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Abstract

Argumentation is a reasoning model based on the justifica-
tion of claims by arguments. Often, arguments to be consid-
ered are not completely independent, two arguments can be
related for different reasons, they may overlap, or given by
two persons that make similar statements during a debate, but
express them differently, etc. This paper studies for the first
time the impact of similarity (i.e., when pairs of arguments
are related) in the context of gradual evaluation in abstract ar-
gumentation. We present principles that a semantics account-
ing for similarities should satisfy, and show how to extend
gradual semantics for this purpose. We propose three original
methods to do so, and study their properties. In particular, the
new semantics are evaluated with respect to the new princi-
ples, and others from the literature.

Introduction
An argumentation model is a pair made of an argumenta-
tion graph and a semantics. The nodes of the graph are ar-
guments supporting claims, and the edges represent attack
relationships between pairs of arguments. Often, each argu-
ment has a weight representing different issues, like votes
on arguments (Leite and Martins 2011) or certainty degrees
of arguments (Benferhat, Dubois, and Prade 1993). The se-
mantics is used for evaluating the overall strength of each
argument.

Due to the numerous applications of argumentation (see
(Rahwan and Simari(eds.) 2009)), an argumentation graph
may come from different sources, like logical knowledge
bases (e.g. (Besnard and Hunter 2001)), or persuasion di-
alogues (e.g. (Hadoux and Hunter 2017; Hunter 2018)).
Whatever the application, arguments may be more or less
similar. Similarity is related to commonality, in that the more
commonality two arguments share, the more similar they
are. Similar arguments appear frequently either in texts or
debates. To illustrate this, we provide an excerpt of an on-
line debate which will be used throughout the paper in Fig-
ure 1.

While the importance of detecting similar arguments
(paraphrases, or rephrased arguments) has been identified
as an important challenge in argument mining (Stein 2016;
Konat, Budzynska, and Saint-Dizier 2016), this relation is

always taken in a strong sense (“two text units are in the re-
lation of rephrase when substitution of one unit for another
preserves the argument structure” (Konat, Budzynska, and
Saint-Dizier 2016)). When such relation exists, rephrased ar-
guments can simply be considered as a single argument for
the evaluation phase. The same holds for equivalence of ar-
guments studied in (Wooldridge, Dunne, and Parsons 2006;
Amgoud, Besnard, and Vesic 2014). There is however to
the best of our knowledge no work investigating more gen-
erally the impact of partially similar arguments at level of
their global evaluation. Consider the example of Figure 1,
extracted from a debate held on the arguman platform1.
Arguments a and c are clearly similar (in short, they take
a probabilistic frequentist scheme). However, both also add
subtle elements: c mentions that the number of people cur-
rently alive is negligible wrt. the number of people who died
in history. On the other hand, argument a mentions (“un-
til dramatic medical discoveries [...] are made...”). That is,
while they certainly share some elements and should not be
simply considered as two arguments, it would also be too
simplistic to merely regard them as a single argument result-
ing from the merging of these individual arguments. One
obvious problem with this solution would be that a counter-
attack against a sub-part of the argument would transfer to
the whole argument. In our example, d attacks the statement
made more precise in c that the probability becomes negli-
gible, but it would not clearly attack the statement of a (“we
should not expect...”). Our research question is thus: Can
we design gradual semantics taking into account the degree
of similarity among arguments?

Before we start, it is important to stress that our perspec-
tive is normative. Surely, we do not deny that repeating the
same argument again and again can be, in some contexts, an
efficient strategy in a debate. However, ideally this should
not be the case. For instance, in the context of on-line de-
bates, the objective of the owner of the platform may pre-
cisely be to chose an evaluation method resistant to some
sockpuppet behaviour (Kumar et al. 2017) consisting in re-
peating similar arguments under false alternative identities.

The basic idea of our approach is thus that the overall
strengths of an argument’s attackers should not be fully con-

1http://en.arguman.org/



Not all people have died,
so we cannot discount the
possibility of immortality

The probability of death (of
the persons who are
currently living) is not

influenced by the amount of
people who have died so far.

As it stands, there are
biological reasons for why
humans have a finite life
span. As long as these

things are yet to be
circumvented, man is

mortal.

0% of people have lived to
150 years of age. So we

should not expect to live to
150 years of age unless
until dramatic medical

discoveries about anti-aging
are made.

Given that every person in
history have eventually died

and only a much smaller
amount is currently alive, I’d

say that the possibility of
immortality grows smaller

and smaller, with nothing to
indicate that this is possible

Possibility approaching zero
still doesn’t equal zero and
thus the possibility exits.

b (+) 1 vote

a (+) 2 votes c

d

Figure 1: Excerpt of an Argüman debate.

sidered if the attackers are similar. Consider for example,
the case of an argument a which is attacked by x1, x2 and
an argument bwhich is attacked by y1, y2. Suppose that a se-
mantics assigns the same overall strength to x1 and y1, and
also to x2 and y2. Intuitively, if x1 and x2 are more simi-
lar than y1 and y2, then the overall attack towards a should
be weaker, and thus a should be stronger than b according
to the semantics. If x1 and x2 are fully similar, only one
of them is considered in the evaluation of a since the other
is redundant. However, if they are partially similar, the re-
dundant part should not be counted twice. Similarity is usu-
ally simply defined among pairs of entities. In the context
of argumentation though, we shall defend the view that it
sometimes make sense to consider more generally similarity
between an individual argument and a full set of other argu-
ments. This does not rule out the use of classical pairwise
measures, and indeed some of our methods simply require
as an input pairwise similarity.

The paper starts by introducing the most general version
notion of similarity measure, i.e., a function assigning to
each pair made of an argument and a set of arguments a nu-
merical value expressing how much the argument is similar
to the set. After a discussion on the relevance of the princi-
ple of monotony when similarity occurs, we present four ra-
tionality principles, which prescribe how a semantics should
take properly into account similarities in the evaluation of ar-
guments. Our next contribution is to propose three methods,
which extend differently the weighted h-Categorizer seman-
tics recently proposed in (Amgoud et al. 2017) for account-
ing for similarities. The new semantics are evaluated with
respect to the proposed principles and others from (Amgoud
et al. 2017). These semantics make different choices, in par-

ticular regarding monotony, and thus can be seen as offering
alternative techniques depending on the context of use.

Similarity Measures in Argumentation
This section introduces useful notions for the paper. The first
one is that of similarity measure. Similarity has been studied
in many domains, like recognition, classification and cluster-
ing, where it is necessary to compare two objects. For that
purpose numerous similarity measures were defined (see
(Lesot, Rifqi, and Benhadda 2009) for a survey). They are
generally suited for objects of the same size, and are defined
as functions assigning to any pair of objects a value in the
unit interval [0, 1]. The greater the value, the more similar
the objects.

In the context of argumentation, it will sometimes be use-
ful to define similarity of an argument wrt. to a set of argu-
ments. We illustrate the need for such an approach with the
following example.

Example 1 Assume an argument d, which is attacked by the
three arguments a, b and c with the following structures:

a : From premises P1, P2 and P3 conclude C.”
b : From premises P3, P4 and P5 conclude C.”
c : From premises P5, P6 and P1 conclude C.”

Note that each meaningful similarity measure should as-
sign the same value to each pair of arguments, as each pair
shares one premise and the conclusion. Assume now another
argument d′, which is attacked by {a, b′, c′} such that:

b′ : From premises P1, P4 and P5 conclude C.”
c′ : From premises P1, P6 and P7 conclude C.”



Intuitively, the set {a, b′, c′} should be more harmful to d′
than the set {a, b, c} to d, since it uses an additional premise,
P7. However, that intuition cannot be captured by similarity
between pairs, as each two arguments from {a, b′, c′} also
share one premise and the conclusion. On the other hand,
we can note that a has a premise that is present in both b′
and c′, while there is no premise of a that is present in both
b and c. This calls for considering the measure of similarity
between arguments and sets of arguments.

Existing measures share two main properties: maximality
capturing the idea that two identical objects are fully sim-
ilar, and symmetry meaning that similarity is symmetric in
nature.

We are now in a position to introduce similarity measure
on a set of arguments. Let arg denote the universe of all
arguments.

Definition 1 (Similarity Measure) A similarity measure
on A ⊆f arg2 is a function s from A× P(A) to [0, 1] such
that

• ∀a ∈ A, s(a, {a}) = 1 (Maximality)
• ∀a ∈ A, ∀X = {x1, . . . , xn} ⊆ A \ {a}, s(a,X) =
s(xi, {x1, . . . , xi−1, a, xi+1, . . . , xn}) (Symmetry)

• ∀X,Y ∈ P(A), ∀a ∈ A, if X ⊂ Y , then s(a,X) ≥
s(a, Y ) (Monotony)

• ∀a ∈ A, ∀X ∈ P(A),
∑

∅6=Y⊆X
(−1)|Y |−1s(a, Y ) ≤ 1

• ∀a, b ∈ A, ∀X ∈ P(A), s(a, b) ≥∑
∅6=Y⊆X

(−1)|Y |−1s(a, {b} ∪ Y )

The fourth condition intuitively says that if an argument
is very similar to different arguments of a set, then it is
similar, to some extent, to the set itself. For example, if
s(a, {b}) = 0.8 and s(a, {c}) = 0.9, then the similar-
ity with the common part, s(a, {b, c}), should not be very
small (eg. 0.1). We require that when we remove the redun-
dant part s(a, {b, c}) from the sum of similarities s(a, {b})
and s(a, {c}), we cannot exceed the full possible similarity
value, i.e.

s(a, {b}) + s(a, {c})− s(a, {b, c}) ≤ 1 (1)

The fifth condition generalizes equation (1) by considering
similarity of a with larger sets of arguments. In a similar
way, the last condition says that similarity between a and
b cannot be exceeded by considering overall similarity with
supersets of b.3 For example, it says that similarity of a and
b is at least overall similarity with {b, c} and {b, d}:

s(a, {b}) ≥ s(a, {b, c}) + s(a, {b, d})− s(a, {b, c, d}).

We show next a desirable property of similarity measures.

Proposition 1 For all a, b, c ∈ arg, if s(a, {b}) = 1, then
s(a, {c}) = s(b, {c}).

2The notationA ⊆f arg means thatA be a finite subset of arg.
3Note that we use a variant of Poincaré formula to calculate the

overall similarity.

From a similarity measure, it is possible to define the nov-
elty of an argument with respect to a set of arguments. Intu-
itively, novelty calculates how much of an argument should
be taken into account, after removing the redundant part al-
ready contained in the arguments from the considered set.
Definition 2 (Novelty) Let A ⊆f arg and a ∈ arg \A. The
novelty of a with respect to A, denoted n(a,A), is the num-
ber

n(a,A) = 1−
∑
∅6=Y⊆A

(−1)|Y |−1s(a, Y ).

By convention, n(a, ∅) = 1.
Obviously, for two arguments a and b, n(a, {b}) = 1 −

s(a, {b}). We show that the notion of novelty satisfies some
intuitive properties. First, its value is always in the unit in-
terval [0, 1].
Proposition 2 For any A ⊆ arg, for any a ∈ arg \A,
n(a,A) ∈ [0, 1].

An argument does not bring any novelty wrt. itself.
Proposition 3 For any a ∈ arg, n(a, {a}) = 0.

The following result shows that novelty is monotone.
Proposition 4 For any a ∈ A and for any X,Y ∈ P(A), if
X ⊆ Y , then n(a,X) ≥ n(a, Y ).

Novelty enjoys also a form of symmetry.
Proposition 5 For all a, b ∈ A and for any X ∈ P(A),
n(a,X)− n(a,X ∪ {b}) = n(b,X)− n(b,X ∪ {a}).
Let us now introduce the class of argumentation graphs

we are interested in. We focus on graphs whose nodes and
edges represent respectively arguments and attack relation-
ships between arguments. Each argument has a basic weight
representing different issues. We assume that similarities be-
tween individual and subsets of arguments are given by a
similarity measure.
Definition 3 (AGs) An argumentation graph is a tuple
G = 〈A, w, s,R〉 where
• A ⊆f arg,
• w is a function from A to [0, 1],
• s is a similarity measure on A,
• R ⊆ A×A.
Let AG denote the universe of argumentation graphs.

Intuitively,w(a) represents the basic strength of argument
a, s(a,X) is the degree of similarity between a and the set
X of arguments, and (a, b) ∈ R means argument a attacks
argument b. We denote by AttG(a) the set of all attackers
of argument a in G, i.e., AttG(a) = {x ∈ A | (x, a) ∈ R}.
When G is clear from the context, we write Att(a) for short.

An important step in an argumentation process is the eval-
uation of interacting arguments. Such evaluation is done
by a semantics. In what follows, we recall the definition
of semantics proposed in (Amgoud and Ben-Naim 2016a;
Amgoud et al. 2017). A semantics is a function transform-
ing any argumentation graph into a weighting of the set of
arguments, i.e., assigns a numerical value to each argument.
The value represents the overall strength of the argument.



Definition 4 (Semantics) A semantics is a function S as-
signing to any G = 〈A, w, s,R〉 ∈ AG a function DegSG :
A → [0, 1]. DegSG(a) represents the overall strength of a.

The overall strength of an argument should depend on its
basic weight, the similarities between its attackers, and the
overall strengths of those attackers. It is also worth men-
tioning that fully similar arguments do not necessarily get
the same overall strength. This is mainly due to the fact that
these arguments may have different basic strengths. For in-
stance, if the basic strength of an argument represents the
importance degree of its source, then it may be the case that
two equivalent arguments are given by two sources, one of
which is reliable and the other not. Similarly, in a context
of on-line debate where weights may represent the votes
that users have expressed, it may be the case that one ar-
gument has attracted many more votes than another (simi-
lar) one. This is illustrated in our example where a received
two votes, while the similar argument c did not receive any.
However, these two settings hinder some subtle differences
that will become apparent in the next section.

Rationality Principles
In the argumentation literature, there is increasing interest in
defining principles that semantics may satisfy (eg. (Cayrol
and Lagasquie-Schiex 2005; Amgoud and Ben-Naim 2016a;
Amgoud and Ben-Naim 2016b; Bonzon et al. 2016b; 2016a;
Amgoud et al. 2017; Bonzon et al. 2017; Baroni, Rago, and
Toni 2018)). Such principles are important for understand-
ing design choices, strengths and weaknesses of individual
semantics, and for comparing pairs of semantics. However,
there is no work on how a semantics should deal with sim-
ilarities between arguments. All the above-cited works are
based on the strong implicit assumption that arguments in
a graph are not fully similar. While they can assume that
fully redundant arguments are removed from argumentation
graphs, they do not account for partially similar ones.

In this paper, we take inspiration from the list of prin-
ciples of (Amgoud et al. 2017), and redefine two of them
by considering similarities between attackers (reinforcement
and counting). The definitions of all the others do not change
since similarity is not involved in them. For instance, Inde-
pendence states that the evaluation of an argument should
be independent from any argument that is not related to it by
a path. Directionality principle states the fact that an argu-
ment attacks other argument should have no effect on its own
evaluation. Maximality ensures that non-attacked arguments
receive their basic strengths. Let us now recall the formal
definitions of Monotony and Proportionality principles. The
former states that the overall strengh of an argument can-
not be improved by an attack. Proportionality states that the
greater the basic strength of an argument, the more resilient
the argument to attacks.

Monotony: A semantics S satisfies monotony iff for any
G = 〈A, w, s,R〉 ∈ AG, for all a, b ∈ A, if w(a) = w(b)
and AttG(a) ⊆ AttG(b), then DegSG(a) ≥ DegSG(b).

Proportionality: A semantics S satisfies proportionality iff
for any G = 〈A, w, s,R〉 ∈ AG, for all a, b ∈ A, if

w(a) > w(b), AttG(a) = AttG(b) and DegSG(a) > 0,
then DegSG(a) > DegSG(b).

The case of monotony deserves special attention, because
it appears that its relevance when similarity is considered
will largely be context-dependent. Indeed, let us consider the
situation depicted in Figure 2, where both a and b attacks
arguments e, and where a and b are identified as being quasi-
similar. Should monotony be satisfied?

e : 1.00

b : 0.15a : 1.00

Figure 2: Monotony with similar arguments

If the weights (basic strength) of arguments represent the
credibility of some sources, then it certainly makes sense to
favour the most credible one. In that case, monotony would
be satisfied. On the other hand, if these basic strengths are
subjective values given by users (as is for instance the case
for votes in on-line debates), then averaging may be a more
appropriate approach4. In that case, monotony would not be
satisfied, as the presence of the attack of b actually weak-
ens the attack of a if these two arguments are recognized
as being similar. It turns out that among the three methods
we propose in the next section, one satisfies monotony while
the other ones do not. We thus provide a diversity of solu-
tions which allows to choose the most appropriate technique
depending on the context.

When the two principles (monotony and proportional-
ity) are satisfied, it follows that two similar arguments are
equally strong iff they have the same basic weights. This
holds when the attack relation satisfies the natural property
stating that similar arguments receive the same attacks.

Proposition 6 Let S be a semantics which satisfies
monotony and proportionality. For any G = 〈A, w, s,R〉 ∈
AG s.t. ∀a, b, c ∈ A, if s(a, {b}) = 1, then (c, a) ∈
R iff (c, b) ∈ R, the following holds: ∀a, b ∈ A s.t.
s(a, {b}) = 1, DegSG(a) = DegSG(b) iff w(a) = w(b).

Let us now switch to the two principles that are affected
by similarity. Reinforcement states that increasing the qual-
ity of an attacker leads to a decrease in the overall strength
of its target. The new principle, called S-Reinforcement, en-
sures that this is the case when the improved attacker is not
impeded by similarities with the other attackers of its target.

Principle 1 (S-Reinforcement) A semantics S satisfies S-
Reinforcement iff for any G = 〈A, w, s,R〉 ∈ AG, for all
a, b, x1, x2 ∈ A, for any X ∈ P(A), if
• w(a) = w(b),

4The reader may wonder why two similar arguments could re-
ceive different number of votes: this may simply be due to differ-
ent ways of expressing arguments. For instance, more provocative
statements tend to attract more votes.



• DegSG(a) > 0,
• AttG(a) = X ∪ {x1}, x1 /∈ X ,
• AttG(b) = X ∪ {x2}, x2 /∈ X ,
• DegSG(x1) < DegSG(x2),
• ∀Y ⊆ X, s(x1, Y ) = s(x2, Y ),

then, DegSG(a) > DegSG(b).

Counting states that each attacker with a strictly positive
overall strength should have impact on its target. This prin-
ciple gives birth to two separate principles: The first one,
called S-Counting, ensures that the attackers bring some
novelty to the attackers which are at least as strong as it is.
Recall that similarity can lead to ignoring attackers or con-
sidering parts of their strengths. The question of which ar-
gument to be sacrificed raises then naturally. Thus, weakest
arguments are disadvantaged. If for instance two attackers a
and b are fully similar but a is stronger than b, the semantics
ignores b and fully considers a.

Principle 2 (S-Counting) Semantics S satisfies S-
Counting iff for any G = 〈A, w, s,R〉 ∈ AG, for all
a, b ∈ A, if

• w(a) = w(b),
• DegSG(a) > 0,
• AttG(b) = AttG(a) ∪ {x} s.t. DegSG(x) > 0,
• AttG(a) 6= ∅ and x /∈ AttG(a),
• n(x,X) > 0, with X = {y ∈ AttG(a) | DegSG(y) ≥
DegSG(x)},

then DegSG(a) > DegSG(b).

The second one, called Redundancy Freeness, states that
if an attacker of an argument does not bring any novelty with
respect to the other (stronger) attackers of the argument, then
it should be discarded.

Principle 3 (Redundancy Freeness) A semantics S satis-
fies redundancy freeness iff for any G = 〈A, w, s,R〉 ∈ AG,
for all a, b, x ∈ A, if

• w(a) = w(b),
• AttG(b) = AttG(a) ∪ {x} s.t. DegSG(x) > 0,
• AttG(a) 6= ∅ and x /∈ AttG(a),
• n(x,X) = 0, with X = {y ∈ AttG(a) | DegSG(y) ≥
DegSG(x)},

then, DegSG(a) = DegSG(b).

The fourth principle, called Sensitivity to Similarity, is
new and has no counterparts in (Amgoud et al. 2017). It
states that the more similar the attackers of an argument, the
stronger the argument.

Principle 4 (Sensitivity to Similarity) A semantics S is
sensitive to similarity iff for any G = 〈A, w, s,R〉 ∈ AG,
for all a, b, x, x1, x2 ∈ A, if

• w(a) = w(b),
• DegSG(a) > 0,
• AttG(a) = {x1, x},
• AttG(b) = {x2, x},

• DegSG(x1) = DegSG(x2) and DegSG(x) > 0,
• s(x1, {x}) > s(x2, {x})
then, DegSG(a) > DegSG(b).

The four principles are compatible, that is, there exists
at least one semantics satisfying all of them. They are also
compatible with all the cited ones.

Proposition 7 The four principles are compatible. Further-
more, they are compatible with the recalled principles.

Extending Weighted h-Categorizer Semantics
In (Amgoud et al. 2017), the semantics that deal with
weighted argumentation graphs were analyzed. The results
show that there are essentially two categories of semantics:
the first ones consider only one attacker (the strongest
one) among all the attackers of an argument. Examples
of such semantics are extension-based ones (Dung 1995),
Trust-based semantics (da Costa Pereira, Tettamanzi, and
Villata 2011), Iterative schema (Gabbay and Rodrigues
2015) and Top-based semantics (Mbs) (Amgoud et al. 2017).
The second category of semantics takes into account all
the attackers of an argument. There are also several such
semantics in the literature: weighted h-Categorizer (Hbs)
and cardinality-based (Cbs) proposed both in (Amgoud et
al. 2017), (DF-)QuAD proposed in (Baroni et al. 2015;
Rago et al. 2016), as well as the propagation-based se-
mantics of (Bonzon et al. 2017). We have seen in the
previous section that similarity comes into play when all
attackers may be taken into account. Thus, only the second
category of semantics is concerned by the problem of not
dealing with similarities. In what follows, we extend Hbs
for accounting for similarities between attackers. Cbs can
be extended exactly in the same way. Unfortunately, due to
space limitation, we only focus on Hbs in this paper. (DF-
)QuAD deals only with acyclic graphs, and this impedes its
relevance in some applications like handling inconsistency
in knowledge bases.

The weighted h-categorizer semantics (Hbs) takes as in-
put a graph G = 〈A, w,R〉 and assigns for each argument
an overall strength, which depends on the basic weight of
the argument and on the sum of the overall strengths of its
attackers. Formally, for any a ∈ A,

DegHbsG (a) =
w(a)

1 +
∑

b∈AttG(a)

DegHbsG (b)
(2)

Example 2 Let us consider the argumentation graph G de-
picted in Figure 3 which is the abstract representation of
the online debate illustrated in Figure 1. Every node con-
tains [argument name]:[basic strength] and below [overall
strength]. For the initial weight on the arguments, we choose
to take into account the number of supporters for each ar-
gument. Thus, an argument with 2 supporters will have a
score of 1 (like a), 1 supporter implies a score of 0.75 (like
b) and when there is no supporter, the arguments begin with
a score of 0.5 (like c and d). As e is the main issue under dis-
cussion, and since it cannot get any supporter in this system,



we suppose that its initial score is 1. Concerning the similar-
ity measure, assume that s(a, {b}) = 0.5, s(a, {c}) = 0.9
and s(b, {c}) = 0.1.

e : 1.00
0.324

b : 0.75
0.75

a : 1.00
1.00

c : 0.50
0.33

d : 0.50
0.50

Figure 3: Computing h-categorizer on G

The three arguments a, b, and d are not attacked, then
their overall strength is equal to their basic weight.
The argument c is only attacked by d, then

DegHbsG (c) =
w(c)

1 + DegHbsG (d)
=

0.5

1 + 0.5
' 0.333

Finally, e is directly attacked by 3 arguments (AttG(e) =
{a, b, c}). So, following the definition, then

DegHbsG (e)=
w(e)

1+DegHbsG (a)+DegHbsG (b)+DegHbsG (c)
'0.324

As discussed previously, we shall now propose different
ways to extend h-Categorizer, either based on pairwise or
on general similarity measures.

Methods based on pairwise similarity
A generalization of some of semantics (including the
weighted h-categorizer semantics), called “local approach”,
has been proposed by (Cayrol and Lagasquie-Schiex 2005).
Indeed, the value of an argument is obtained in combining
two functions: one to aggregate the score of its direct at-
tackers (Hbs uses the sum for example) and one attenuation
function to apply the negative effect of its direct attackers
(Hbs uses the reciprocal function for example). Our goal is
to modify the function allowing to aggregate the score of the
direct attackers in order to take into account the similarities
which could exist between them. In this purpose, we intro-
duce two methods: the readjustment method and the thresh-
old method.

The readjustment method. A first possibility consists in
aggregating the overall score of the direct attackers, with the
aim to find the “real” score of each direct attacker of an ar-
gument by taking into account the pairwise similarities that
could exist with the other direct attackers.

Definition 5 (Readjusted score) Let G = 〈A, w, s,R〉 ∈
AG be an argumentation graph and x, y ∈ A. Let S be a
semantics. The readjusted score of x w.r.t. the direct attack-
ers of y is defined as follows:

hSy(x)= avg
z∈AttG(y)\{x}

(
avg(DegSG(x), Deg

S
G(z))×(2−s(x, {z}))
2

)
If AttG(y) = ∅ then hSy (∅) = 0 and if AttG(y) = {x},
then hSy (x) = DegSG(x).

Let us decompose the formula to facilitate its understand-
ing. First of all, two arguments x and z can have different
overall strength. It is why we first need to centralize their
strengths in using the average.

avg(DegSG(x), DegSG(z))

Now the goal is to take into account the similarity between
the two arguments in computing the score previously ob-
tained proportionally to the difference that exists between x
and z (so 1− s(x, {z})).
avg(DegSG(x), DegSG(z))

+ (1− s(x, {z}))avg(DegSG(x), DegSG(z))
or by simplifying the formula:

avg(DegSG(x), DegSG(z))×(2− s(x, {z}))
However, this score represents the aggregation of the

score of x and z. So we divide the score by 2 to select only
the “real” score of x w.r.t. z.
And finally, since an argument may have more than two di-
rect attackers, we centralize all the scores obtained by xwith
these different arguments in using the average:

avg
z∈AttG(y)\{x}

(
avg(DegSG(x), DegSG(z))×(2− s(x, {z}))

2

)
We are now able to extend Equation 2 because, for a given

argument, we can replace the classical overall score of the
direct attackers by their readjusted score and then take into
account the similarities between them.
Definition 6 (RHbs) Readjustment weighted h-categorizer
(RHbs) is a function transforming any G = 〈A, w, s,R〉 ∈
AG into a function DegRHbsG fromA to [0, 1] s.t. for any a ∈ A,

DegRHbsG (a) =
w(a)

1 +
∑

b∈AttG(a)

hRHbsa (b)

If AttG(a) = ∅, then
∑

b∈AttG(a)

hSa (b) = 0.

Example 3 Let us focus on the argumentation graph G
depicted in Figure 3. The arguments a, b, and d are not
attacked, so their overall strength is equal to their ba-
sic weight: DegRHbsG (a) = 1, DegRHbsG (b) = 0.75 and
DegRHbsG (d) = 0.5. The argument c is only attacked by d,
so DegRHbsG (c) = 0.5

1+0.5 ' 0.333. For the argument e,
by following the definition of the readjustment weighted h-
categorizer, its score is computed as follows:

DegRHbsG (e)=
w(e)

1 + hRHbse (a) + hRHbse (b) + hRHbse (c)
' 0.3941

To obtain this score, let us detail how the readjusted score of
a w.r.t. e is computed:

hRHbse (a) =
1

2
(avg(DegRHbsG (a) + DegRHbsG (b))×(2− 0.5)+

avg(DegRHbsG (a) + DegRHbsG (c))×(2− 0.9))

' 0.5114

Following the same method, the readjusted score of b
w.r.t. e is hRHbse (b) ' 0.5853 and the one of c w.r.t. e is
hRHbse (c) ' 0.4405.



Let us now check which principles, among the four prin-
ciples introduced in this paper, are satisfied by RHbs.

Theorem 1 The semantics RHbs satisfies the properties S-
Reinforcement and Sensitivity to Similarity. The properties
S-Counting and Redundancy Freeness are not satisfied.

The reasons behind the fact that S-Counting and Redun-
dancy Freeness are not satisfied are directly linked with the
discussion on the Monotony principle (see the section Ratio-
nality Principles). Indeed, RHbs is a semantics which does
not satisfy Monotony, consequently, adding a new attacker
to an argument does not always have a negative impact on
this argument.

The grouping by thresholds method. The second
method allows to directly compute the score resulting from
the aggregation of all the direct attackers of an argument.
The rationale of the method is to do so by considering it-
eratively the different relevant thresholds of similarity, and
by examining which sets of arguments can be assessed as
sufficiently similar, in the sense that any pairwise similarity
among arguments of the set is above the required thresh-
old. Thus, it constitutes a sort of intermediate step between
approaches based on pairwise similarities and approaches
based on setwise similarities.

Definition 7 (Gradual valuation) Let G = 〈A, w, s,R〉 ∈
AG be an argumentation graph. Let S be a semantics. The
gradual valuation for X ⊆ A is defined as follows:

gS(X )=
k−1∑
i=0

(si − si+1)×
∑

Y∈Csi (X )

avgy∈Y(Deg
S
G(y))


with :

• Cα(X ) the set of ⊆-max cliques from X such that for any
x, y ∈ X , s(x, y) ≥ α with α ∈ [0, 1],

• ~s(X ) = 〈s0, s1, s2, . . . , sk〉 where s0 = 1, sk = 0, and
s1 . . . sk−1 is the decreasing list of similarity scores which
appear in the clique X .

Let us extend Equation 2 by substituting the sum of the
overall score of the direct attackers of a given argument by
the gradual valuation of its direct attackers.

Definition 8 (GHbs) Grouping weighted h-categorizer
(GHbs) is a function transforming any G = 〈A, w, s,R〉 ∈
AG into a function DegGHbsG from A to [0, 1] such that for any
a ∈ A,

DegGHbsG (a) =
w(a)

1 + gGHbs(AttG(a))

If AttG(a) = ∅, then gGHbs(AttG(a)) = 0.

Example 4 Let us focus on the argumentation graph G de-
picted in Figure 3. Our goal is to compute the score resulting
from the aggregation of the direct attackers of e (for a better
reading, we note X = AttG(e) = {a, b, c}). As a reminder,
s(a, {b}) = 0.5, s(a, {c}) = 0.9 and s(b, {c}) = 0.1. So,
according to the definition, we have

~s(X ) = 〈1, 0.9, 0.5, 0.1, 0〉

Thus, C1(X ) = {{a}, {b}, {c}}, C0.9(X ) = {{a, c}, {b}},
C0.5(X ) = {{a, c}, {a, b}} and C0.1(X ) = {{a, b, c}}.

Let us compute the gradual valuation of AttG(e):

gGHbs(X )=(1−0.9)×(DegGHbsG (a) + Deg
GHbs
G (b) + Deg

GHbs
G (c))+

(0.9−0.5)×
(
DegGHbsG (a) + DegGHbsG (c)

2
+ Deg

GHbs
G (b)

)
+

(0.5−0.1)×
(
DegGHbsG (a)+DegGHbsG (c)

2
+
DegGHbsG (a)+DegGHbsG (b)

2

)
+

(0.1−0)×
(
DegGHbsG (a) + DegGHbsG (b) + DegGHbsG (c)

3

)
' 1.4609

Let us now compute the score of each argument in G. The
three arguments a, c, and d are not attacked, so their over-
all strength is equal to their basic weight: DegGHbsG (a) = 1,
DegGHbsG (b) = 0.75 and DegGHbsG (d) = 0.5. The argument c
has one attacker, so its score depends on its initial score and
on the overall strength of d, so DegGHbsG (c) ' 0.333.
And the argument e is computed as follows:

DegGHbsG (e) =
w(e)

1 + gGHbs({a, b, c})
=

1

1 + 1.4609
' 0.4063

Let us now check which principles, among the four prin-
ciples introduced in this paper, are satisfied by GHbs.
Theorem 2 The semantics GHbs satisfies the properties S-
Reinforcement and Sensitivity to Similarity. The properties
S-Counting and Redundancy Freeness are not satisfied.

The properties satisfied are the same as with RHbs, essen-
tially for the same reasons.

Methods based on setwise similarity
In what follows, we propose a last semantics which extends
Equation 2 for taking into account similarities between the
direct attackers of a given argument. The basic idea is the
following: instead of considering the whole overall strength
of each attacker, we only consider a part which is propor-
tional to the novelty of the argument with respect to stronger
attackers. For instance, when two fully similar arguments
have different overall strengths, we keep the whole value of
the strongest argument, and discard the value of the weak-
est one. The attackers should thus be rank-ordered from the
strongest to the weakest ones.

Definition 9 (EHbs) Extended weighted h-categorizer
(EHbs) is a function transforming any G = 〈A, w, s,R〉 ∈
AG into a function DegEHbsG from A to [0, 1] such that for any
a ∈ A,

DegSG(a)=
w(a)

1+
n∑
i=1

n(bσ(i), {bσ(1), . . . , bσ(i−1)})DegSG(bσ(i))

where σ is a permutation of AttG(a) = {b1, . . . , bn} such
that DegSG(bσ(1)) ≥ . . . ≥ DegSG(bσ(n)). If AttG(a) = ∅,

then
n∑
i=1

n(bσ(i), {bσ(1), . . . , bσ(i−1)})DegSG(bσ(i)) = 0.



Let us illustrate the above definition with an argument a
whose set of attackers is AttG(a) = {b1, . . . , bn}.
If AttG(a) = ∅, then DegEHbsG (a) = w(a).
Assume now that Att(a) 6= ∅ and that DegEHbsG (b1) ≥ . . . ≥
DegEHbsG (bn).
If n = 1, then

DegEHbsG (a) =
w(a)

1 + DegEHbsG (b1)

Thus, for n = 1, similarity is not involved.

If n = 2, we get:

DegEHbsG (a) =
w(a)

1 +X

where X = n(b1, ∅)DegEHbsG (b1) + n(b2, {b1})DegEHbsG (b2)
= DegEHbsG (b1) + (1 − s(b2, {b1})DegEHbsG (b2). Note that if
s(b2, {b1}) = 1, then X = DegEHbsG (b1) meaning that the
second attacker b2 is not taken into account.
In case n = 3,X = DegEHbsG (b1)+n(b2, {b1})DegEHbsG (b2)+
n(b3, {b1, b2})DegEHbsG (b3).

Example 5 Let us consider the argumentation graph G de-
picted in Figure 3. Assume that s(a, {b}) = 0.5, s(a, {c}) =
0.9, s(b, {c}) = 0.1 and s(c, {a, b}) = 0.91.
The three arguments a, b, and d are not attacked, then their
overall strength is equal to their basic weight: DegEHbsG (a) =
1, DegEHbsG (b) = 0.75 and DegEHbsG (d) = 0.5. The argument
c has one attacker, then

DegEHbsG (c) =
w(c)

1 + DegEHbsG (d)
=

0.5

1 + 0.5
' 0.333.

The situation is different for e since it has three direct attack-
ers, and the semantics should avoid redundancies between
them. Since DegEHbsG (a) > DegEHbsG (b) > DegEHbsG (c), then
we will use the permutation {a, b, c}. Hence, DegSG(e) =

w(e)

1+DegEHbsG (a)+n(b,{a})DegEHbsG (e)+n(c,{a, b})DegEHbsG (c)

=
1

1 + 1 + 0.5 ∗ 0.75 + 0.09 ∗ 0.33
' 0.4158

It is worth mentioning that EHbs amounts mainly to solv-
ing a system of equations (one per argument) for each argu-
mentation graph. In what follows, we show that each such
system has a unique solution.

Theorem 3 For any G = 〈A, w, s,R〉 ∈ AG, the function
EHbs assigns a unique value to each argument a ∈ A.

This shows that EHbs is well-defined. The next result
shows that it satisfies the four principles introduced in the
previous section.

Theorem 4 The semantics EHbs satisfies the properties S-
Reinforcement, Sensitivity to Similarity, S-Counting and Re-
dundancy Freeness.

The semantics GHbs, RHbs EHbs extend Hbs by similar-
ities. When the arguments are all distinct (i.e., similarities
are 0), the four semantics assign the same values to all argu-
ments.

Theorem 5 For any G = 〈A, w, s,R〉 ∈ AG, if for any a ∈
A, for any X ⊆ A \ {a}, s(a,X) = 0, then

DegGHbsG ≡ DegRHbsG ≡ DegEHbsG ≡ DegHbsG′

where G′ = 〈A, w,R〉.
The four semantics coincide also on the class of argumen-

tation graphs where each argument is attacked by at most
one attacker. Indeed, our semantics only consider the simi-
larity between the direct attackers of an argument. So if this
argument has no direct attacker then its score is equal to its
basic weight. And if this argument has only one direct at-
tacker then we only consider the overall strenght of this at-
tacker without any modification.

Theorem 6 For any G = 〈A, w, s,R〉 ∈ AG, if for any a ∈
A, |AttG(a)| ≤ 1, then

DegGHbsG ≡ DegRHbsG ≡ DegEHbsG ≡ DegHbsG′

where G′ = 〈A, w,R〉.

Related Work
In the argumentation literature, similarity can be investi-
gated from three different perspectives at least. It is impor-
tant to make a clear distinction.

Some works studied the use of similarity within an argu-
ment. For instance, (Walton 2008; 2010; 2013) proposed dif-
ferent argument schemes like analogical arguments or sim-
ilarity arguments, i.e. schemes where evidence supporting a
claim is based on the existence of a known similar case or
situation.

Other works looked for defining similarity measures be-
tween pairs of arguments. Budan et al. (2015) defined a mea-
sure assessing similarity between pairs of analogical argu-
ments. In the context of argument mining, (Misra, Ecker,
and Walker 2016; Stein 2016; Konat, Budzynska, and Saint-
Dizier 2016) investigated similarity between pairs of tex-
tual arguments. In particular, (Konat, Budzynska, and Saint-
Dizier 2016) showed that in the context of their Citizen Di-
alogue corpus, rephrasing occurred significantly more often
than in other tested corpus. This shows that the importance
of this phenomenon can vary depending on the context. In-
terestingly, in their attempt to identify prominent arguments
in on-line debates, (Boltuzic and Snajder 2015) perform a
first task consists in clustering similar arguments (they do
so by using two techniques: vector-space similarity, and se-
mantic textual similarity). This provides concrete examples
of measures of similarity which can be used off-the-shelf.

The third perspective is the one studied in our paper, i.e.,
how a semantics may take into account similarities between
arguments. To the best of our knowledge, the first work in
the literature on this issue was done in (Amgoud, Besnard,
and Vesic 2014). Focusing on logical arguments, the authors
used a very drastic notion of similarity between pairs of ar-
guments: two arguments are similar if they are equivalent,
they are different otherwise. Then, they considered in an ar-
gumentation graph one argument per equivalent class, and
applied Dung’s semantics on the restricted graph. This ap-
proach solves the issue of similarities before the evaluation
of arguments by semantics. Our approach is more general in



that it deals with arbitrary similarity measures. Furthermore,
similarities are considered by the semantics itself. Budan et
al. (2015) proposed an argumentation system that takes as
input a set of analogical arguments, a similarity measure be-
tween pairs of arguments, an attack relation, and outputs
extensions under the classical semantics of Dung (1995).
In that work, similarities are used for restricting the attack
relation. The idea is to discard from the graph any attack
whose similarity between the target and the source is above
a certain threshold. Obviously, this leads to removing self-
attacks. Unlike our paper, similarities between attackers of
the same argument are allowed. Thus, that work did not ad-
dress the problem discussed in our paper.

Conclusion
This paper investigated the notion of similarity between ar-
guments. More precisely, it introduced gradual semantics for
the evaluation of arguments accounting for similarity mea-
sures, and presented general properties they should satisfy,
that is, principles that should be followed by semantics for
dealing properly with similarities. Three concrete methods,
taking different stances on the issue of monotony, were pro-
vided to accommodate various settings. To analyze and un-
derstand the foundations of (choices made by) semantics,
we have checked among the principles we have introduced
which are satisfied by our semantics.

An important line of research consists in investigating
how concrete similarity measures perform when used in
combination with our semantics, so as to identify which ones
are more appropriate in the argumentation context. It must
be noted that this task is quite challenging when considered
at the textual level (very small lexical differences can make
significant semantical differences). However, it must be em-
phasized that: (i) our approach is certainly not limited to tex-
tual arguments (it is possible to conceive meaningful simi-
larity measures for logical arguments, in particular), and (ii)
our approach is completely modular: any similarity measure
can be plugged to our methods, thus any progress on these
aspects will directly improve the evaluation provided.
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Appendix
Proof of Proposition 1 Let a, b, c ∈ arg. We will use the
instance

s(a, {b}) + s(a, {c})− s(a, {b, c}) ≤ 1. (3)

of the fourth condition of Definition 1. Since s(a, {b}) = 1,
the equation (3) reduces to s(a, {c})− s(a, {b, c}) ≤ 0, i.e.
s(a, {c}) ≤ s(a, {b, c}).
On the other hand, by Monotony (the third condition of Def-
inition 1) we obtain s(a, {c}) ≥ s(a, {b, c}). Therefore,

s(a, {c}) = s(a, {b, c}). (4)

Note that by Symmetry (the second condition of Definition
1) we have s(b, {a}) = 1.
In the same way as above, starting from s(b, {a}) +
s(b, {c})− s(b, {a, c}) ≤ 1, we obtain

s(b, {c}) = s(b, {a, c}) (5)

By Symmetry, s(a, {b, c}) = s(b, {a, c}).
Now s(a, {c}) = s(b, {c}) follows from (4) and (5).

Proof of Proposition 2 First, we prove that for arbitrary
A ⊆ arg and a ∈ arg \A, we have n(a,A) ≤ 1. Note
that for any b ∈ A we have n(a, {b}) = 1−s(a, {b}). Since
s(a, {b}) ≥ 0, we obtain n(a, {b}) ≤ 1. Since {b} ⊆ A,
by Proposition 4 we obtain n(a,A) ≤ n(a, {b}) and, conse-
quently, n(a,A) ≤ 1 (please note that this proof is correct,
since in the proof of Proposition 4 we will not use the result
of this proposition).

Finally, we prove that n(a,A) ≥ 0 for arbitrary A ⊆ arg
and a ∈ arg \A. From the fourth condition of Definition
1 we have

∑
∅6=Y⊆A(−1)|Y |−1s(a, Y ) ≤ 1, so n(a,A) =

1−
∑
∅6=Y⊆A(−1)|Y |−1s(a, Y ) ≥ 1− 1 = 0.

Proof of Proposition 3 For any a ∈ arg, by Maximality of
similarity we have n(a, {a}) = 1− s(a, {a}) = 1− 0 = 1.

Proof of Proposition 5 Let a, b ∈ A and X ∈ P(A).
Let us denote L = n(a,X) − n(a,X ∪ {b}) and
R = n(b,X) − n(b,X ∪ {a}); then we need to show
L = D.
In the proof of Proposition 4 we have shown
that n(a,X ∪ {b}) = n(a,X) − [s(a, {b}) −∑
∅6=Z⊆X(−1)|Z|−1s(a, {b} ∪ Z)].

In the same way we can obtain n(b,X ∪ {a}) =
n(b,X) − [s(b, {a}) −

∑
∅6=Z⊆X(−1)|Z|−1s(b, {a} ∪ Z)].

Therefore,

L = s(a, {b})−
∑
∅6=Z⊆X

(−1)|Z|−1s(a, {b} ∪ Z), (6)

and

D = s(b, {a})−
∑
∅6=Z⊆X

(−1)|Z|−1s(b, {a} ∪ Z). (7)

By Symmetry we obtain s(a, {b}) = s(b, {a}) and, for ev-
ery Z ⊆ X , s(a, {b} ∪ Z) = s(b, {a} ∪ Z). Thus, from (6)
and (7) we obtain L = D.
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