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Abstract. In many conceptual rainfall–runoff models, the
water balance differential equations are not explicitly formu-
lated. These differential equations are solved sequentially by
splitting the equations into terms that can be solved analyti-
cally with a technique called “operator splitting”. As a result,
only the solutions of the split equations are used to present
the different models. This article provides a methodology to
make the governing water balance equations of a bucket-type
rainfall–runoff model explicit and to solve them continu-
ously. This is done by setting up a comprehensive state-space
representation of the model. By representing it in this way,
the operator splitting, which makes the structural analysis of
the model more complex, could be removed. In this state-
space representation, the lag functions (unit hydrographs),
which are frequent in rainfall–runoff models and make the
resolution of the representation difficult, are first replaced by
a so-called “Nash cascade” and then solved with a robust
numerical integration technique. To illustrate this method-
ology, the GR4J model is taken as an example. The substi-
tution of the unit hydrographs with a Nash cascade, even if
it modifies the model behaviour when solved using opera-
tor splitting, does not modify it when the state-space repre-
sentation is solved using an implicit integration technique.
Indeed, the flow time series simulated by the new represen-
tation of the model are very similar to those simulated by the
classic model. The use of a robust numerical technique that
approximates a continuous-time model also improves the lag
parameter consistency across time steps and provides a more
time-consistent model with time-independent parameters.

1 Introduction

1.1 On the need for an adequate mathematical and
computational hydrological model

Hydrological modelling is a widely used tool to manage
rivers at the catchment scale. It is used to predict floods and
droughts as well as groundwater recharge and water qual-
ity. In a review on the different existing hydrological models,
Gupta et al. (2012) determined that all the existing models
follow three modelling steps:

– establish a conceptual representation of reality,

– represent this conceptualization in a mathematical
model,

– set up a computational model to be used on a computer.

In terms of conceptual representation, many models exist
and conceptualize the hydrological processes in the catch-
ment differently, resulting in models with various levels
of complexity. In this study, we will focus on the bucket-
type models, which are among the simplest. These models,
such as Variable Infiltration Capacity (VIC) (Wood et al.,
1992), Hydrologiska Bryåns Vattenbalansavdelning (HBV)
(Bergström and Forsman, 1973) and Sacramento (Burnash,
1995), describe various conceptualizations of the hydro-
logical processes at the catchment scale. Their parsimony
(they usually need few input data and use few parameters)
make them very useful for research as well as in opera-
tional applications thanks to their robustness and good per-
formance (Michel et al., 2006).
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In the context of this study, bucket-type models are ad-
vantageous because, even if the concepts are often well doc-
umented, this is not the case of the mathematical and the
computational models. In the models’ documentations, the
water balance equations that would govern the models are
rarely explicitly formulated (Clark and Kavetski, 2010). The
authors of the models often specify the discrete time equa-
tions, i.e. the result of the analytical or numerical temporal
integration of the governing water balance equations. The
problem is that the temporal resolution of the differential
governing equations is part of the computational model. As
a consequence, when the discrete time equations are the only
ones available, the real mathematical model does not appear
clearly. In addition, the descriptions of the numerical method
used to solve the water balance equations and to obtain these
discrete equations are rarely detailed.

However, several studies in the last decade (see for ex-
ample Clark and Kavetski, 2010; Kavetski and Clark, 2010;
Schoups et al., 2010) point out that the numerical solutions
implemented to solve the differential equations that govern
the models are sometimes poorly adapted. Clark and Kavet-
ski (2010) showed that the use of the explicit Euler scheme
(which is frequent for this type of model) can introduce sig-
nificant errors in the simulated variables compared to more
stable numerical schemes. Moreover, other studies prove that
poorly adapted numerical treatment causes discontinuities
and local optima in the parameter hyperspace (Kavetski et al.,
2003; Kavetski and Kuczera, 2007; Schoups et al., 2010).
This results in problems efficiently calibrating the models
and in uncertainty on parameter values.

Another numerical approximation is commonly applied
for bucket-type models: the operator splitting (OS) technique
(Kavetski et al., 2003). The aim is to split a differential
equation into more simple equations that can be solved an-
alytically in order to reduce inaccuracies in the numerical
treatment. In the case of hydrological modelling, operator
splitting results from the sequential calculation of processes
such as runoff, evaporation and percolation (Schoups et al.,
2010). Kavetski et al. (2003), Clark and Kavetski (2010) and
Schoups et al. (2010) identified several widely used models
in which the differential equations are solved using this type
of treatment, e.g. VIC (Wood et al., 1992), Sacramento (Bur-
nash, 1995) and GR4J (Perrin et al., 2003). However, even
if OS may reduce numerical errors, Fenicia et al. (2011) cite
several limitations to its use in hydrology. Indeed, it is phys-
ically unsatisfying to separate the different processes in time
because, in reality, they are concomitant. In addition, it cre-
ates numerical splitting errors that are difficult to identify.

According to different studies, an inadequate numerical
treatment like OS can lead to inconsistencies in flux simula-
tions (see for example the study conducted by Michel et al.,
2003, on an exponential store). It may also create incon-
sistencies in the model state variables (Clark and Kavetski,
2010; Kavetski and Clark, 2010). This results in the model
inaccurately simulating flows.

For these reasons, it is important to use a robust numer-
ical treatment to better estimate the other uncertainties (for
example, parameter uncertainty).

1.2 Scope of this study

The first step to improve the numerical treatment of rainfall–
runoff models is to properly separate the mathematical model
from the computational model (Kavetski and Clark, 2010;
Gupta et al., 2012). This article proposes a method to do
this by setting up a continuous state-space representation of
a rainfall–runoff model. A state-space representation is a ma-
tricial function of a system that depends on input, output and
state variables. At all times, the system is described by the
values of its state variables (referred to as “states” in this ar-
ticle). In the case of rainfall–runoff models, inputs can be
potential evapotranspiration and precipitation and output can
be the flow at the outlet of the catchment. The soil water con-
tent or the amount of water in the hydrographic network are
physical examples of possible state variables. The level of
the bucket-type model stores is a conceptual example of pos-
sible state variables. This state-space representation will give
the governing equations to be solved over time. This resolu-
tion will be proceeded by using an OS technique to be used
as a comparison point and by using a more robust numer-
ical technique, i.e. implicit Euler with an adaptive sub-step
number. The model solved by implicit Euler will be called
continuous state-space because it approximates a continuous
model. By opposition, the OS state-space representation will
be named as discrete.

In addition to a clearer mathematical model, we hope that
the state-space representation will gain stability due to the
direct implementation of the time step in the numerical reso-
lution. We thus hope to obtain more stable parameter values
across time steps (Young and Garnier, 2006).

To illustrate the methodology proposed, the widely used
GR4J model (Perrin et al., 2003) will be taken as an ex-
ample. Indeed, this model is currently implemented using
the OS technique. A state-space representation will be set
up, following the GR4J’s conceptualization of the hydrolog-
ical processes as much as possible. Its behaviour, both with
a discrete and a continuous solving, will be compared to the
current formulation of the GR4J model on a wide range of
French catchments with different time steps (day and hour),
in terms of performance and parameters.

2 GR4 and its new state-space representation

Hereafter, the notation GR4 will be used to refer to the struc-
ture of the GR4J model (J stands for journalier, i.e. daily;
Perrin et al., 2003), which is transformed and used at dif-
ferent time steps. This is a lumped bucket-type model de-
scribed in its current form (Sect. 2.1) and in its state-space
form (Sect. 2.2). A discussion on the Nash cascade intro-
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Figure 1. Schemes of the reference GR4 model (a, Perrin et al., 2003) and the state-space (b) structures. P : rainfall; E: potential evapotran-
spiration; Q: streamflow; xi : model parameter; other letters are model state variables or fluxes. A Nash cascade replaces the unit hydrograph
in the state-space representation.

duced in the GR4 state-space form is given in Sect. 2.3. The
continuous differential equations of the state-space form are
described in Sect. 2.4. The adaptations needed to change the
model time step will be described in Sect. 2.5.

2.1 Reference GR4 model

GR4 (Perrin et al., 2003) is a lumped bucket-type daily
rainfall–runoff model with four free parameters. It is widely
used for various hydrological applications in France (Grouil-
let et al., 2016; van Esse et al., 2013) and in other
countries (Dakhlaoui et al., 2017; Seiller et al., 2017). It
has shown good performances on a wide range of catch-
ments (Coron et al., 2012). The equations of the reference
GR4J model (Perrin et al., 2003) are the result of the inte-
gration of the water balance equations at a discrete time step
(here the daily or hourly time step).

The version of GR4 used here is slightly different from
the one presented by Perrin et al. (2003) because the two unit
hydrographs were replaced by a single one placed before the
flow separation (Fig. 1a, Mathevet, 2005). This simplifica-
tion of the model does not substantially change the resulting
simulated flows.

The equations of the model are given by Perrin et al.
(2003) and listed in Table 1. GR4 represents the rainfall–
runoff relationship at the catchment scale using an intercep-
tion function, two stores, a unit hydrograph and an exchange

function (see Fig. 1a). The model structure can be split into
water balance and routing operators.

The water balance operators evaluate effective rainfall (i.e.
the part of rainfall that will reach the catchment outlet)
by estimating several quantities: actual evaporation, storage
within the catchment and groundwater exchange. It involves
an interception function and a production (soil moisture ac-
counting) store (S in Fig. 1a). The interception corresponds
to a neutralization of rainfall by potential evapotranspiration.
The remaining rainfall (Pn), if any, is split into a part going
into the production store (Ps in Fig. 1a) and a complementary
part (Pn−Ps in Fig. 1a) that is directed to the routing com-
ponent of the model. The quantity of rainfall that feeds the
production store depends on the level of water in the store at
the beginning of the time step. In case there is remaining en-
ergy for evapotranspiration after interception (En in Fig. 1a),
some water is evaporated from the production store at an ac-
tual rate depending on the level of the production store (Es in
Fig. 1a). The higher the level is at the beginning of the time
step, the closer Es is to En. Thus, the production store repre-
sents the evolution of the catchment moisture content at each
time step. The last water balance operator is a groundwater
exchange term (F in Fig. 1a, positive or negative), which acts
on the routing part of the model.

The routing function of the model is fed with the rainfall
that does not feed the production store (Ps−Pn) plus a per-
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Table 1. Details of the equations of the GR4 model and discrete and continuous formulations. The discrete formulations are the continuous
equations integrated individually over the modelling time step using the operator splitting technique while continuous equations correspond
to the terms of the water balance differential equation of each store. * The values of UH2 are calculated using Eq. (17) in Perrin et al. (2003).
Please note that the two discrete formulations use either the unit hydrograph equations or the Nash cascade formulation.

Model component name Notation Flux name Discrete formulations Continuous formulation

Production store S Precipitation in the store Ps =
x1

(
1−
(
S
x1

)α)
tanh Pn

x1
1+ S

x1
tanh Pn

x1

Ps = Pn
(

1−
(
S
x1

)α)
Evaporation from the store Es =

(
2S− S

α

x1

)
tanh En

x1

1+
(

1− S
x1

)
tanh En

x1

Es = En
(

2 Sx1
−

(
S
x1

)α)
Percolation Perc= S

1−
(

1+
(
ν Sx1

)β−1
) 1

1−β

 Perc=
x

1−β
1

(β−1)Ut
νβ−1Sβ

Unit hydrograph UH2 UH inflow Pr = Pn−Ps+Perc –
UH outflow Quh = Pr ∗UH(∗)2 (convolution product)

Nash cascade Sh,1 Precipitation inflow in store 1 Pr = Pn−Ps+Perc Pr = Pn−Ps+Perc

Store 1 outflow QSh,1 = Sh,1

(
1− exp

(
1−nres
x4

))
QSh,1 =

nres−1
x4

Sh,1

Sh,2 Store 2 inflow QSh,1 QSh,1

Store 2 outflow QSh,2 = Sh,2

(
1− exp

(
1−nres
x4

))
QSh,2 =

nres−1
x4

Sh,2
...

...
...

...

Sh,n Store nres inflow QSh,nres−1 Qsh,nres−1 =
nres−1
x4

Sh,nres−1

Store nres outflow Quh = Sh,nres

(
1− exp

(
1−nres
x4

))
Quh =

nres−1
x4

Sh,nres

Routing store R Routing store inflow Q9 =8Quh Q9 =8Quh
Inter-catchment exchanges F =

x2
xω3
Rω F =

x2
xω3
Rω

Routing store outflow Qr = R

1−
(

1+
(
R
x3

)γ−1
) 1

1−γ

 Qr =
x

1−γ
3

(γ−1)Ut
Rγ

Output flow Q=Qr+Qd Routing store outflow Qr Qr
Direct flow Qd =max(0;(1−8)Quh−F) Qd =max(0;(1−8)Quh−F)

colation term (Perc in Fig. 1a) from the production store,
which generally represents a small amount of water. The to-
tal amount (Pr in Fig. 1a) is lagged by a symmetric unit hy-
drograph and then split into two flow components. The main
component (90 % of Pr, Q9 in Fig. 1a) is routed by a nonlin-
ear routing store (R in Fig. 1a). The complementary compo-
nent (10 % of Pr, Q1 in Fig. 1a) directly reaches the outlet.
The groundwater exchange term (F ) is added or removed
from the routing store and from the Q1 component.

The simulated flow at the catchment outlet (Q in Fig. 1a)
is the sum of the outputs of the two flow components (Qr and
Qd in Fig. 1a).

Four free parameters (called x1, x2, x3 and x4) are used to
adapt the model to the variety of catchments. Their meanings
are given in Table 2.

As mentioned in the introduction, the governing water bal-
ance equations of the model are solved using OS. By con-
sidering that inputs to the store are added at the beginning
of the time step as Dirac functions (Michel, 1991), it be-
comes possible to find analytical expressions of the model
processes when equations are integrated over the time step.
Consequently, the model processes are treated sequentially.

2.2 A state-space formulation for the GR4 model

To create this state-space representation, it is important to
identify the different model state variables. In the GR4
model, two obvious states are the levels of the production and
routing stores. The main challenge to describe the state-space
formulation is to deal with the unit hydrograph. The discrete
form used in GR4 corresponds to a convolution product in the
state space as implemented in SUPERFLEX (Kavetski and
Fenicia, 2011). This convolution product makes the mathe-
matical resolution of the model that is necessary for the con-
tinuous version that will be introduced in Sect. 2.4 more com-
plex. Here we chose to replace this unit hydrograph with a se-
ries of linear stores in order to simplify this resolution. The
use of stores is also convenient because it creates a model
that is only composed of stores.

Different combinations of linear stores were tested and the
choice was made to replace the unit hydrograph with a Nash
cascade (Nash, 1957). It is implemented at the same location
in the model structure as the unit hydrograph (Fig. 1b). The
Nash cascade is a chain of linear stores that empty into each
other. It has two parameters to govern the shape of the out-
flow response, namely the number of stores and the outflow
coefficient, which is identical for all stores. In our case, we
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Table 2. Meaning of the free and fixed parameters (from Perrin et al., 2003, except for Ut and nres).

Type Name Signification Value Unit

Free x1 Max capacity of the production store – mm
x2 Inter-catchment exchange coefficient – mm t−1

x3 Max capacity of the routing store – mm
x4 Base time of the unit hydrograph – t

Fixed α Production precipitation exponent 2 –
β Percolation exponent 5 –
γ Routing outflow exponent 5 –
ω Exchange exponent 3.5 –
ε Unit hydrograph coefficient 1.5 –
8 Partition between routing store and direct flow 0.9 –
ν Percolation coefficient 4

9 –
Ut One time step length 1 t
nres Number of stores in Nash cascade 11 –

decided to fix the number of stores and to only consider the
outflow coefficient as a free parameter. This choice will be
discussed in the following section (Sect. 2.3). With this type
of model, the outflow of the last store has a similar shape to
a unit hydrograph.

2.3 Parameterization of the Nash cascade

As introduced in the previous section, the Nash cascade has
two parameters, namely the number of stores and the out-
flow coefficient. The number of stores can only take integer
values, which is an issue for automatic calibration because it
introduces threshold effects. As a consequence, the number
of stores was not optimized automatically and the outflow
coefficient is the preferential parameter to calibrate.

To obtain a response that is equivalent to the GR4 unit hy-
drograph response, we attempted to determine whether a re-
lationship exists between the Nash cascade parameters and
the GR4 x4 parameter. To manage this, the determination of
the Nash cascade parameter is based on the comparison of
the impulse response of the Nash cascade and the response
of the unit hydrograph.

The impulse response of the Nash cascade is (Nash, 1957)

hNash(t)=
k

0(nres)
(kt)nres−1 exp(−kt), (1)

where hNash(t) is the impulse response of the Nash cascade
at time t , nres is the number of stores, k is the outflow coef-
ficient (t−1) and 0(nres) corresponds to the gamma function
of nres.

The impulse response of the GR4 symmetrical unit hydro-
graph is (Perrin et al., 2003)

hUH(t)=


2.5
2x4

(
t

x4

)1.5

, for 0≤ t ≤ x4

2.5
2x4

(
2−

t

x4

)1.5

, for x4 < t ≤ 2x4

0 , for t > 2x4

, (2)

where hUH(t) is the impulse response of the unit hydrograph
at time t and x4 is the time to peak of the hydrograph.

The Nash cascade parameters are calculated depending on
x4 in such a way that the time to peak and the peak flow
would be the same for the two impulse responses. Accord-
ing to Szöllösi-Nagy (1982), the time to peak of the Nash
cascade is equal to

tp =
nres− 1
k

(3)

and the peak flow is equal to

qp =
k

0(nres)
(nres− 1)nres−1 exp(1− nres). (4)

Using Eq. (2), the time to peak of the GR4 unit hydrograph
is equal to

tp = x4 (5)

and the peak flow to

qp =
1.25
x4

. (6)

So, from these values the following system can be deduced:
x4 =

nres− 1
k

1.25
x4
=

k

0(nres)
(nres− 1)nres−1 exp(1− nres)

, (7)
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which can be transformed into
k =

nres− 1
x4

1.25=
(nres− 1)nres

0(nres)
exp(1− nres)

. (8)

A nres= 11 is the best integer approximation to solve the
second equation of Eq. (8). The outflow coefficient is de-
duced from this number of stores and from x4. By fixing the
parameters in this way, only the x4 parameter has to be cali-
brated. This method allows a direct comparison between the
parameters of the Nash cascade and the parameter of the unit
hydrograph. For a given x4 parameter, the unit hydrograph
and the Nash cascade impulse responses have the same time
to peak and the same peak flow (see the dotted and the dashed
curve in Fig. 2).

Using this formula, the x4 parameters of the two mod-
els are equivalent and it can be argued that their meaning
is nearly identical.

Fixing the number of stores in the Nash cascade also pro-
vides another advantage. Indeed, one of the potential issues
that arises when replacing the unit hydrograph with a Nash
cascade was the equifinality with the routing store. Given that
the recession curve of the cascade is theoretically infinite, it
could have the same function as the routing store. Calculat-
ing the parameters of the cascade regarding the x4 parameter
makes it possible to reduce the possibility of an infinite im-
pulse response.

2.4 Continuous differential equations of the state-space
model

Once the model is only represented by stores, a differential
equation can be written for each store (details are provided in
Table 1). For the production and routing stores, the equations

were built by adding all the processes that affect the stores.
For example, the differential equation for the production
store is the sum of the differential equations of evaporation,
rainfall and the percolation (respectively, Es, Ps and Perc in
Fig. 1). This means that all the processes that are a function of
this state are treated simultaneously, unlike the initial model
version in which the processes are treated sequentially. The
state-space representation of the Nash cascade is the same as
the one proposed by Szöllösi-Nagy (1982).

The resulting model is composed of the differential equa-
tions governing the states’ evolution (here represented as
a vector in the Eq. (9), taking into account nres stores in the
Nash cascade):

Ṡ

Ṡh,1
Ṡh,2
...

Ṡh,nres
Ṙ


=



Ps−Es−Perc
Pr−QSh,1

QSh,1−QSh,2
...

QSh,nres−1−Quh
Q9+F −Qr


. (9)

The notation Ṡ stands for dS
dt , the derivative of S against time

t and the different elements of this equation are specified in
Table 1.

The output equation to calculate the instantaneous output
flow (q(t) in Eq. 10) completes the model:

q(t)=Qr+Qd. (10)

The different elements in Eqs. (9) and (10) are shown in Ta-
ble 1.

The input, state variable and output values are as follows.

– Inputs. En and Pn are the potential evapotranspiration
(after the interception) and the precipitation amounts
after the interception phase (mm t−1). We decided to
keep the interception out of the state-space representa-
tion because it is not represented by a store in the refer-
ence GR4J and we wanted to avoid introducing an ad-
ditional difference between the state-space and the ref-
erence models.

– Output. Q is the output flow; it corresponds to the inte-
gration of q(t) (Eq. 10) over the time step.

– State variables. S, R and Sh,k are respectively the levels
of the production store, the routing store and the Nash
cascade store number k (with k ∈ {1, · · ·,nres}) in mil-
limetres.

– Fluxes. Ps and Es are, respectively, the rainfall added
to the production store and the evapotranspiration ex-
tracted from the production store. Perc is the outflow
from the production store. Pr is the amount of wa-
ter that reaches the model routing operators. QSh,k is
the outflow of the Nash cascade store number k (with

Geosci. Model Dev., 11, 1591–1605, 2018 www.geosci-model-dev.net/11/1591/2018/
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Table 3. Temporal transformations of the GR4 parameters (Ficchí et al., 2016).

GR4 model Theoretical transformation from the Source of time step dependency
parameter daily (1td) to the hourly (1th) time step

ν ν1th = ν1td

(
1td
1th

) 1
4 Integration of the percolation power 5 function

from the production store

x1 x1(1th) = x1(1td) –

x2 x2(1th) = x2(1td)

(
1td
1th

)− 1
8 Integration of the exchange flux formulation

(dependent on the routing store level)

x3 x3(1th) = x3(1td)

(
1td
1th

) 1
4 Integration of the fuelling power 5 function of

the routing store

x4 x4(1th) = x4(1td)

(
1td
1th

)
Discrete concentration time in time step units of
the unit hydrographs

k ∈ {1, · · ·,nres−1}).Quh is the outflow of the Nash cas-
cade store number nres (this notation is used to be con-
sistent with the discrete model). Q9 and Qr are, respec-
tively, the inflow and the outflow of the routing store and
F is the inter-catchment groundwater exchange. Qd is
the outflow of the complementary flow component.

The parameter meanings are explained in Table 2. The model
is constructed to ensure that the parameters (x1, · · ·,x4 in the
equations) have the same meaning in the continuous model
and in the discrete GR4. The state-space formulation was
sought to be as close as possible to the original model’s
formulation, to keep the same general model structure. We
expect similar results to be obtained by the different tested
model versions.

2.5 Hourly model

The GR4 model was first designed for daily time step mod-
elling and it was adapted for the hourly time step (GR4H,
Mathevet, 2005; Ficchí et al., 2016). The structure and the
equations are similar in GR4H (hourly) and in GR4J (daily).
The hourly versions of the GR4 models used here are the
same as the ones showed in Fig. 1.

The adaptation to the time step is handled by a change
in the parameter values, which depend on time. Ficchí et al.
(2016) gave the theoretical relationships to transform the
GR4 free parameter values as a function of the time step
length (Table 3). The fixed percolation coefficient (ν in Ta-
ble 1) is also time dependent.

The continuous state-space GR4 model used for the hourly
time step is exactly the same as the one used at the daily time
step, with no change in the percolation coefficient. The time
step change is not managed by a change in parameter values
but by the numerical integration. For the daily time step, the
model is integrated on 1t = 1 day while; for the hourly time
step, it is integrated on 1t = 1h.

3 Implementation and testing methodology

3.1 Numerical integration of the model

The integration of Eq. (9) (necessary to adapt the model to
discrete input data) cannot be made analytically. It is there-
fore necessary to implement a numerical method to solve this
integration.

Following the recommendation in Clark and Kavetski
(2010), an implicit Euler algorithm is used to perform this
numerical integration. Our choice was to set up an adaptive
sub-step algorithm (Press et al., 1992) to avoid the major-
ity of numerical errors. The implicit equation is solved using
a secant method when necessary.

The choice of using an adaptive sub-step rather than
single-step implicit method (as recommended by Clark and
Kavetski, 2010) is a result of several tests that are not shown
here. We compared the modelling results with a single-step
integration to those obtained with the adaptive sub-step algo-
rithms and found some differences in resulting flows (in par-
ticular for high flows). The differences found this way were
not negligible. In this case, we can say that the stability of the
implicit single-step integration is not sufficient to sufficiently
reduce the integration errors.

For both hourly and daily time steps, the inputs are consid-
ered as constant during the time step. Even if this assumption
is a simplification of the truth, we chose to keep it constant
to simplify the calculation and not to introduce treatment dif-
ferences between hourly and daily time step models.

3.2 Catchment set and data

To compare the performance and behaviour of the reference
and the discrete and continuous state-space GR4 model ver-
sions, a large data set of 240 catchments across France was
set up (Fig. 3). Testing the models on many catchments will

www.geosci-model-dev.net/11/1591/2018/ Geosci. Model Dev., 11, 1591–1605, 2018
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River Azergues
at Châtillon

Figure 3. Location of the 240 flow gauging stations used for the
tests and their associated catchments. The River Azergues at Châtil-
lon is used as an example for the results (Sect. 4.1).

help obtain general conclusions (Andréassian et al., 2006;
Gupta et al., 2012).

The data set was built by Ficchí et al. (2016) to test GR4
at different time steps. In this article, we only used daily and
hourly data. The climate data of the SAFRAN daily reanaly-
sis (Quintana Seguì et al., 2008; Vidal et al., 2010) are used as
input data (precipitation and temperature). Precipitation and
temperature are spatially aggregated on each catchment since
the GR4 models are lumped. The hourly precipitation data
were obtained by disaggregating the daily SAFRAN precipi-
tation using the subdaily distribution of rain gauge measure-
ments. Potential evapotranspiration at the daily time step was
calculated from the SAFRAN temperature using the Oudin
formula (Oudin et al., 2005) and hourly spread with a Gaus-
sian distribution. Full details on this data set are available in
Ficchí et al. (2016).

Hourly observed flows are available at each catchment out-
let and come from the Banque HYDRO (http://www.hydro.
eaufrance.fr/, last access: 18 April 2018, French Ministry of
the Environment). For daily modelling, hourly measurements
are aggregated at the daily time step. Their availability covers
the 2003–2013 period.

The catchments were selected to have less than 10 % pre-
cipitation falling as snow, to avoid requiring a snow model.

3.3 Testing methodology

Three versions of the model were assessed on the 240 catch-
ments following a split-sample test (Klemeš, 1986). These
three versions are the reference model, a discrete state-space

model (with a Nash Cascade but solved using OS) and a con-
tinuous state-space model. Comparing the reference and dis-
crete state-space models allows us to measure the impact of
replacing the unit hydrograph with a Nash cascade. Com-
paring the discrete and continuous state-space models allows
us to measure the impact of a nearly continuous numerical
integration. For every catchment, the observed flow data pe-
riod was divided into a calibration period (the first half) and
a validation period (the second half). A 2-year warm-up pe-
riod was used for each catchment, before both the calibration
and validation periods. The calibration was made automati-
cally with an algorithm used in Coron et al. (2017) and based
on the work of Michel (1991).

The objective function used for calibration is the Kling–
Gupta efficiency (KGE′; Kling et al., 2012). This objec-
tive function is often used in hydrology and assesses dif-
ferent components of the error made by the model (mean
bias, variance bias, correlation). In addition, to target dif-
ferent flow levels, mathematical transformations are applied
(Pushpalatha et al., 2012). The logarithm is applied to anal-
yse the errors in low-flow conditions (KGE′(log(Q))); no
transformation is applied to preferentially analyse the error
on high flows (KGE′(Q)) and the root square of the flow is
used as a compromise representing the error on intermediate
flows (KGE′(

√
Q)). In the case of logarithm transformation,

following the recommendations made by Pushpalatha et al.
(2012), a small quantity which corresponds to one-hundredth
of the catchment mean flow is added to avoid troubles with
null flows. These three transformations represent three dis-
tinct objective functions. The models were calibrated sepa-
rately and successively on the three objective functions. To
avoid strongly negative values of the KGE′ criterion, we used
the C2M formulation, which restricts the variation range into
[−1;1] (see Mathevet et al., 2006).

The results of the calibrations were also analysed in terms
of performance in validation on the three evaluation criteria
(i.e. C2M(Q), C2M(log(Q)) and C2M(

√
Q)). Given the large

number of catchments, it is possible to draw a conclusion on
the global difference in performance among the three stud-
ied model versions. This avoids a discrepancy due to specific
catchment conditions. In addition to the performance analy-
sis, the simulated hydrographs were visually analysed to de-
tect discrepancies in the flow simulation. An analysis of the
time series of internal fluxes and state variables also provided
further insights to interpret the difference among the model
versions. Last, the differences in parameter values among the
models was analysed. It is important to verify that the pa-
rameter values are similar and do not take outlier values that
would compensate for model inconsistencies.

A second test was carried out in order to analyse the time
step dependency of the models. The split-sample test was
performed at the hourly time step and the parameter values
were compared to those obtained at the daily time step. With
the reference model, the calibrated parameter values were
compared to those theoretically obtained using the equations

Geosci. Model Dev., 11, 1591–1605, 2018 www.geosci-model-dev.net/11/1591/2018/
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Figure 4. Performance comparisons obtained in validation among the reference (with unit hydrograph), the discrete state-space (with Nash
cascade) and the continuous state-space daily GR4 on 240 catchments, focusing on high (a), intermediate (b) and low (c) flows after calibra-
tion with the C2M (

√
Q) (i.e. focusing on intermediate flow). The large points represent the mean performance and the smaller ones represent

the outliers. The 5, 25, 50, 75 and 95 percentiles are represented by the box plots.
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in Table 3. With the continuous state-space model, we veri-
fied the stability of the parameters. This stability is very im-
portant for designing a model that is not dependent on its
time step.

4 Results and discussion

4.1 Comparison of tested models at the daily time step

Figure 4 shows that performances are globally similar among
the different versions of the model with a calibration using
the C2M on square-rooted flows. The performances of the
reference model and the continuous state-space solution are
also similar after calibration with the two other transforma-
tions of the flow in the objective function (not shown). In the
case of the discrete state-space solution, the model does not
seem to be able to reproduce high flows well but performs
better on low flows than the two other models when the ob-

jective function used is the C2M with logarithmic transfor-
mation.

The study of the hydrographs provides complementary
information. The reference GR4 model and the continuous
state-space solution are very similar while the discrete state-
space solution simulates lower peak flows (see example hy-
drograph in Fig. 5). This behaviour can be explained because
solving the 11 linear stores introduces errors that propagate
and amplify across the Nash cascade.

To extend the analysis on the similarity of the models,
we compared the parameter values obtained by calibration.
As shown in Fig. 6, the parameters have the same range of
values. We can still note differences in the values of the x4
parameter, which are systematically higher for the discrete
state-space model. These differences in the values are prob-
ably due to the differences in response shape between the
Nash cascade and the unit hydrograph (see Sect. 2.3) and to
the errors produced by OS solving of the Nash cascade. The
assumption that the differences in x4 values are due to errors

www.geosci-model-dev.net/11/1591/2018/ Geosci. Model Dev., 11, 1591–1605, 2018
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Figure 6. Scatter plots of the four free parameters of the different
versions of the models obtained by calibration with C2M (

√
Q) as

an objective function on the basins of the data set. Parameter com-
parison between unit hydrograph and Nash cascade is in black and
parameter comparison between discrete and continuous state-space
parameters is in red. The values of x1, x2 and x3 are similar for the
models (the line represents the y = x line). The x4 values are higher
in the discrete state-space model than for the other model versions.

caused by unsuitable solving is confirmed by the fact that the
x4 parameter values are similar for the three models at an
hourly time step (not shown here).

Last, to understand the internal impact of the state-space
formulation on the model, we analysed state variables and
internal fluxes. Two differences are induced by the model’s
state-space formulation. First, the discrete Nash cascade out-
put peaks are lower than the peaks of the unit hydrograph
(Fig. 7). The peaks of the continuous state-space represen-
tation are more similar with the reference but the peaks oc-
cur sooner. The second difference between the models con-
cerns the levels of the routing store (Fig. 8). Here we only
compared the reference GR4 to the continuous state-space
solution because the inputs in the routing store are too dif-
ferent for the discrete state-space solution. The peak levels
are higher in the continuous state-space representation, even
sometimes higher than the maximum capacity of the rout-
ing store. The reason for this is that we shifted from the dis-
crete model in which the processes are treated sequentially
to a continuous model in which all the processes are solved
simultaneously. In the discrete model, the exchanges are first
calculated based on the routing level at the beginning of the
time step, then the output of the unit hydrograph is added
and last the outflow of the routing store is calculated. Due to

this sequential treatment, in high-flow conditions, the quan-
tity of exchanged water and the outflow of the routing store
in the discrete model are lower than those of the continu-
ous state-space representation. Given that most of the time
the exchange parameter is negative, the lower outflow of the
routing store is compensated for by less water loss with the
groundwater exchange in the complementary flow branch.
This can explain why the simulated flows are similar despite
these internal differences.

Moreover, by analysing the differences between the two
models, it is also important to take into account the computa-
tional time. Indeed, running the original model version is on
average 3 times faster than the continuous state-space ver-
sion due to the adaptive sub-step method. This is important
to consider for some applications.

This computational time rise is essentially due to the adap-
tive sub-step algorithm. For example, in the River Azergues
at Châtillon catchment, the mean number of sub-steps is 22
and it can reach 100 during some days. However, in Sect. 3.1
we argue that the adaptive sub-step method seems necessary
to avoid numerical errors.

To conclude with these results, we can argue that the mod-
ifications brought by the continuous state-space representa-
tion, although they modify the model’s internal fluxes, do
not degrade the model’s performance, but only slightly mod-
ify the model’s internal fluxes. It is important to underline
that the OS solving of a Nash cascade creates more errors
than a discrete unit hydrograph. To be equivalent to the ref-
erence model, the state-space representation of GR4 needs to
be solved with a robust numerical technique.

4.2 Consistency of the state-space representation
through time steps

The analysis of temporal consistency provides the most valu-
able result produced by the continuous state-space represen-
tation. The work of Ficchí et al. (2016) resulted in a GR4
model that is nearly consistent across time steps. However,
to adapt the model, they chose to include the time step
variations in a theoretical transformation between the free
parameter values and the percolation fixed coefficient (Ta-
ble 3) at different time steps. In this section, we only com-
pare the reference GR4 with the continuous solution of the
state-space representation. The parameters of the state-space
representation discrete solution show the same behaviour as
the reference GR4 ones so it was chosen not to show them.
This proves that all the improvements shown in this section
are only due to the continuous resolution of the state-space
model.

In Fig. 9, the free parameter values obtained by calibra-
tion at the hourly time step are compared to those obtained
at the daily time step using the reference GR4 version. The
dashed lines represent the regression obtained by the theo-
retical relations reported in Table 3. One can note that the
calibrated parameters (the dots in Fig. 9) are quite different

Geosci. Model Dev., 11, 1591–1605, 2018 www.geosci-model-dev.net/11/1591/2018/
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as the objective function.

between the two time steps but it is important to note that
the values of the x3 parameter follow the relations proposed
by Ficchí et al. (2016) (the dashed lines). The high values of
x1 are underestimated compared to the theoretical relation as
are the low values of the x2 parameter. There is also an issue
with the unit hydrograph parameter (x4 in Fig. 9) for which
calibrated hourly parameter values are systematically lower
than the values it would have by following the transforma-
tion. Kavetski et al. (2011) and Littlewood and Croke (2008)
encountered the same issue with the lag parameter of their
models.

The values of x1, x2 and x4 are inconsistent compared
to the values expected using the theoretical transformations.
Regarding the work of Ficchí (2017), we can argue that the
changes in the high values of x1 and the low values of x2
are due to temporal inconsistencies in the interception cal-
culation. The case of the x4 parameter is more problematic.
The differences in the x4 values probably stem from the dis-
cretization of the unit hydrograph at different time steps.

In the continuous state-space model, the time step is taken
into account in the temporal numerical integration of the
model. For this reason, in theory there is no need to adapt
the values of the parameters. This is confirmed in Fig. 10,
where the values of calibrated parameters remain approxi-
mately constant despite the time step change. Only the high
values of x1 and the values of x2 slightly diverge from the
x = y line.

This result is useful in building a model that can adapt
its time step resolution depending on the given conditions.
The results are particularly interesting for the case of x4
values because the x4 values are constant between the two
time steps, resolving the issue encountered by Littlewood and
Croke (2008), Kavetski et al. (2011) and Ficchí et al. (2016)
with lag parameters. As explained in the work of Littlewood
and Croke (2013), this improvement can be explained by
the fact that the adaptive sub-step integration approximates
a continuous time input in the Nash cascade. The results ob-
tained with the x4 parameter here tend to confirm this earlier

www.geosci-model-dev.net/11/1591/2018/ Geosci. Model Dev., 11, 1591–1605, 2018
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Figure 9. Scatter plots representing the four parameters of the ref-
erence (daily and hourly) GR4 models obtained by calibration with
C2M (

√
Q) as the objective function. The solid line represents the

y = x regression and the dashed lines the transformation relations
of Table 3.
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Figure 10. Scatter plots representing the four parameters of the con-
tinuous state-space (daily and hourly) GR4 models obtained by cal-
ibration with C2M (

√
Q) as the objective function. The solid line

represents the y = x line.

work on a wide range of catchments. However, in addition to
the input errors, the lack of x4 time consistency can also be
explained by the integration errors produced by the OS at a
daily time step.

The outliers in x3 values that occur in Fig. 10 are also
present in Fig. 9. No explanations relating to physical charac-
teristics of these catchments or simulation performance were
found. We assume that these outlier values are due to the
non-sensitivity of the x3 parameter for these catchments.

Finally, to verify stability, we also need to compare the
performance of the models at the hourly time step. Figure 11
shows that, as at the daily time step, the performance is sim-
ilar for the different versions.

Thus, the continuous state-space representation shows bet-
ter temporal stability in the x4 parameter values with similar
performance.

5 Conclusions and perspectives

The objective of this study was to present a version of
a bucket-type rainfall–runoff model with a robust numerical
resolution of the governing water balance equations by set-
ting up a continuous state-space representation. The method-
ology is based on (i) identifying the state variables, (ii) writ-
ing their differential equations, (iii) replacing certain compo-
nents of the model with more easily described components
in terms of differential equations (namely replacing the unit
hydrograph with a Nash cascade here), and (iv) solving these
equations with a robust numerical integration technique. Fi-
nally, all the fluxes that form the water balance equation gov-
erning a state are solved simultaneously while they are solved
sequentially in OS models. As stated by Fenicia et al. (2011),
this is more physically satisfying.

This work was presented using the example of the GR4
model. The new version was created to be as close as possi-
ble to the initial model but a single modification was imple-
mented: a Nash cascade substitutes the model’s unit hydro-
graph.

When analysing the results and the output flows, it was
shown that the new formulation, when solved with a robust
numerical technique, has a limited impact on performance.
However, the analysis of the parameter values and of the
internal fluxes of the model shows that some discrepancies
occur when running the model. The peak flow of the Nash
cascade occurs sooner than the peak flow of the unit hy-
drograph. The amount of water in the routing store and ex-
changed by the groundwater exchange function is also higher
for the state-space representation, particularly during high-
flow periods.

Nonetheless, the continuous state-space representation
simulates flows that are very similar to the flows simulated by
the original GR4 version and performs equally well. It also
seems to provide greater stability in the parameter values,
particularly regarding different modelling time steps. More-
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Figure 11. Performance comparisons obtained in validation among the reference (with unit hydrograph), the discrete state-space (with Nash
cascade) and the continuous state-space hourly GR4 on 240 catchments, focusing on high (a), intermediate (b) and low (c) flows after
calibration with the C2M (

√
Q) (i.e. focusing on intermediate flow). The points represent the mean performance.

over, the use of the Nash cascade rather than the unit hy-
drograph improves (when solved with implicit Euler) the lag
parameter value stability with time steps. This improved sta-
bility can make it easier to calibrate the model with a given
data set and to apply it at a finer time step for which no dis-
charge data are available. It can also allow the use of a model
that runs at a finer time step in high-flow periods and a larger
time step in low-flow periods.

Furthermore, the comparison between the discrete and
continuous state-space model shows that the benefits pro-
vided by the continuous state-space representation are a re-
sult of the use of a robust numerical integration technique.
Indeed, solving the state-space representation using OS in-
troduces errors that impact the simulated flow values and do
not result in parameter stability. Thus, the real benefit of the
use of the Nash cascade is to simplify the numerical solving
application.

The performance obtained with the continuous state-space
model is not better than that of the original model. In addi-
tion, because the number of sub-steps sometimes needs to
be high, the computational time is longer with the continu-
ous state-space representation of the model. Consequently,
the use of this representation would be helpful for particular
applications such as time-variable modelling. It might also be
useful for certain data assimilation techniques (typically vari-
ational methods) because all the components are represented
as states and the governing equations are clearly defined.

In addition, it could also be advantageous to find a way to
adapt the number of stores of the Nash cascade to the catch-
ment studied.

Although it is necessary to adapt the Nash cascade to dif-
ferent unit hydrograph shapes, this article suggests a suf-
ficiently general methodology to erase OS in hydrological
bucket-type modelling and can be transposed to other mod-
els.

Code and data availability. The Fortran code used in this arti-
cle can be freely downloaded from GitHub at https://github.com/
HYDRO-group-Irstea-Antony/GR4-State-space-version-1.0 (last
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an example catchment data set with already calibrated model pa-
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https://doi.org/10.5281/zenodo.1118183.
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