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 Abstract. Spatial OLAP (SOLAP) and spatial data warehouse (SDW) systems are geo-

business intelligence technologies that enable the analysis of huge volumes of geographic data. 

In the last decade, the conceptual design and implementation of SDWs that integrate spatial 

data, which are represented using the vector model, have been extensively investigated. 

However, the integration of field data (a continuous representation of spatial data) in SDWs is 

a recent unresolved research issue. Enhancing SDWs with field data improves the spatio-

multidimensional analysis capabilities with continuity and multiresolutions. Motivated by the 

need for a conceptual design tool and ROLAP implementation, we propose a UML profile for 

SDWs that integrates a regular grid of points and supports continuity and multiresolutions. We 

also propose an efficient implementation of a ROLAP architecture. 

 

1.  Introduction 
Data warehouses (DWs) and online analytical processing (OLAP) systems (such as Microsoft 

Analysis Services and Oracle BI) are business intelligence technologies that support decision 

makers in the online analysis of hugevolumes of data (Inmon, 2005) (Kimball, 1996).  

In the era of spatial big data (Shekar et al., 2012), a greater amount of spatial data is collected 

using new technologies, such as satellites, sensor networks, and simulation models. To take 

advantage of important analysis capabilities that are associated with these data, geographic 

information system (GIS) functionalities have been integrated into DWs and OLAP systems, 

which have produced the concepts of a spatial data warehouse (SDW) and spatial OLAP 

(SOLAP) (Stefanovic et al., 2000) (Bédard et al., 2001). Warehoused spatial data are modeled 

according to a spatio-multidimensional model, which defines the concepts of spatial dimensions 

(the analysis axes) and spatial measures (the analysis subjects) (Malinowski et al., 2008). 

Warehoused (spatial) data are analyzed using SOLAP systems, which have been defined by 

Yvan Bédard as "Visual platforms built especially to support rapid and easy spatiotemporal 

analysis and exploration of data, following a multidimensional approach, comprised of 

aggregation levels, available in cartographic displays as well as in tabular and diagram 

displays" (Bédard, 1997). The integration of OLAP and GIS functionalities enables the use of 

spatial analysis operators and cartographic representations of SOLAP query results (Bimonte, 

2010). SOLAP systems have demonstrated their effectiveness in several application domains, 

such as marketing, health (Bernier et al., 2009), and agriculture (Bimonte, 2015). SOLAP 

systems and GISs are complementary technologies because GISs are well adapted for 

operational tasks and complex spatial analysis using small spatial data sets, whereas SOLAP is 

suitable for spatial analysis based on the exploration and summarization of massive spatial data 

sets.  

Existing spatial OLAP systems (such as Map4Decision and Oracle BI) (Bimonte, 2010) 

(Golfarelli et al., 2013) (Bimonte, 2014) enable the management of spatial data using a vector 

representation.  

Geographic information can be represented according to two models: the discrete (vector) 

model and the field model (Tomlin, 1990) (O’Sullivan et al., 2002). The vector model is used 

to model human geographic concepts, such as regions and buildings. The field model is used 

for geographic phenomena that continuously change in space, such as temperature and 

pollution. (Couclelis, 1992). Some analysis operators that differ from the analysis operators of 
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the vector model (i.e., topological operators) have been proposed for fields because they enable 

a point-by-point analysis (i.e., map algebra (Tomlin, 1990) (Ledoux et al., 2006)). Note that the 

distinction between the field and the vector is primarily a distinction of convenience and 

perspective because movement from one representation to a second representation according to 

the analysis needs is easy (Camara et al., 1995). To implement the continuity of fields, two 

categories of representations of fields have been proposed in the literature: the incomplete 

representation and the complete representation (Laurini et al., 1992). The first representation 

involves assigning a numerical value to each point of the space. For the second representation, 

the numerical values are assigned to exact locations in space, and additional spatial interpolation 

functions (O’Sullivan et al., 2002) are used to calculate the values for non-sampled locations.  

Sometimes, the analysis of a geographical phenomenon, such as territorial changes (Plumejeaud 

et al., 2011), at different levels of detail (LOD) (resolutions, scales and thematic granularities) 

is necessary because it explains unknown trends and patterns (Timpf, et al., 1992). Thus, several 

authors have investigated issues related to the fields and LOD by proposing logical and physical 

data models and analysis techniques in the context of GIS and spatial database management 

systems (SDBMSs) (Laurni et al., 2004).  

The integration of field data in SOLAP systems offers significant analytical capabilities (Gomez 

et al., 2010) (Gómez et al., 2013). Indeed, several application domains such as climate change, 

natural disasters, energy sources, agriculture, and urban planning can be analyzed using field 

data, which comes from satellite images and/or simulation models. 

However, this topic has not been extensively investigated. Few recent studies investigate the 

extension of the spatio-multidimensional model and SOLAP operators to manage the complete 

and incomplete representations of fields. In the same manner, the management of LOD spatial 

vector data in the multidimensional model is proposed in some studies (Bédard et al., 2002) 

(Concepción et al., 2009). 

However, no work addresses the representation of an incomplete field at different resolutions 

at the conceptual and logical levels in a Relational OLAP-GIS architecture for the following 

main reasons: (i) spatial members usually present only not varying attributes (member 

properties) (Malinowsky et al., 2008), whereas continuity can be considered to be a attribute 

that change in space, (ii) multiresolution structures do not adequately correspond with spatial 

hierarchies. Indeed spatial hierarchies are defined using the topological inclusion relationship 

(Malinowsky et al., 2008), while multiresolution hieararchies (Concepción et al., 2009) 

correspond more to versioning hierarchies (Body et al., 2003). Although they are easily 

associated with versioning hierarchies (Body et al., 2003), their implementation in existing 

(S)OLAP systems is difficult. 

Encouraged by the need for standards in SDW and SOLAP systems, we present two new SDW 

logical models in our previous preliminary studies (Zaamoune et al., 2013). The proposed 

logical models extend the well-known relational DW star-schema (Kimball, 1996) to represent 

multiresolution regular grids of points and simultaneously provide efficient storage and 

computation performance. The use of SQL, which is the standard of relational database 

management systems (DBMS), enables the implementation of our proposal in any relational 

SOLAP architecture and reduces time and money-consuming efforts related to the acquisition 

of new technological skills. 

In this paper, we extend (Zaamoune et al., 2013) in different ways to effectively integrate 

regular grids of points in SOLAP. 

Contribution i. Motivated by the need for conceptual models (such as UML and ER) for SOLAP 

applications as effective tools that enable DW experts and decision makers to exchange using 

a common, non-ambiguous, simple and readable language (Torlone, 2003), we propose an 

extension of the UML profile for SOLAP applications proposed by (Boulil et al., 2015) for 

modeling spatio-multidimensional models with multiresolution regular grids of points.  
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Contribution ii. We propose FieldMDX (Zaamoune et al., 2013)—an extension of MDX (the 

de-facto OLAP standard query language) (MDX,  2015)—which generates the continuity of an 

incomplete field with spatial interpolation functions.  

Contribution iii. We validate our proposal using a real case study concerning odor monitoring, 

and we present its implementation in the classical UML CASE tool and relational SOLAP 

architecture. 

The paper is organized as follows: Section 2 introduces the main concepts of SOLAP and field 

data; Section 3 presents the motivations of our study; Section 4 presents our UML profile, and 

its implementation is presented in Section 5; Section 6 presents the evaluation of our proposals, 

and Section 7 concludes the paper. 

 

 

2. Background 

2.1 Geographic information 

Geographical space can be represented as a field with space- (and time-) numerical varying 

attributes (Tomlin, 1990). Examples of fields are temperature phenomenon and land use data. 

Because the number of points in a continuous representation of the space is infinite, a 

discretization of the analyzed space is needed to be represented in information technology 

systems. Therefore, some types of discretization (such as raster, TIN, and DEM) have been 

proposed in the literature to implement fields (Couclelis, 1992), where each type is adapted to 

a particular geographical phenomenon in terms of data and associated analysis operators. For 

example, a digital elevation model (DEM) is a digital model of the 3D representation of a 

terrain's surface; it involves slope analysis. These representations can also be classified in 

complete and incomplete representations regardless of whether they assign a value to each point 

of the space. As shown in Figure 1, a raster is an example of a field that employs the complete 

representation (Figure 1a), whereas a TIN is an incomplete representation (Figure 1b). 

 

 
                                                                   (a)                 (b) 

Figure 1. Examples of incomplete and complete representations of continuous fields: a) 

raster and b) TIN 

 

These representations are well supported by GISs such as ArcGIS and QuantumGIS, which 

provide ad-hoc storage models and a set of analysis tools. In the context of Spatial DBMS, 

several academic efforts have been conducted to provide models (Ferreira et al., 2014) and 

query languages (Laurini et al., 2004) that can handle fields using relational and the object-

oriented models. Existing SDBMSs, such as Oracle Spatial and PostGIS (PostGIS, 2015), 

support only the raster representation by providing DDL/DQL SQL extensions. 

The most common operators for fields are Tomlin’s map algebra operators (Tomlin, 1990). 

Map algebra operators were originally defined for raster data but were subsequently extended 

with new operators (Cordeiro et al., 2009) for other types of representations, such as Voronoi 

(Ledoux et al., 2006), and spatio-temporal data (Mennis et al., 2005). Map algebra is a language 

that enables field calculations using mathematical operators. Usually, three types of functions 

are defined: 

• Local functions: The measure value of a point is calculated from the values of the same point 

of more input maps. 
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• Focal functions: The measure value of a point is calculated using the values of its 

neighborhood points. 

• Zonal functions: The measure value of a point is calculated using the values of points in a 

particular zone. 

For example, the use of the local map algebra operator enables the calculation of the monthly 

average temperature map from the daily temperature maps by applying the average aggregation 

function point-by-point to all temperature values of each day of the month. 

Because fields are used to represent continuous spatial phenomena, their modeling must 

consider the fact that every phenomenon has several levels of detail that represent different 

perspectives perceived by decision makers in their analysis (Timpf, et al., 1992). A decision 

maker may require different levels of detail to obtain the best perspective of a geographic 

phenomenon because each level of detail reveals different information, which explains why 

decision makers have to identify the appropriate levels of detail for their spatial data prior to 

their analysis of the data. The use of several levels of detail implies that the GIS or spatial 

DBMS should provide a set of methods for navigating among these levels of detail, which 

enables decision makers to transparently zoom-in or zoom-out in their data. An important 

academic study addresses storing, querying and visualizing levels of detail (LOD) data (Timpf 

et al., 1992). These approaches can be classified into two main groups: i) the on-the-fly 

approach, in which the different representations are computed in real time from an input map, 

and ii) the pre-computation approach, in which the different representations are pre-computed. 

Generally, the former improves storage costs because the new level of detail map is computed 

online, whereas the latter does not require online computation despite additional storage costs 

(Bereuter et al., 2013). In the same manner as (Laurini et al., 1992), Figure 2 shows a common 

GIS pyramid model, which represents different resolutions. This model divides the study space 

into regular quadrants at each resolution and recursively divides each quadrant for more detailed 

resolution. 

 

 
Figure 2 Pyramid model for regular grids of points 

 

 

2.2 Spatial OLAP 

Warehoused data are represented using a multidimensional model. The multidimensional model 

defines the concepts of facts and dimensions. A fact represents the subject of analysis; it is 

described by numerical measures, which are analyzed using different granularities that are 

referred to as levels of hierarchies that compose dimensions. OLAP systems explore 

warehoused data using OLAP operators (Inmon, 2005) (Kimball, 1996). The classical OLAP 

operators are as follows: Slice selects a part of the warehoused data; Roll-up aggregates 

measures using SQL aggregation functions along dimension hierarchies; and Drill-down is the 

inverse of Roll-up. 

OLAP systems can be implemented using relational OLAP architecture (Kimball, 1996). 

Relational OLAP architecture is a multi-tier architecture, in which data are collected from 

different heterogeneous sources and transformed using extraction-transfor-load (ETL) tools 

(such as Talend) before they are stored in DWs.   

The data warehouse tier enables data to be stored in a DBMS (such as Oracle and PostgreSQL). 

Warehoused data are stored using two particular logical models: the star schema or the 
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snowflake schema (Kimball, 1996). The star-schema represents hierarchies of dimensions using 

denormalized tables that enable time-efficient “join-group by” (i.e., aggregation) queries and a 

table that contains measures and foreign keys to dimension tables. The snowflake schema is 

similar to the star schema, but it employs normalized tables for dimension hierarchies. 

The OLAP server (such as Mondrian and MS Analysis Services) handles the mapping among 

multidimensional concepts, such as dimensions and facts, and the relational tables stored in the 

Data Warehouse tier. It also implements OLAP operators that are implemented using multi-

dimensional expression (MDX) language (MDX, 2015), which is the de-facto standard for 

OLAP servers.  

The OLAP client (such as Saiku) provides tabular and graphical displays for the visualization 

of OLAP query results. These displays enable the triggering of OLAP operators.  

The integration of spatial data into OLAP systems produces the concepts of spatial data 

warehouse (SDW) and spatial OLAP. The SDW has been defined as “A collection of subject-

oriented, integrated, non-volatile and time-variant spatial and non-spatial data to support the 

decision-making process” (Stefanovic et al., 2000). Warehoused spatial data are usually 

represented using a vector model (Bédard, 1997). Therefore, the spatio-multidimensional model 

redefines the concepts of spatial level and spatial measure (Malinowski et al., 2008).  Typically, 

a spatial level extends a classical level by adding a geometrical attribute using the vector model. 

An example of spatial members of a spatial dimension is shown in Figure 3. Departments and 

regions are represented by polygons, and cities are represented by points.  

 
Figure 3 Example of vector spatial dimension 

 

Adding spatial attributes to the elements of the multidimensional model enhances OLAP 

analysis capabilities: i) the cartographic representation of facts enables decision makers to 

visually analyze the spatial correlations of facts; ii) decision makers can introduce vector 

operators (topological, metrical and directional functions) in OLAP operators. SOLAP tools 

provide a unique framework for exploring and visualizing warehoused spatial data using 

SOLAP operators and interactive cartographic displays, respectively (Bernier et al., 2009). 

Common SOLAP operators include (Malinowski et al., 2008) spatial rollup and spatial 

drilldown, which enable navigation among spatial levels, and Spatial Slice, which enables the 

selection of a subset of data using vector predicates. For example, the use of a retail SOLAP 

application enables queries such as “Visualize the average sales per year and all cities 50 km 

from Paris” to be answered.  

SOLAP systems integrate OLAP capacities and GIS functionalities that provide users with an 

effective spatio-multidimensional analysis (Bimonte, 2010). This solution is referred to as the 

OLAP-GIS tool. 

As described in (Bimonte, 2010), the first tier of a classical relation SOLAP architecture is 

responsible for managing the storage of spatial data using relational Spatial DBMS with some 

extensions of the star and snowflake schemas. For example, (Siqueira et al., 2012) denormalizes 

only the geometrical attributes of the classical star schema to improve the computation 

performance. 
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The second tier is an extension of the OLAP server (SOLAP server) (such as GeoMondrian and 

Map4Decision) with SOLAP operators. The SOLAP server handles spatial measures and 

spatial dimensions, prevents redundancy when aggregating facts, and enables the calculation of 

materialized spatial views.  

The SOLAP client (such as Map4Decision and TableauSoftware) is responsible for displaying 

SOLAP query results. It enables the visualization of alphanumerical and spatial data using 

tabular and graphic displays coupled with interactive maps. 

Two other types of architecture have been developed for SOLAP solutions (Bimonte, 2010) 

(Bédard et al., 2001): an OLAP-dominant solution and a GIS-dominant solution. The OLAP-

dominant solution reduces the GIS functionalities to a cartographic visualization, whereas the 

GIS-dominant solution does not integrate a SOLAP server, which is simulated in the spatial 

DBMS. Therefore, GIS-dominant solutions do not support navigational and calculation 

functionalities provided by SOLAP servers. Only OLAP-GIS tools represent effective solutions 

for SOLAP analysis. 

SOLAP systems primarily integrate vector data because field data raise several issues, and data 

can be transformed from vector to field (and vice versa) for spatial analysis needs while in GISs; 

this transformation is not possible in SOLAP. The spatial decision-making process in GISs can 

be defined as a workflow of spatial analysis operators that transform spatial and alphanumeric 

data (Seffino et al., 1999). Several functionalities are provided to transform a field into vector 

data (and vice versa) because the similarities among these two models have been well identified 

(Câmara et al., 1995). Conversely, in SOLAP systems, spatial data can “only” be explored 

using SOLAP operators (Bédard et al., 2001). Once the SDW is designed and loaded with 

source data, the structures and data in the dimensions cannot be changed for two reasons: (i) 

immense volumes of data are stored, and ETL operations are complex and long; consequently, 

any data change cannot be performed online, and (ii) to accelerate SOLAP queries on 

warehoused data, some external data structures, such as indexes (Siqueira et al., 2012) and 

materialized views (Stefanovic et al., 2000), are usually employed. Any data change implies 

the need update data with important computation costs. 

 

From a conceptual point of view, addressing geographic phenomena increases the complexity 

of a multidimensional model, as shown in (Bimonte, 2010). SOLAP applications usually 

present complex dimensions and aggregations, which stress the importance of a correct 

multidimensional design phase. Conceptual spatio-multidimensional modeling becomes a 

critical issue for SOLAP applications. Therefore, several studies have been proposed for spatio-

multidimensional modeling using conceptual formalisms, such as ER (Malinowski et al., 2008, 

UML (Boulil et al., 2015), etc.), which enable a visual representation of the spatiality of the 

multidimensional model’s elements. 

 

3. Motivation 

In this section, we present the modeling and querying requirements related to the integration of 

grids of points in SDWs (Sec. 3.2) using a real environmental project to investigate the odors 

in urban areas. The project is developed in collaboration with the French enterprise Agaetis. As 

stated in the previous section, conceptual models for SOLAP applications are mandatory tools 

in SOLAP projects. In Section 3.2, we present the main concepts of the ICSOLAP UML profile, 

which we extend in this paper to integrate multiresolution regular grids of points. 

3.1  ICSOLAP UML Profile 

“A profile in the Unified Modeling Language (UML) provides a generic extension mechanism 

for customizing UML models for particular domains and platforms” (Booch et al., 1998). UML 

provides users with several tools to design and document object-oriented systems (Booch et al., 

1998). Stereotypes, tagged values, and constraints are used to adapt UML elements to a specific 
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application. These extended elements constitute the UML profile. Stereotypes extend the 

semantics of existing elements for a specific domain. Tagged values are used to add new 

properties to existing elements.  

Constraints are used to specify rules to check the validity of a stereotype. Object Constraint 

Language (OCL) provides a standard language to express constraints that can be interpreted by 

code generators to generate code automatically. Computer-aided software engineering tools 

facilitate the development of software applications. Computer-aided software engineering 

(CASE) is the scientific application of a set of tools and methods to a software system to 

produce high-quality, defect-free, and maintainable software products. Some CASE tools 

provide an automatic implementation of UML models. The use of UML and automatic 

implementation for OLAP and spatial OLAP projects has been proven to reduce design time 

and implementation efforts (Blanco et al., 2009). Therefore, (Boulil et al., 2015) proposed the 

ICSOLAP UML profile. The ICSOLAP UML profile enables the conceptual representation of 

complex spatio-multidimensional applications. It contains stereotypes for each spatio-

multidimensional element. A <<Fact>> is composed of a <<Measure>> and is associated with 

dimension levels (<<AggLevel>>) using a <<DimRelationship>>. An <<AggLevel>> is 

composed of dimensional attributes and can be thematic, spatial or temporal. A 

<<SpatialAggLevel>> extends the <<AggLevel>> with a geometric attribute 

(<<LevelGeometry>>). The <<AggRelationship>> is an aggregation relationship between two 

levels in the same hierarchy. The stereotype <<BasicIndicator>> defines the aggregation rules 

for a given measure (i.e., "aggregatedAttribute"). It indicates the functions that are used in the 

aggregation process along dimension hierarchies. ICSOLAP has been implemented in the 

commercial CASE tool MagicDraw, and a tool for its automatic implementation in 

Postgres/Oracle and Mondrian has also been developed. An example of ICSOLAP is shown in 

Section 3.2. 

 

3.2 Requirements 

In this section, we introduce spatio-multidimensional modeling and querying requirements 

(Table 1) that are associated with the integration of a regular grid of points in SDWs. 

In the context of the project with Agaetis, from some odor sensors deployed in cities, a 100 

*100 resolution (1000 points) regular grid of points is produced using the ADMS 5 simulation 

model (ADMS5, 2015). A regular grid of points is generated each 15 minutes for different types 

of odors sources (for example, NO2). 

The developed spatio-multidimensional model for our environmental case study is shown in 

figure 4. The fact (<<Fact>>) is the class “Odor”, which presents a numerical measure 

(<<NumericalMeasure>>) named “odorValue”. It is analyzed using three dimensions: a 

temporal dimension “Time” with levels “Minute”, “Hour”, “Day”, “Month” and “Year” 

(<<TemporalAggLevel>>); two thematic dimensions (<<ThematicDimension>> “Pollutant” 

and “Sources”) that represent the type of pollutant (e.g., NO2) and the source of the odor (e.g., 

a factory); and a spatial dimension (<<SpatialDimension>> “Location”) with a discrete spatial 

level (<<SpatialAggLevel>> ”Grid100”) that represent the regular grid of points 

(<<LevelGeometry>>”Point”). A regular grid of points is an incomplete field representation, 

as shown in Figure 5a, where only a sample of points is stored. The measure is aggregated using 

the average for all dimensions. It is represented by a <<BasicIndicator>>, “AvgOdor”. This 

SOLAP model answers SOLAP queries such as “What is the average odor value per hour and 

point of the grid?” (Q1- RollUp on the temporal dimension), or “What is the average odor value 

per tracer and city?” (Q2- Spatial RollUp on the spatial dimension) (Figure 6a). These queries 

enable decision makers to analyze the temporal (Q1) and spatial (Q2) evolution of the odor 

phenomenon.  
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Another possible interesting query for decision makers concerns the analysis of an odor around 

a particular odor producer (e.g., a factory): “What is the odor value per tracer and point in a 

zone of 2 km around a particular factory (i.e., around a particular point)?” (Q3- Spatial slice 

on the spatial dimension) (Figure 6c). Note that Q2 can be easily answered because a point is 

topologically included or not included in the polygon that represents the city (Figure 6b).  

The previously mentioned model enables only classical SOLAP queries to be answered because 

continuity is not integrated. Therefore, the first requirement is that this extended spatio-

multidimensional model has to support classical SOLAP operators (Spatial RollUp, Spatial 

DrillDown and Spatial Slice) (e.g., queries Q1, Q2 and Q3 of Table 1).  

 

  
 

 
Figure 4. ICSOLAP example: Odor case study 

 

 
(a) 

 
      (b)      (c) 

 

Figure 5. a) Regular grid of points, 

Spatial hierarchy: b) with Raster and c) Regular grid of points 
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Assume that the decision makers are interested in knowing the odor value in a non-sampled 

location (i.e., a point that is not represented by a spatial member), for example, to study the 

impact of the odor phenomenon on sensible locations, such as a school. A possible SOLAP 

query is shown in Figure 6b (Q4- “What is the average odor value per year and at the school 

De Capraris (i.e., at the point x,y)?”). This query is possible by providing a continuous vision 

of the spatial level using spatial interpolation functions. We refer to this requirement as 

Continuity.  

In our example, we use bilinear and bicubic spatial interpolation functions, which are local 

deterministic methods. They employ the four nearest neighborhood points and the 16 nearest 

neighborhood points and calculate a weighted average of the distance from the estimated point.  

As stated in Section 2.1, multiresolution fields can be useful for spatial analysis. For example, 

in our case study, the decision makers need to analyze odor value at a more detailed resolution 

for city zones with an important urban density, such as the downtown area. Therefore, they can 

provide different resolution queries, such as “What is the average odor value per month and 

point of the 200*200 grid?” (Q5a), and “What is the average odor value per month and point 

of the 400*400 grid?” (Q5b), where n*n represents a regular grid of n2 points (Figure 6d). Note 

that a set of useful and known resolutions exist for each spatial phenomenon; thus, they can be 

predefined based on data and the needs of decision makers. We define Multiresolution as the 

requirement that enables the regular grid of points at different resolutions to be represented 

according to the pyramid model (c.f. Figure 2). 

 

The usage of map algebra operators in the spatio-multidimensional analysis process (Map 

Algebra requirement) is mandatory because, as detailed in Section 2.1, map algebra is an 

effective tool for analyzing fields.  

The local map algebra operator corresponds to a classical RollUp operator. A RollUp operator 

aggregate measures values using a mathematical aggregation function for each spatial member 

(a point). An example is the previously described Q1 query, which corresponds to a local map 

algebra operator that employs all points of the grid as inputs with the odor value at the daily 

granularity and outputs a grid with the average odor value at the monthly granularity.  

The focal and zonal map algebra operators can be associated with spatial data warehouse 

window queries (Papadias et al., 2001) because they consist of aggregate measure values for a 

spatial area that is not predefined as a spatial member. An example is “What is the average odor 

value per tracer and a zone of 2 km around a particular factory (i.e., around a particular 

point)?” (Q6). This query is similar to the previously mentioned spatial slice query (Q3) with 

the difference that it aggregates the measure values in the circular 2 km zone. 

Requirement Query example 

SOLAP 

operator

s 

 

Spatial 

DrillDown/Roll

Up 

Q2: “What is the average odor value per tracer and city?”  

Spatial Slice Q3: “What is the odor value per tracer and point in a zone of 2 

km around a particular factory (i.e., around a particular 

point)?” (Figure 6c) 

OLAP operators Q1: What is the average odor value per month and point of the 

grid?” (Figure 6a) 

Continuity Q4: “What is the average odor value per year and at the school 

De Capraris (i.e., at the point x,y)?” 

Multiresolution Q5a: “What is the average odor value per month and point of the 

200*200 grid?” (Figure 6d) 

Q5b: “What is the average odor value per month and point of 

the 400*400 grid?” (Figure 6d) 
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Map algebra Local 

(Spatial-

RollUp) 

Q1: What is the average odor value per month and point of the 

grid?” (Figure 6a) 

Focal 

Zonal 

(Window 

queries) 

Q6: “What is the average odor value per tracer and a zone of 2 

km around a particular factory (i.e., around a particular 

point)?” (Figure 6e) 

Table 1. Requirements for a spatio-multidimensional model that integrates the regular grid of 

points 

 

                                                        
(a)                                                                                               (b)  

                                                                                    
      (c)                                                                                                                    (d)   

Figure 6 Cartography representation of a) map algebra b) continuity c) spatial slice 

d) multiresolution  

4. Related work 

Many studies have been proposed to handle vector data and OLAP (Boulil et al., 2015). In the 

last decade, few studies investigate the integration of fields in OLAP. In the following section, 

we review these studies.  

 

(McHugh, 2008) (Li et al., 2014) and (Kasprzyk,  2014) investigate the integration of raster 

data in OLAP. The seminal work of (McHugh, 2008) defines four new types of dimensions that 

integrate raster data. They also define the "matrix cube", in which the cells of the raster contain 

the facts. They implement their model in a commercial SOLAP tool based on a relational 

SOLAP architecture. (Li et al., 2014) present the “tile cube”. The “tile cube” implements a 

raster pyramid as a spatial dimension. The authors propose an implementation using the Map-

Reduce framework to improve performance. (Kasprzyk,  2014) also investigates the integration 

of raster data as spatial measures. The author presents an implementation in a GIS dominant 

tool (without using a SOLAP server). 

 

The introduction of incomplete representations of fields has been investigated in (Ahmed et al., 

2005) (Bimonte et al., 2014) (Gómez et al., 2013) and (Gomez et al., 2010). (Ahmed et al., 

2005) propose a multidimensional model for handling continuous incomplete fields. The 

approach stores a sample of points as vector spatial members and simulates the spatial 

continuity using a set of spatio-temporal interpolation functions implemented in the SOLAP 

client. They employ an OLAP server that does not support the spatial slice operator. (Gomez et 

al., 2010) propose a conceptual model that extends MultiDimER to integrate continuous fields. 
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They define continuous measures and continuous levels but do not define hierarchies between 

two continuous levels. A GIS-dominant implementation is also provided. In (Bimonte et al., 

2014), the authors propose a multi-dimensional model to integrate fields in dimensions and 

measures. They propose a formal representation of field hierarchy, field measure and field cube. 

They also describe a theoretical implementation based on the ROLAP architecture extended 

with field hierarchies. (Gómez et al., 2013) define the map algebra operators on the top of a 

SDW. They integrate these operators to classical SOLAP operators.  

 

The representation of multidimensional data at different levels of resolution can be considered 

as multirepresentation. Few studies (Bédard et al., 2002) (Concepción et al., 2009) (McGuire 

et al., 2008) have investigated this issue. (Bédard et al., 2002) define a conceptual model based 

on UML that includes several geometric and semantic properties of spatial level 

representations. This model supports only vector data; no detail about the implementation is 

provided. In (Concepción et al., 2009), the authors propose a conceptual model for the 

multirepresentation of spatial dimension using vector data and provide a logical model to 

implement the data. (McGuire et al., 2008) define a snowflake schema for environmental 

applications, in which the same spatial elements in each spatial dimension are represented with 

different representations.  

Table 2 shows a comparison of existing studies according to our three previously defined 

requirements: “continuity”, “map algebra” and “multiresolution” of Table 2. Their 

implementation using an OLAP-GIS solution is also analyzed: the logical models for the SDW 

and SOLAP server tiers and the SOLAP client. The possibility of a conceptual representation 

is detailed (conceptual model). 

As listed in Table 2, only (Ahmed et al., 2005) (Bimonte et al., 2014) and (Gómez et al., 2013) 

support “continuity” because all studies of multirepresentation integrate vector data, whereas 

other studies focus on raster data, which does not require methods for querying any point of the 

space because a raster is a complete representation of the space. The use of an OLAP-GIS 

implementation is not achieved for incomplete field data. In the same manner, (Gomez et al., 

2010) propose a conceptual model for the field without considering multiresolution, and 

(Concepción et al., 2009) proposes a conceptual model for multiresolution for vector data. 
 (McHu

gh, 

2008) 

Li 

et 

al., 

201

4) 

(Gom

ez et 

al., 

2010) 

(Kasprz

yk,  

2014) 

(Ahm

ed et 

al., 

2005) 

(Bimo

nte et 

al., 

2014) 

(Góm

ez et 

al., 

2013) 

(Béda

rd et 

al., 

2002) 

(Concepc

ión et al., 

2009) 

(McGu

ire et 

al., 

2008) 

Our 

approa

ch 

Spatial data type R R I R I I I V V R I 

continuity concept

ual 

model 

No No Yes No P No No No No No Yes 

sdw 

tier’s 

logical 

model 

No No Yes Yes No No No No No No Yes 

solap 

server 

model 

No No No No No No No No No No Yes 

Multiresolu

tion 

concept

ual 

model 

Yes No No No No No No Yes Yes No Yes 

sdw 

tier’s 

logical 

model 

Yes No No Yes No No No No Yes Yes Yes 

solap 

server 

model 

Yes No No No No No No No No No Yes 
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Map algebra Yes Yes Yes Yes No Yes 

 

Yes No No No Yes 

Table 2. Comparison of existing studies (P denotes partially and V, I, and R denote 

vector, incomplete field, and raster, respectively) 

5. UML profile for regular grid of points 

In this section, we extend the ICSOLAP UML profile proposed by (Boulil et al., 2015) to 

address continuity (Sec 5.1) and multiresolution (Sec 5.2). 

 

5.1 Continuity 

The main idea to introduce continuity in SDW is to enhance a spatial level with a spatial 

interpolation function that can be employed to estimate the measure values at each point of the 

study space. Our extension of the ICSOLAP profile is shown in figure 7. It defines a 

<<RegularGridPoints>> level as a type of a spatial level with a spatial interpolation function to 

represent the continuity ("ContinuityInterpolation" is a tagged value that assumes 

"FieldInterpolation" as values, where "FieldInterpolation” are operations that represent spatial 

interpolation functions) and the resolution level to which it belongs (the tagged 

value"resolution"). In addition, the geometry of the spatial level has to be a point (as stated by 

the OCL constraint defined in the <<LevelGeometry>>). 

 
Figure 7 Extension of ICSOLAP with continuity for regular grid of points 

 

An example of an OCL constraint is expressed by the following statement, which states that 

one spatial interpolation function per <<RegularGridPoints>> exists. 
Context RegularGridPoints inv: 

  self.ContinuityInterpolation->size()=1 

 

An instance of the profile for our case study is illustrated in figure 8. The SDW presents a 

spatial dimension, in which the spatial level (“Grid100”) represents the regular grid of points. 

“Grid100” is composed of the geometric attribute "Point", its resolution level (100*100), and 

the bilinear interpolation function. This model supports continuity queries, such as Q4, due to 

the bilinear interpolation function. We note that the regular grid of points is associated with a 

less detailed classical spatial level that represents cities. 



Author-produced version of the article published in International Journal of Digital Earth, 2017, 
10(9), 901-922. The original publication is available at http://www .sciencedirect.com/              

doi : 10.1080/17538947.2016.1266040 

13 

 

 
Figure 8 Continuity: example of <<RegularGridPoints>> level  

 

 

5.2 Multiresolution      

In (Zaamoune et al., 2013), to integrate regular grids of points at different resolutions in a spatio-

multidimensional model, we propose two approaches: the "Field Aggregation Star-Schema" 

(FASS) and the "Field Interpolation Star-Schema" approach (FISS).  

 

The Field Aggregation Star-Schema introduces a spatial level for each resolution, in which the 

most detailed resolution (e.g., contains more points) presents a foreign key to the fact table. 

This finding implies that factual data are stored at the most detailed resolution spatial level. In 

this manner, a decision maker can analyze warehoused spatial data that are represented as a 

regular grid of points at different resolutions in the same OLAP analysis session. Therefore, 

changing the resolution is simply achieved by changing the spatial level in the MDX query. 

 

The main idea of the Field Interpolation Star Schema approach (FISS) is to use spatial 

interpolation functions to estimate measure values at the most detailed resolutions while 

retaining facts at a less detailed resolution. In this approach, navigation among the regular grids 

of points levels is performed from the less detailed grid to the more detailed grid using spatial 

interpolation functions instead of aggregation functions. This approach is only possible when 

continuous data, such as temporal and spatial data, are addressed. According to the Tobler 

geography law “Everything is related to everything else, but near things are more related than 

distant things” (Tobler, 1970), non-sampled values can be computed using near-space positions.  

 
(a) 
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(b) 

Figure 9 Multiresolution: extension of ICSOLAP for the FISS approach 

 

Thus, we redefined the rules of aggregation between the levels proposed by (Boulil et al., 2015) 

by defining the stereotype <<GridToGridRule>> (Figure 9b) and extending the 

<<LevelToLevelAggRule>> (c.f. Sec 3.1), which is associated to <<FieldInterpolation>> (a 

spatial interpolation function), which serves as a rule during navigation between two 

<<RegularGridPoints>> levels. The relation between two grids of points is not an aggregation 

relation (such as for classical level with <<AggRelationship>>) but is employed by the spatial 

interpolation functions to obtain the neighborhood points. Therefore, we define a new 

association <<NeighborhoodRelationship>> by extending <<AggRelationship>>, which 

associates two <<RegularGridPoints>> levels (Figure 9a). 

We describe an instance of the profile using a case study (Figure 10). The spatial dimension is 

extended with three <<RegularGridPoints>> levels of different resolutions (“Grid100”, 

“Grid200” and “Grid400”). The fact is associated with the less detailed <<RegularGridPoints>> 

level “Grid100”. “Grid200” and “Grid400” are associated with “Grid100” using a 

<<NeighborhoodRelationship>>. 

The indicator "AVGOdorIndicator" defines a classical aggregation function (the average) for 

navigating from “Grid100” to “City”, whereas two spatial interpolation functions are used to 

navigate from “Grid100” to “Grid200” (the bilinear function) and from “Grid100” to “Grid400” 

(the bicubic function). 
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Figure. 10 Multiresolution: example of the FISS approach 

 
 

6. Implementation 

In this section, we present the relational OLAP-GIS architecture for implementing our approach 

(Sec 6.1) and the associated implementation of continuity and multiresolution (Sec 6.2). The 

UML profile has been implemented in the CASE tool MagicDraw. MagicDraw supports the 

definition of UML profiles with new stereotypes and tagged values. Moreover, it supports the 

definition of OCL constraints for the UML profile (c.f. Sec 5.1). These constraints are 

automatically verified during the design of the SOLAP model. It allows defining SOLAP 

models respecting the UML profile defined. 

 

6.1 Architecture       

The architecture is shown in Figure 11. The main idea is to use standards to provide generality 

to our proposal. 
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Figure 11 FieldMDX Architecture 

 

Spatial and alphanumeric data are stored according to the logical models presented in the 

previous sections in the Spatial DW tier. It is implemented using PostGIS (PostGIS, 2015). 

PostGIS is an extension of the DBMS PostgreSQL for spatial data. The SOLAP server is 

GeoMondrian (GeoMondrian, 2015). GeoMondrian is a SOLAP server, which extends the 

OLAP server Mondrian, with support for topological operators on vector data (GeoMDX). We 

extend GeoMDX to implement our FieldMDX using MDX UDFs with spatial interpolation 

functions provided by the existing Java API "javax.media.jai api" (JAI,  2015). The OLAP 

client is based on JPivot (Bimonte, 2014).  

 

6.2 Implementation 

In the following section, we describe the logical models that are implemented in the Spatial 

Data Warehouse tier and the MDX extensions of the Spatial OLAP server tier. 

 

The logical model implementing continuity is based on a traditional star schema with a 

geometric “point” attribute. The logical model for our case study is shown in figure 12a. The 

logical model for our case study is shown in Figure 12b. 

    
(a)                                                                           (b) 

Figure 12 Continuity: a) Logical model and b) example 

 

The implementation of the spatial interpolation function is achieved by the SOLAP server as 

follows:   

 

MDX is the de-facto standard for OLAP Servers. Some extensions of MDX (MDX,  2015) for 

handling vector data have been proposed (Zaamoune et al., 2013) (such as GeoMondrian 

(GeoMondrian, 2015) and PietQL). 

To support continuity, we propose FieldMDX, which extends MDX extension with spatial 

interpolation functions defined as MDX User-Defined Functions (UDFs) (MDX,  2015). In 

particular, we define spatial interpolation functions as a set of UDFs with the following 

signature: NumericType InterpolatePoint (geometry) 

They employ a geometry (point(x, y)) as input and return a numeric value, which is calculated 

using the measured values of the neighborhood points of the point x,y.  

An example is the NumericType InterpolatePointBilinear (geometry) 

function that implements the bilinear spatial interpolation function. 

Using this new UDF, a continuity query, such as Q4 (Figure 13), can be answered. 
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Figure 13 Continuity: example of FieldMDX for Query Q4 

 

 

We have also implemented the bicubic spatial interpolation function (NumericType 

InterpolatePointBicubic (geometry)) in the same manner. 

 

To implement the FISS approach, we propose a variant of the previously proposed schema, in 

which the fact is associated with the less detailed regular grid of points level (Figure 14a). For 

each regular grid of points level that is not associated with the fact table, an attribute named 

Neighborhoodi is introduced. It represents the neighborhood points that are employed by the 

spatial interpolation function defined by the <<GridToGridRule>>.  

An example using our case study is shown in Figure 14b. 

   
(a)                                                                        (b) 

Figure 14 FISS: a) logical model and b) example 

 

 

Regarding the continuity, to trigger queries on the top of the FISS logical model, we extend 

MDX with a set of UDFs with the following signature: 
Numerictype InterpolateResolution (RegularGridPoints Member). 

These functions are based on the logical model that was previously described. 

"InterpolateResolution" is a spatial interpolation function (we have implemented bilinear and 

bicubic functions) that uses a member of a <<RegularGridPoints>> level as the input and 

returns a numerical value. This spatial interpolation function uses the measured values that are 

associated with the less detailed RegularGridPoints level (PointResolution1) and the 

neighborhoods points (Neighborhoods2, …, Neighborhoodsn) to calculate the measured values 

associated with more detailed levels (PointResolution2, …, PointResolutionn).  

To use these UDFs, we define a calculated measure "EstimatedValue" as follows: 
"InterpolateBilinear ([SpatialDimension].[PointResolutioni]. 

CurrentMember)". A calculated measure is a measure that is not stored in the fact table 

but is calculated online by the (S)OLAP Server.  

 

In this manner, the navigation among the regular grid of points at different resolutions using 

the spatial interpolation functions is transparent to the users.  
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An example of a query is shown in Figure 15. This query enables the calculation of the odor 

measure for “Grid200” from “Grid100” using a bilinear function (Query 5a). 

 
Figure 15 Multiresolution: example of FieldMDX for Query Q5a 

 

 

 

 

 

7. Experiments 

In this section, we detail the storage and time performance of our approaches. The maximum 

size of the SDWs was 1.176 GB. The computer had the following configuration: Intel Core i3 

2.20 GHz, 4 GB RAM, Windows 7 Professional 64-bit OS. Note that we do not provide any 

validation about the usability of the UML profile, which we employ for the design of the 

SOLAP applications because ICSOLAP has been successfully validated in several previous real 

agri-environmental projects (Boulil et al., 2015). 

 

7.1 Continuity 

We have implemented two spatial interpolation functions: bilinear interpolation and bicubic 

interpolation. To evaluate the impact of the number of neighborhood points in the spatial 

interpolation functions on time performance, we have implemented the FISS approach using a 

bilinear interpolation (four neighborhood points) and a bicubic interpolation (16 neighborhoods 

points). As shown in figure 16, the performance time, which is exclusively associated with the 

spatial interpolation function, is a constant value. Therefore, the bicubic function requires 500 

ms more than the bilinear function to retrieve its neighborhoods and estimate the measure 

values. The total time for a SOLAP query using the FISS approach can be divided into i) the 

calculation of the OLAP query and ii) the spatial interpolation function. Therefore, the spatial 

interpolation is selected in the design phase of the SDW according to the needs of the decision 

makers and its time computation cost. 

 

 
 

Figure 16 FISS spatial interpolation function performance 
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7.2 Multiresolution 

7.2.1 Storage 

Figure 17 shows the size of the fact table (i.e., number of tuples) by the number of spatial and 

temporal members for the FASS and FISS approaches. In particular, we vary the number of 

points (spatial members) with different resolutions and the number of temporal members. 

Note two important differences: i) the FASS approach is more expensive than the FISS 

approach in terms of storage because the latter only stores the facts at the less detailed spatial 

resolution (100*100), and ii) in the FISS approach, the size of the fact table only varies 

according to the size of the non-spatial dimensions. Thus, even by increasing the size of the 

spatial dimension (using a very detailed regular grid of points), the fact table does not change 

because it always contains the measures for the less detailed resolution. Then, the FISS 

approach enables scaling on the spatial dimension without consequence. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Fact table size with FASS and FISS 

 

7.2.2 Execution time  

To evaluate the execution time performance for the resolution change, we executed the 

previously described queries. Among these queries, we have selected the query with the worst 

time for our approaches. This query combines an aggregation operation (roll-up) on non-spatial 

dimensions and a spatial operator (spatial slice) on the grids at different resolutions (Queries 

Q5+Q1+Q3). The results are described in (Zaamoune et al., 2013). When the number of spatial 

and temporal members is large, the gap between the FASS approach and the FISS approach 

becomes important because minimizing the storage and the number of joins between the fact 

table and the dimensions enables the FISS method, which has a better execution time. 

Experiments indicate that the execution time increases with the number of spatial and temporal 

members in the FASS approach, whereas the execution time increases with the number of 

temporal members in the FISS approach.  

 

8. Conclusions and future work 

In this paper, we present a multidimensional model for incomplete fields that are represented 

as regular grid of points at several resolutions; this model is implemented in an OLAP-GIS 

architecture based on standards (SQL and MDX). We propose an approach that is based on 

interpolation to generate continuity over incomplete continuous fields and present two 

approaches based on the star schema model—FASS and FISS—to generate multiresolution 

over the incomplete field dimension. The objectives of the FISS approach are to improve the 

level of details of a continuous incomplete field and to optimize performance based on data 

modeling. We validate our proposal with experiments that demonstrate the feasibility and 

performance related to the two approaches (FASS and FISS) using two different interpolation 

functions.  
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Our current work is the extension of our conceptual model and its implementation to other types 

of fields representations such as raster, TIN, etc. Moreover, we plan to define an ad-hoc 

benchmark to evaluate the performance of SDWs in handling fields. 

Nowadays, some new studies investigate the usage of cloud-based solutions for this kind of 

data (Li et al., 2014). Then, motivated by the important computation and storage capabilities 

offered by cloud-based solutions and NoSQL DBMSs (such as MongoDB and HBase) we plan 

to study new data models and query languages for handling field data. 
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