parameter.
In the article, results are shown with distances of 2 and 3. They
emphasize the small financial cost of their algorithm on popular
PaaS (Platform as a service) providers, such as Amazon AWS.
These services give access to Big Data infrastructure in a few
seconds. The total price depends on the amount of resources used
and the total time.

Hinge and Auber [22] used Spark to implement a custom
force-directed algorithm, with a multi-level approach [23]. Their
algorithm is especially designed for the Big Data infrastructure,
considering that data is no longer collocated. This entails that
computing all node pair distances is very expensive in this en-
vironment. To overcome this limitation, the authors rely on an
approximate calculation of repulsive forces using centroids as
representatives for nodes.

Infrastructures such as Hadoop are especially interesting for
visualization systems, as they easily enable the creation of a
visualization-as-a-service platform. Such a platform would enable
many concurrent users to process, store and visualize different
big graphs at the same time. Often, in addition to the graph
structure, metadata must also be stored for other analysis purposes.
Extracting data from the cluster to process it on a single computer
would significantly hinder the efficiency of single machines sys-

tems. Furthermore, this infrastructure can easily be shared with
other applications depending on user needs. Sharing a cluster
between several types of workloads has the advantage of providing
a unified place for data collection, storage, analysis and retrieval,
eliminating the need to extract data from one system to load it into
another. This type of shared repository is commonly known as a
data lake. Finally, using a Big Data cluster comes with out-of-
the-box data replication, computation fault-tolerance and enables
horizontal scalability (i.e., being able to add new machines to the
cluster to process more data).

3 OVERVIEW

Our approach aims at providing a way to interactively explore
large graphs whose drawings are already computed. This separa-
tion between the drawing step and the abstraction generation step
allows us to change the algorithms used in one without affecting
the other. Thus, our method can be general enough to be applied to
many kinds of graphs. Drawing large graphs is outside the scope
of this article, so we consider the drawing (i.e., node positions) to
be given as an input. It exists a rich litterature on large graph
drawing. For instance, Hadany and Harel [24] introduced the
basis of multi-scale algorithm, [25], [26], [27] presented several
distributed algorithms and [19], [21], [22] presented the first
working algorithms on Big Data infrastructure. We refer the reader
to the handbook of graph drawing [28] for more information on
that topic.

Multiscale visualization has proved its efficiency at handling
large graphs [6], [7], [9] and large data in general [18]. We want
to adapt the existing techniques to the new sizes of graphs and the
new Big Data ecosystem.

We mainly build on the works by Perrot et al. [18], Nachman-
son et al. [11] and Zinsmaier et al. [7] to handle large graphs in
the Big Data infrastructure. Our technique consists of generating
several levels of detail as abstractions of the graph to visualize.
To accomplish that, we aggregate both nodes and edges of the
graph. Each level generated will then be stored in a distributed
database. A lightweight client requests data for visible parts on the
fly for interactive visualization. The client is also responsible for
rendering the visualization and computing optimizations to reduce
visual clutter. Edge bundling is implemented in real time, along
with neighborhood highlighting. See Figure 1 for an overview
of the whole architecture. Our system is built around Big Data
technologies, of which Hadoop, whose mascot is an elephant, is
the de facto standard. The system is thus named Cornac, i.e. “a
person who drives an elephant”.
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To handle node aggregation, we use geometrical clustering,
i.e., grouping nodes considered to be too close to each other.
This type of clustering has been used in several publications [4],
[6], [7]. We use the same general Canopy Clustering algorithm
as in [18], but present a new implementation using well-known
distributed graph algorithms. Indeed, the version presented in [18]
suffered from load balancing problems and could generate visual
artifacts due its canopy selection being separated in two phases.
We also implement it using GraphX [2], the graph library part of
Spark [1], [29].

To handle edge aggregation, we combine different techniques.
First, there is a natural edge aggregation when nodes are grouped.
Edges whose endpoints are grouped together are no longer visible.
However, they can be displayed as loops or the node can reflect
the structure of the underlying subgraph. Two edges with the same
source and target after node aggregation are merged. To ensure a
tight bound on the number of edges displayed, long edges are
further aggregated.

Each level of detail is then divided into tiles for indexing.
Tile indexing comes from online map applications and has already
been used for graph navigation in [11]. We define our tile indexing
as follows:

• Each tile is a square. By convention, a single tile corre-
sponds to a fixed screen area of 256px2.

• The top-most level of the aggregation hierarchy is num-
bered 0 and has only a single tile. Each level is then
numbered with increasing numbers.

• Each tile of level i− 1 corresponds to 4 tiles of level i.
Level i thus has 4i tiles in total.

• The numbering of tiles begins in the bottom-left corner
with (0,0) and increases. Level i thus has tiles up to
(2i,2i).

The lightweight client uses the Fatum library [30] to render the
graph. Fatum has been designed to be able to display a hundred
thousand visual elements at 60fps in a web browser, using WebGL.
The aggregation process ensures that this amount of data will not
be reached, so it ensures a good framerate for the visualization.
This leaves time to use costly interaction techniques without
compromising the framerate.

4 GRAPH AGGREGATION

To generate the levels of detail, the algorithm proceeds in an
iterative bottom-up fashion. Levels are numbered in a top-down
order, so aggregation starts at level imax and ends with level 0.
Every level corresponds to a grouping distance di. The process
of generating a level can be decomposed into two phases. First,
it aggregates nodes closer than di. Edges are then aggregated
based on the result of this node aggregation. The output is a
new graph, where each node and edge is weighted by the number
of elements they represent. The whole process is recursive, i.e.,
level i+ 1 is taken as the input to compute level i. Every step
of the process has been primarily designed to be executed in a
distributed environment. It is implemented on top of Spark, which
was designed to handle iterative computation and is thus well fitted
for the aggregation step. Moreover, Spark comes with a graph
computing library, called GraphX.

4.1 Geometric aggregation
To be able to explore the entire graph, a certain number of levels of
detail must be computed. This number is determined by the extent

to which nodes are aggregated at each level. The final objective
is to keep no more than N nodes at level 0. Each level i should
then have no more than 4iN nodes. This number N is given as
the input to the aggregation process. At each level of aggregation,
nodes closer than di are grouped. As shown in [18], there is a
direct relationship between the number of nodes to keep and the
grouping distance. By knowing the bounding box of the graph, it
is easy to determine the distance d0 such that aggregating with d0
will keep no more than N points. Each subsequent level i will use
d0/2i as its grouping distance. The total number of levels in the
hierarchy is now determined by the minimum distance between
two points in the original dataset, which we call dm. By definition,
no two points are closer than dm, so it is not necessary to aggregate
with smaller distances. The total number of required levels is
dlog2(

d0
dm
)e. It follows from this formula that it is unnecessary

to know dm exactly; a 2-approximation is sufficient.
When level i has been aggregated, no two points are closer

than di. This means that the input data for level i− 1 will also
not contain any two points closer than di. This property is very
important for the ability to maintain good load balancing and
guaranteeing that operations run only on a constant number of
points. It enables the assumption that several steps of the process
are completed in constant time. Without loss of generality, we now
describe only the process of generating a single level.

4.2 Node Aggregation

The objective of node aggregation is to group close points by
implementing a variation of canopy clustering [31], in which the
two distances used by canopy clustering are equal. To avoid con-
fusion, we call this variation unit disk clustering. Perrot et al. [18]
proposed an implementation using Map-Reduce and Spark by
partitioning the data into strips, and performing local computations
in each strip before a merging phase. As explained by the authors,
this approach has load balancing problems when many points
become clustered in a single strip. Better load balancing could
be achieved by knowing the point distribution and adapting the
strip partitioning accordingly. However, the authors use it only on
geographical data, in which the point distribution can be assumed
to be sufficiently uniform.

We propose a novel algorithm for unit disk clustering whose
load balancing is not sensitive to the point distribution. It is thus
better suited for graph visualization. Indeed, in the context of our
algorithm, no assumption can be made about the point distribution,
because it depends on the drawing algorithm used. This version
can be decomposed into two phases: finding pairs of points that
are closer than di and choosing representatives meeting the two
following criteria. Representatives must be separated by at least
di. In addition, non-representatives must not be farther than di
from at least one representative.

The problem of choosing representatives in a set of points
based on Euclidean distance is a spatial problem. However, it can
easily be transformed into a graph problem. Finding pairs of points
closer than di corresponds to a unit disk graph construction. A
unit disk graph (UDG) is a graph whose edges link vertices if
they are closer than a unit distance. With the unit distance set
to di, the edges of the unit disk graph are the desired pairs of
points. Once the graph is computed, the representative election
step directly maps to a well-known graph problem: finding a
maximal independent set (MIS). In a graph, an independent set
is a set of vertices such that no two neighbors are in the set. It
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(a) (b) (c)

(d) (e) (f)

Fig. 2: The steps of the node aggregation process. The aggregation distance is exaggerated compared to a real case. (a): The original
graph to aggregate. It contains some particular subgraphs : a clique, a tree and a chain. (b): Unit disks on top of the graph. The radius
of the disks is half of the aggregation distance. A conflict arises when two disks intersect. (c): The unit disk graph generated on top of
the original graph. Blue edges represent pairs of nodes closer than the aggregation distance. Notice that some edges did not exist in
the original graph. (d): Result of the Maximal Independent Set algorithm for representative election. Bigger nodes are representatives.
(e): The same MIS, shown on the original graph. Notice that both extremities of the hightlighted edge in the bottom left corner are
aggregated on a different node, leading to the creation of a new edge. (f): The final aggregated graph. Only vertices in the MIS have
been conserved. Edges have been merged accordingly. Notice the aggregation of the subgraphs.

is maximal if the addition of any vertex to the set violates this
property. An MIS satisfies the criteria for unit disk clustering.
Because it is an independent set, the representatives will be further
apart than di, and because it is maximal every node is closer than
di to a representative.

Transforming the original spatial problem into a graph prob-
lem enables remaining in a graph environment, and the implemen-
tation will benefit from distributed graph processing optimizations.
Figure 2 shows an overview of the node aggregation process.

As in [6], the graph topology is not considered for the aggrega-
tion. It has already been considered when computing the drawing
of the graph. Thus, the node aggregation is purely geometrical.
Overplotting in the layout will be reflected in the aggregation
by merging unconnected nodes. However, this ambiguity was
introduced by the layout algorithm and would also have been
present when visualizing the entire non-aggregated graph. This
also means that the generated hierarchy is not path preserving [10].

4.2.1 Implementation
Unit disk graph construction: To build the unit disk graph,

we detect the pairs of points closer than the unit distance di. The
detected pairs will constitute the edges of the unit disk graph. To
minimize the number of distance calculations, we partition the
points using a regular grid. The resolution of the grid is di. Now,
it is necessary only to compute distances with points that fall into

the same grid cell, or one of the eight neighboring cells. Because
no two points are closer than di+1, it is straightforward to show
that there are no more than a constant number of points in those 9
cells. The total number of cells generated is O(n), but they can be
treated in parallel and independently.

In a distributed environment, it is inefficient and difficult
to access neighboring cells. Instead, points are duplicated into
the nine cells needed, such that each cell contains all necessary
information for the distance calculation. For each cell, distances
are computed between all pairs of points assigned to the cell.
Because there is only a bounded number of such points, this
operation is in O(1) time complexity. The pairs of points closer
than di form the set of edges to build the unit disk graph. The total
time to build the graph is O( n

k ) when distributing on k nodes.
Maximal Independent Set: Maximal Independent Set se-

lection has received a great deal of attention, and many parallel and
distributed algorithms exist to solve it. The best-known algorithms
are described by Luby [32] in the PRAM (Parallel Random Access
Machine) computation model. The key idea of those algorithms is
to send messages about the neighbors through the edges. Each
vertex can then decide if it can safely be selected. MIS has also
been widely studied in the context of distributed algorithms. In
particular, we use a variation of Luby’s PRAM algorithm in a
distributed environment by Métivier et al. [33] in which each node
generates a random number ∈ [0,1] at each iteration. A node can
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then be added to the MIS if its value is a local minimum. This
version is known to take log(n) iterations on average to find an
MIS.

The way the algorithm works by passing messages between
vertices and making decisions at nodes is very similar to one of the
leading distributed graph processing paradigms, called Pregel [34],
which is based on the Bulk Synchronous Parallel execution mo-
del [35]. Pregel is used to conduct iterative computations on a
graph. The user provides functions to generate messages that are
applied at each edge and to aggregate messages at each vertex. For
this reason, Pregel is often designated by the phrase “Think like a
vertex”. An implementation of the Pregel model is available in the
GraphX library [2]. The proximity between Métivier’s algorithm
and Pregel makes it easy to implement in this paradigm. However,
it is not straightforward. Indeed, the original algorithm works
with several types of messages and phases, which is impossible
in Pregel. To implement this algorithm in Pregel, the phases must
be fused into a single unified phase. Note that this will not changed
the expected number of iterations and exchanged messages.

First, we define the selection state for a vertex. Each vertex
can be in one of three states. It is unselected, selected or has a
neighbor selected. Of course, every vertex starts in the unselected
state. For every iteration, the messages passed from each vertex
to its neighbors are composed of the current state of the vertex
and the random number generated by this vertex for the current
iteration. An unselected vertex changes its state to selected if
its random number is less than all the random numbers from its
neighbors. A non selected vertex also changes its state to neighbor
selected if one of its neighbors sends selected as its selection state.
Messages are generated only towards unselected vertices, because
only those vertices are still active in the process. The process
stops when no more messages are generated. Once the selection is
complete, unselected vertices are filtered. Their weight is then
added to the closest representative. This gives a subset of the
original points, which does not contain nodes that are neighbors
in the unit disk graph. This means that it does not contain nodes
closer than di.

4.3 Edge Aggregation

First, there is a straightforward edge aggregation when nodes are
grouped. Edges between grouped nodes are transformed into loops
or are not shown at all. There can also be multiple edges between
the same vertices, which are merged into a single weighted edge.

Unfortunately, aggregation by edge merging does not reduce
the bound on the number of edges, which can still be considerably
high compared with what can be transferred on the network and
rendered at interactive framerates. Indeed, by keeping N points,
the number of edges can be as high as N2. Furthermore, when
zooming in the visualization, the number of nodes on the screen
is bounded, but the number of edges is not. A visible node can be
linked to every other node in the graph. This can lead to every edge
in the graph being displayed, even on detailed views. Ensuring a
tighter bound on the number of displayed edges is essential to
scale to bigger graphs in terms of both technical capability and
visual clutter.

Angular aggregation for long edges: We distinguish two
types of edges: short and long edges, as detailed on Fig 4. Short
edges are not aggregated further. Long edges are edges whose
endpoints will not both be visible at the same time. The number
of short edges is already bounded by the number of visible nodes.

Since there is a constant number of visible nodes, the number of
short edges is O(n), with respect to the total number of nodes.
Long edges, however, do not have a tight bound, because they
can exist between every vertex. The problem is that long edges
introduce visual clutter and convey less information than short
edges do. The only information that can be visually derived
from long edges is that there is a connection between a visible
node and some other invisible node in the direction of the edge.
Furthermore, many long edges heading in the same direction do
not add information, compared with a single one of those edges.
The only important information from long edges that must be kept
is their rough direction.

For this reason, it is useful to aggregate long edges by angular
sector. The number of sectors can be selected as an input to the
algorithm and should be a small constant. There will be only a
single representative edge selected in each sector. Representative
edges follow the same criteria as representative nodes, but use
angular distance rather than Euclidean distance. If we consider
S angular sectors, this means that two representatives will be
separated by at least 2π/S radians and that every edge will
be separated from its representative by less than this angle. In
addition, there are no more than S long edges per node. The weight
of the representatives will reflect the number of edges aggregated.
This technique is similar to canopy clustering but considers angles
instead of Euclidean distance. This is why we call it angular
canopy clustering. One advantage of using a representative is that
the resulting edge already exists. Thus, edges are only removed,
and no new edge is being added by the angular aggregation,
avoiding confusion by hinting at a non-existing connection.

For a given node, no more than one short edge per node will
be visible at the same time. The number of short edges per node
is thus O(N). The number of long edges per node is bounded by
the number of angular sectors chosen. In total, there are no more
than O(N +S) edges per node. Thus the total number of edges in
the graph for a given level is O(n(N +S)) = O(n).

5 BENCHMARKS

To test the efficiency and scalability of our approach, we ran
the full distributed aggregation step on several graphs. We have
selected the four biggest graphs from the 9th DIMACS challenge2.
They represent the road network of the USA. We were also
able to obtain the graph of the full European road network in
the same format3, based on data from OpenStreetMap4. Table 1
shows the number of nodes and edges of those graphs, along
with the number of levels generated with N = 1000. Using such
geographical graphs for our benchmarks enables us to verify the
validity of our approach, since the expected output is well-known.

We ran the benchmarks on our lab’s Big Data infrastructure,
composed of 16 computers. Each computer has 64GB of RAM
and 2×6 hyperthreaded cores running at 2.1GHz and is linked by
a 1Gb/s network. During program execution, only 15 computers
are used as worker nodes, the last one being the master node.
Testing the horizontal scalability of our algorithm was achieved
by varying the number of executors used for each run. In Spark,
an executor is the worker program. A Spark job can be launched
with a set number of identical executors. An executor can use
several processors of the host machine. This enables scalability to

2. http://www.dis.uniroma1.it/challenge9/download.shtml
3. http://i11www.iti.uni-karlsruhe.de/resources/roadgraphs.php
4. http://www.openstreetmap.com/
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(a) (b) (c)

Fig. 3: (a): Overview the east part of the full road network of the USA (USA-FULL). Big cities, like New York and Chicago clearly
appear. In this type of network, a bigger density of nodes corresponds to more road intersections, which is to be expected in big cities.
(b): View of the full road network of Europe (OSM-EUROPE). While the original graph is quite big, the visualization is still interactive
thanks to the aggregation step. (c): Two star structures in a web graph from [36]. The bundling and edge color help emphasize the star
structure. One can also see nodes linking the two stars in the middle.

(a) (b)

Fig. 4: (a): Distinction between the short and long edges. Only
edges of the central node are shown. Short edges have both
endpoints visible, wheras long edges extend to a more distant
part of the graph. Long edges have a lower angular resolution
and induce visual clutter. (b): Result after long edge aggregation.
Only long edges in bold are conserved. They convey the same
information, i.e., connectivity with a distant part of the graph, but
visual clutter is reduced.

be tested more finely than by adding computers to the cluster. In
this benchmark, each executor has 2 cores and 4GB of memory.

Figure 5 shows the results of the benchmarks for the five
graphs. Time includes the full aggregation step and insertion into
the HBase table. Due to its size, we used more executors for the
OSM-Europe graph benchmark.

First, we can see that our algorithm has near-perfect horizontal
scalability. Before reaching a threshold, doubling the number
of executors enables the computing time to be halved. A very
good vertical scalability can also be observed, because doubling
the graph size with the same number of executors doubles the
computational time. Those observations result from the great care
that was taken to ensure that many steps run in O(n/k).

The very good scalability exhibited does not prevent the
computational time from reaching a threshold after which adding
more computers does not induce any significant benefit. However,
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Fig. 5: Results of the benchmarks on five road graphs. This
tests both horizontal and vertical scalability. Each executor is
configured with 2 cores and 4GB of memory. On the five graphs,
the horizontal scalability of our algorithm is clearly visible.
Depending on the size of the graph, a threshold is reached. The
vertical scalability is also visible, because the graph size is roughly
doubled for each USA graph. The Europe graph requires more
resources to compute, but exhibits the same scalability.

as the graph size increases, this threshold is reached with a larger
number of executors. This indicates that our algorithm can scale
to much larger data size, provided that the resources scale linearly.

Precomputing the whole aggregation pyramid for the entire
graph affects the size of data produced, as seen on Table 1.
Each tile of data is stored as text data, compressed using gzip.
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graph nodes edges levels raw hbase
USA-EAST 3.5M 8.7M 19 258MB 5.4GB
USA-WEST 6.2M 15.2M 20 462MB 11.3GB
USA-CENT. 14M 34.2M 20 1GB 24GB
USA-FULL 23.9M 58.3M 21 1.6GB 36GB
OSM-EUR. 174M 348M 22 11.5GB 202GB

TABLE 1: Number of nodes and edges of the graphs considered
in the benchmarks, as well as the number of levels generated with
N=1000. Raw data is the size of the original dataset on disk. The
hbase column presents the total size of the levels of aggregation,
when inserted in HBase. The ratio of aggregated data to raw data
is around 20 for every graph. Storing the entire tile pyramid is
what enables fast interactive visualization.
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Fig. 6: Comparison of the algorithm from [18] and Cornac. In this
benchmark each executor is configured with 2 cores and 8GB of
RAM. Cornac is on average 3 times slower with equal resources.
However, this only affects the clustering time in the Batch layer,
which needs to be computed only once, and not the request time
in the Serving layer. Furthermore, Cornac has a more visually
appealing result, as shown on Fig. 7

Gzip compression is a good tradeoff between compression ratio
and compression/decompression speed for text data. The storage
overhead for the aggregated data is still significative, but does not
increase with the size of the dataset. The ratio of aggregated data
to raw data is around 20 for every graph, with small variations due
to the shape of each graph.

Discussion: Here we compare our approach with the current
state of the art for Canopy Clustering using Hadoop by Perrot et
al. [18] and show what trade-offs between clustering time and the
final result aspect were made.

To compare the two algorithms, we used the OSM-EUROPE
dataset. We ran the algorithm from [18], and compared it to
Cornac’s node aggregation with the same resources. Fig. 6 shows
the results of the comparison. When it comes to pure time per-
formance, our implementation is 3 times slower than [18], using
the same resources. This is easily explained by the fact that the
algorithm from [18] was designed to minimize the number of data
shuffles (i.e. network transfers), while Cornac’s MIS computation
requires several Pregel iterations and data shuffles. Furthermore,
Cornac also has to compute the UDG and store it alongside the
original graph, requiring more memory to process the same data.

The main motivation behind working on a new distributed
algorithm for canopy clustering was that the algorithm presented
in [18], while fast and producing correct output, generates artifacts
in the aggregation due to the way it partitions the data using
horizontal strips and selects canopies in two steps. These artifacts
only appear with a high concentration of points, thus we used
a complete grid of points to show the effect produced by both

(a) (b)

Fig. 7: Results of different versions of canopy clustering on a
grid of 100K×100K points. (a) : Result using the algorithm from
[18]. The data partition in strips is clearly visible in the resulting
point distribution. (b) : Result of our algorithm. The final point
distribution looks much more natural.

algorithms. Fig.7 shows the extent of these artifacts on grid of
100K × 100K points and compares the results of [18] with our
new algorithm. One can see that the previous canopy clustering
produces a result where the data partition in strips is still visible in
the result, whereas our algorithm produces a more visually pleas-
ing and uniform point distribution. The randomness used in the
MIS phase makes the result of this algorithm similar to a Poisson-
disk sampling process [37], which is often used when a more
“natural” looking point distribution is desired. These artifacts were
not a problem for [18], since the final visualization only displayed
the density function and not the points themselves. However, for
a graph visualization use case, the final representative points will
be displayed and such artifacts are not desirable.

6 VISUALIZATION

The final step of the technique is to render the graph on the client
side and to enable the end user to interact with the visualization.
As mentioned in previous sections, the screen resolution enables
only thousands of nodes to be rendered in a comprehensive way.
Rendering that number of nodes may require, in the worst case,
millions of edges to be displayed. In our technique, the client
proceeds in two steps. First, it determines which tiles and which
level of detail must be downloaded from the server, in order to
only have a few thousand nodes rendered on screen. Second, the
client must handle as well as possible the edge-edge/edge-node
clutter because of the possibly quadratic number of edges and also
show the aggregation of elements.

6.1 Retrieving tiles

To query the correct tiles, the client must select which level
of detail to use. Let m(xmin,ymin), M(xmax,ymax) be the axis-
aligned bounding box (AABB) of the entire layout of the graph
and mv(xv

min,y
v
min), Mv(xv

max,y
v
max) be the AABB of the part of

the graph one wants to display on screen. Let w = max(xmax−
xmin,ymax − ymin) and ws = max(xv

max − xv
min,y

v
max − yv

min) be the
longest side of each AABB, respectively. The level of detail
to display is l = blog2(w/ws)c, and the index (i, j) of the
tile that contains mv (resp. Mv) is i = (xv

min − xmin) ∗ 2l/w and
j = (yv

min− ymin) ∗ 2l/w. Using that index (l, i, j), one can query
the necessary tiles to render the graph.
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To limit the number of queries and improve interactivity of our
visualization, each requested tile is cached in the client memory.
Before querying the front server, the local tile cache is queried.
The tile cache policy is straightforward: fill until it is full, and then
clear all tiles not currently on screen. This ensures the simplicity
and efficiency of the code handling for the cache to care only
about filling tile information. Because the cache is filled using data
transferred on the network, the rate at which it is filled is limited
by the network’s speed. For example, with a 1MB/s connection
fully dedicated to transferring tiles, it will take more than 1 h to
fill 4GB of memory. In practice, tiles are very light, being only a
few kilobytes of text data, and are served faster than any human
user could ever scroll to trigger tile queries. In our experiments,
our cache never uses more than 1GB; that simple cache policy
was optimal because we must never free the cache during the
graph exploration.

In the case of very connected graphs, the number of edges to
be displayed can significantly hinder the tile retrieving time and
visualization rendering, despite the aggregation on the server side.
Thus, we chose to limit the number of edges to be transferred
to client. Similarly to what was done in [11] and [7], only the n
edges of each tile that represent the most edges of the original
graph are transferred. Since edges are already sorted according to
this parameter in the database, it is sufficient to take the first n
edges of each tile.

6.2 Rendering tiles

All geometric aggregation of nodes and edges is delegated to the
Big Data cluster. After retrieving data from the front server or from
the local cache, the client must produce the visual representation
of the graph. For each node or metanode, we have the number
of nodes it represents (noted ncount ) in the entire dataset and
its position (noted npos). For each edge or metaedge, we have
the number of edges it represents ecount and the positions of its
extremities. Furthermore, for each level of detail, we have the
maximum and minimum values of ncount noted nmaxcount and ecount
noted emaxcount .

Nodes rendering: The aggregation strategy that is used guar-
antees a minimal distance between two nodes in each level. This
means that we have a guaranteed number of pixels separating
two nodes. We thus have a guaranteed number of pixels on the
screen to render a node without introducing node-node overlap.
Furthermore, since we change the level of details according to the
zoom level we used (i.e, part of the layout that is projected on the
screen), the minimum available space in pixels is constant.

The aggregation strategy used leads to a more or less uniform
distribution of nodes in areas of the graph where enough nodes are
present. This can give a false impression of the density of nodes.
To alleviate this problem, we render a heatmap of the node density
in the background. The weight of each node corresponds to the
number of nodes in the orginal graph it represents. It was shown in
[38] that the density function computed with canopy clustering is
a good approximation of the original density function, as demon-
strated in [18]. There are many possible ways to parameterize the
rendering of a heatmap. We chose to use the Epanechnikov kernel,
since it more adequately shows the limited influence of nodes than
a more classical gaussian kernel. For the color mapping scale,
yellow always corresponds to the maximum node wheight shown
on screen. This ensures that the color mapping can display the full
range of values on screen.

Edge rendering: Even with the heavy aggregation of nodes
and edges produced by the cluster and the limitation of the number
of transferred edges per tile, several thousand edges may have to
be rendered. This may lead to a large amount of edge/edge and
node/edge clutter that complicates the visualization task. We use
an edge bundling technique to limit this clutter. Edge bundling
consists of aggregating parts of edges together to create bundles.
By creating bundles, the number of pixels used to render edges
is reduced. The visual effect is a reduction of edge/node and
edge/edge clutter. Several methods for general graphs have been
developed since the work on edge contraction first proposed by
Dickerson et al [39] and in the fow map layout [40] paper. These
techniques are now known as edge bundling techniques since the
work of Holten [41]. There are now many different approaches
going from force directed algorithm [42], geometric decomposi-
tion [43], edge routing [44] to kernel density estimation [45]. Our
prototype does not manage directed graphs. Edge orientation can
be easily computed during the aggregation step. The challenging
task is to represent them efficiently. Recent advances in directional
edge bundling [46] may be used to make our technique fully usable
on directed graph.

For our problem, none of the existing algorithms can be
precomputed on the Big Data cluster. First, these algorithms
have not been designed to work on that infrastructure. Second,
the use of precomputed bundling will significantly increase the
amount of data to store and transfer for each tile, which is
the bottleneck of our approach. Finally, one of the interests of
several bundling techniques is that one can adjust the level of
bundling applied to the graph. Even with a large cluster, it may
be impracticable to store all tiles for each parametrization of the
bundling algorithm. Therefore, we designed a bundling algorithm
that could be computed on the client side. Because all tiles
are loaded asynchronously, the algorithm must be called again
each time the edges and nodes change on the screen. Thus, the
algorithm has to be fast enough to be executed each frame.

Our algorithm is a simplification of the algorithm of Hurter
et al [45]. In its original version the algorithm proceeds in four
steps. It first adds bends uniformly along the edges (step I), then
computes a discretized density function (a weighted grid) of all of
these bends (step II) and then moves bends in the direction where
the density function is the most important (step III). Finally,
the algorithm smooths bend positions (step IV). Applying the
algorithm several times enables to adjust the level of bundling.
CPU and GPU resources on the Web browser did not enable steps
II and III to be applied quickly. For step II we only compute for
each cell ci, j of the grid the barycenter bi, j of all bends that are in
ci, j and in adjacent cells ci±1, j±1. We then move bends inside ci, j
in the direction of bi, j. To reduce edge/node clutter, we also added
an obstacle constraint by modifying the barycenter of a cell if it
contains an original node. In our prototype we use a grid of size
128. Due to the aggregation step, two nodes cannot be in the same
grid cell. This enables us to bundle graphs of thousands of edges
in less than 100 ms. We are able to re-bundle the graph at each
frame during zoom and pan operations. Recomputing the bundling
at each frame introduces some instability in edges’ bends position.
To limit the instability, we first clip all edges with the border of the
screen. We then force three consecutive bends on an edge to form
an angle greater than Π/2 during the bundling phase. Furthermore,
the weights of edges are reflected using alpha transparency and a
logarithmic scale. Exemples of the bundling result are visible on
Fig.3c and 9.
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Furthermore, even with a few edges displayed on screen, it
can be difficult to distinguish different edges. To ease the visual
separation of edges with different directions, we change slightly
the color of each edge depending of its direction, as can be seen
on Fig.3c and 9. This eases the visual disctinction of edges based
on direction.

Implementation: The visualization client is implemented in
Javascript, using the Fatum library [30]. Fatum handles the render-
ing with WebGL and camera management and enables thousands
of nodes and edges to be rendered on a Web browser. It also
includes an occlusion removal system which enable to keep the
same labels visible across the different levels if possible [47]. The
bundling algorithm has been implemented in C++ and then ported
to Javascript using the Emscripten [48] compiler. We developped
the experiments with the prototype and were able to navigate into
graphs with hundreds of millions of edges as if the graphs were
stored on the local computer.

7 CASE STUDY: PANAMA PAPERS

7.1 Dataset Overview
The panama papers graph is built from 11.5 million documents
describing offshore companies, for a total of 2.6TB of data.
The graph data extracted from these documents by the Interna-
tional Consortium of Investigative Journalists (ICIJ) has a size
of 210MB in csv format and is freely available for download at
https://offshoreleaks.icij.org/pages/database.

The whole graph has 839K nodes and 1.2M edges. We only
kept the biggest connected component, comprising 750K nodes
and 1.1M edges, laid out using the FM3 algorithm [49].

7.2 Visualization
When the visualization5 is loaded, the level of detail shown is
chosen so that the graph is fully visible in the visualization
window. This level of detail gives a good overview of the graph
layout, as can be seen on Fig. 8a. Hopefully, the heatmap allows
to visually detect a dense cluster on the right of the visualization.
One can see that this cluster does not share many connections with
the rest of the graph, since the area surrounding it is mostly empty
of edges. The interactivity of our system enable to challenge that
assumption by using zooming and pan. Several other smaller clus-
ters are also visible, with higher inter-connection. When zooming
on this cluster, more detailed data is loaded, allowing to detect the
double ring structure shown on Fig. 8b. Zooming further reveals
this structure is caused by a node with very high degree, labeled
“Portcullis”. This node is linked to the inner ring, while nodes in
the inner ring connect to the outer ring.

Many similar two-fold structures can be detected in the graph,
where two dense clusters serve as “bridges” between two high
degree nodes, as seen on Fig.9. Furthermore, the bundling applied
helps reducing edge-node clutter when viewing big clusters.

7.3 Performance
Aggregation: The aggregation process for this graph generated 15
levels. On our cluster, it took 6 minutes using 4 Spark executors
with 2 cores each, and inserting the generated data into HBase
took an additional minute. The aggregated data stored in HBase

5. An interactive demo of this case study can be found at http://vps245056.
ovh.net:1529/Cornac.

for this dataset occupies 594MB. This aggregation operation only
has to be executed once before many people are able to visualize
the dataset.

Visualization: When exploring the graph, each vertex tile
transferred weighed 12kB on average and edge tiles 50kB on
average. The transfer time for each tile was between 10ms and
100ms. Rendering time without bundling was between 10ms and
30ms. Rendering time with bundling greatly depends on the
amount of edges on the screen and the chosen number of iterations.
It took between 40ms up to 70ms with many edges on screen.
Thanks to the aggregation, few edges need to be bundled, allowing
the bundling time to stay relatively low and to apply bundling
every frame. All in all, the framerate on the client is more than
30fps without bundling and around 15fps with bundling.

7.4 Discussion
To show the benefits of our contribution, we compare the visu-
alization of the panama papers graph with Cornac to the visu-
alization with another tool from the litterature called LaGo [7].
LaGo does not use distributed computing, but relies on the GPU
to draw density function of nodes. It uses CPU to recompute
the visualization during interactions and requires a heavy-weight
application. We tested LaGo on a laptop equipped with a Core i7-
4710HQ, an Nvidia GTX 970M GPU and 16GB of RAM. On this
computer, LaGo is able to display the panama papers graph after 2
minutes of preprocessing (see Fig. 10, which is cached for further
processing. This is faster than Cornac’s preprocessing phase but
since LaGo is centralized the data is only available to a single user.
Afterwards, every interaction (zoom, pan, changing the size of the
density function kernel) required recomputing the density func-
tion, leading to an interaction time ranging from 100ms to 3s with
large kernel sizes. Cornac achieves constant and lower interaction
times even though it is using a deported client which has to fetch
from a remote database and is applying edge bundling and label
occlusion, thanks to the bounded amount of data transferred on
the network and rendered on screen. Furthermore, LaGo seems to
show a slightly different structure in the graph than what is shown
by Cornac. LaGo was not able to display the star shape in the
double ring structure previously mentioned. Indeed, the node with
high degree in the center of the structure is in a low density area,
so its edges are moved to the high density area inside the ring,
wrongly showing a very connected node inside the ring. This is
because LaGo does not guarantee a maximum displacement of the
edges whereas the Unit disk clustering used by Cornac guarantees
that a node’s representative is only a few pixels farther. When
testing bigger graphs with LaGo, it was able to display all the USA
road graphs using almost the entirety of the laptop’s 16GB after
up to 8 minutess of preprocessing, but was not able to display the
OSM-EUROPE graph since 16GB of RAM were not sufficient.

8 CONCLUSION

In this article, we introduced the first Hadoop-based technique for
interactive huge graph visualization. We showed that it enables
Web-based visualization of graphs with hundreds of millions of
elements on a standard computer. Our system is based on a
novel aggregation and indexing algorithm specifically designed for
graph visualization. We also proposed modification of the Hurter
et al. [45] bundling algorithm to provide on the fly node/node and
edge/node clutter reduction on the client. A complete prototype
has been developed to benchmark and demonstrate the efficiency
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(a) (b) (c)

Fig. 8: Visualization of the panama papers dataset. (a) shows an overview of the whole dataset. The heatmap of node density enables
to spot a dense cluster on the upper right. (b) shows detail of this cluster. A double ring structure is visible. (c) shows the cause of this
structure: a very connected node labeled “Portcullis”.

Fig. 9: Zoom on a cluster with bundling enabled.

of this approach, showing it allows huge graph exploration as if
they were stored on the client computer.

The technique has been designed as a cornerstone for building
domain specific big graph visualization tools. That web based
visualization technique may enable to build collaborative explo-
ration and annotations software for massive analysis of large
graphs. On the cluster side, future work will concentrate on
handling streamed graphs. This feature may be feasible using
the so-called lambda architecture. On the client side, many costly
visualization techniques may be computed on the fly on the Web
browser thanks to the distributed aggregation and must be explored
to simplify huge graph analysis.
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