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Real-time control of metro train dynamics with minimization of train
time-headway variance

Florian Schanzenbächer1∗, Nadir Farhi2, Fabien Leurent3, Gérard Gabriel4

Abstract— We present here a real-time control model for
the train dynamics in a linear metro line system. The model
describes the train dynamics taking into account average
passenger arrival rates on platforms, including control laws for
train dwell and run times, based on the feedback of the train
dynamics. The model extends a recently developed Max-plus
linear traffic model with demand-dependent dwell times and
a run time control. The extension permits the elimination of
eventual irregularities on the train time-headway. The resulting
train dynamics are interpreted as a dynamic programming
system of a stochastic optimal control problem of a Markov
chain. The train dynamics still admit a stable stationary regime
with a unique average growth rate interpreted as the asymptotic
average train time-headway. Moreover, beyond the transient
regime of the train dynamics, our extension guarantees uni-
formity in time of the train time-headways at every platform.

I. INTRODUCTION AND LITERATURE REVIEW

This paper is part of a series of works being realized
as a research project at RATP, the Paris metro operator.
The research project aims to develop a passenger demand-
dependent traffic management and real-time control algo-
rithm for high density metro lines. The characteristic of
the algorithm is its sensibility to passenger demand, i.e. a
premier aim is to control the traffic while maintaining a high
frequency, satisfying the passenger demand.

The modeling approach is based on former works from [2],
where a traffic control for metro loop lines has been pro-
posed. This approach has served as a basis for the authors
of [8] which have presented a model predictive control
algorithm for metro loop lines aiming for headway regularity
one the one side, and schedule adherence, on the other side.
Lately, the authors of [12] have applied this model predictive
control algorithm to a part of a mass transit railway line in the
area of Paris. Still on the same basis, the authors of [13], [14]
have proposed a traffic control algorithm for high density
metro lines, taking into account the passenger demand.

Starting with a recently developed traffic model for metro
lines, with static dwell and run times, in [4], the authors
of [10] have extended this approach to a metro line with a
junction. Applied to a RATP metro line in Paris, this traffic
model has precisely reproduced the microscopic characteris-
tics of the line, e.g. the bottleneck segment of the line, the
average frequency depending on dwell, run, safe separation
times and the number of segments and trains. In [11], the
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authors of this paper here, have replaced the static dwell and
run times by a dynamic passenger demand-dependent dwell
time. A run time control has been introduced, avoiding the
amplification of perturbations, i.e. a cascade effect. These
traffic models have been shown to be linear in Max-plus
algebra, which allows to derive analytic formulas for the
average headway and frequency on the line.

In this paper, we refer to a Max-plus Theorem, see [1],
[3], [9], having already been used in our preceding works.
In the following, we present an enhanced version of the
traffic model which we have proposed in [11]. It keeps
its advantages, i.e. the passenger demand-dependency and
the cancellation of a possible cascade effect. As a new
element, the here presented model includes a train position
control. This means, we modify the model of [11] such that a
minimization of train time-headway variances over the metro
line is realized, while maintaining the average frequency on
the line, which is a crucial issue for mega cities as Paris, with
regard to the very high passenger demand. In the upcoming
sections we recall first the modeling approach this paper
is based on, before presenting the new traffic model with
headway variance minimization. We underpin the practical
relevance of this new traffic model with simulation results
on a RATP metro line and conclude with an outlook on
upcoming work.

II. REVIEW OF THE MODELING APPROACH

Fig. 1. Schema of a metro loop line and the corresponding notation.

We consider a linear metro line without junction, as in
Fig. 1. The line is discretized in space into a number of
segments where the length of every segment is bigger than
the train length, as in [4]. The train dynamics is modeled
here by applying run and dwell time control laws under train
speed and safe separation constraints. The passenger travel
demand is modeled with a static model, considering average
arrival rates to every platform.
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A. Notations

We use the following notations, similar to the ones used
in [11]. For the train dynamics:

n the number of segments of the linear metro line.
m the number of running trains on the metro line.
dkj the kth departure time of trains on segment j.
akj the kth arrival time of trains on segment j.
rkj the kth running time on segment j

(between nodes j − 1 and j).
wkj = dkj − akj the kth dwell time on node j.
tkj = rkj + wkj the kth travel time from node

j − 1 to node j.
gkj = akj − d

k−1
j the kth safe separation time

(or close-in time) at node j.
hkj = dkj − d

k−1
j = gkj + wkj the kth

departure time-headway at node j.
skj = g

k+bj
j − rj .

bj ∈ {0, 1}. It is 0 (resp. 1) if there is no train
(resp. one train) on segment j at time zero.

b̄j = 1− bj .
The average on k and j of the quantities above are denoted

r, w, t, g, h and s. We have the following relationships [4].

g = r + s, (1)
t = r + w, (2)
h = g + w = r + w + s = t+ s. (3)

For the passenger demand:

λij passenger travel demand from platform i to
platform j, when i and j denote platforms, and
λij = 0 if i or j is not a platform node.

λin
i =

∑
j λij the average passenger arrival rate on

origin platform i to any destination platform.
λout
j =

∑
i λij the average passenger arrival rate on

any origin platform to destination platform j.
αin
j average passenger upload rate on platform j.
αout
j average passenger download rate on platform j.∑
i λijhi

αout
j

time for passenger download at

platform j.
λin
j

αin
j
hj time for passenger upload at platform j.

We approximate here
∑
i λijhi/α

out
j by (λout

j /α
out
j ) hj .

We then define xj as a passenger demand parameter

xj =

(
λout
j

αout
j

+
λin
j

αin
j

)
, (4)

such that xjhj represents the time needed for passenger
alighting and boarding at platform j. We notice that capacity
limits for trains and platforms are not modeled here. Further-
more, we suppose that the passenger upload and download
rate are significantly larger than the travel demand, such that

xj << 1. We also define

Xj =
xj

1− xj
, (5)

in such a way that xjhj = Xjgj .
Lower bounds are written rj , wj , tj , gj , sj , hj . The min-

imum run and dwell time rj , wj are directly given by the
infrastructure constraints of the metro system, as well as g

j
,

i.e. the minimum time span between the (k− 1)th departure
and the kth arrival on segment j. The bounds tj , sj , hj can
be calculated based on the lower bounds above, applying
relationships (1,2,3).

Respectively, upper bounds used here, are denoted
w̄j , ḡj , h̄j . Let us denote by κ the passenger load capacity
per train. The upper bound h̄j can be fixed as follows.

h̄j := κ/(
∑
j

λinj ), ∀j, (6)

in such a way that all the passenger arrivals can theoretically
be served. Then, based on h̄j , the upper bounds w̄j and ḡj
are fixed as follows.

w̄j := xj h̄j , ∀j, (7)
ḡj := h̄j − wj , ∀j. (8)

Let us finally note r̃j the nominal run time on segment j.
r̃j is given by stability condition (12) below and depends on
∆rj . Indeed ∆rj influences the robustness and the frequency
of the metro system, i.e. it can either be fixed equal to ∆wj
to enhance the average frequency, or it can be chosen greater
than ∆wj to reinforce robustness towards perturbations.

B. Review of the Max-plus linear traffic model [11]

We shortly review here the Max-plus linear train dynamics
for a metro loop line, with demand-dependent dwell and run
time controls [11]. The dwell and run time control laws are
fixed as follows.

wkj = min{xjhkj , w̄j}, (9)

rkj = max{rj , r̃j − xj(hkj − hj)}. (10)

The authors of [11] have shown that under the two
following conditions

h1
j ≤ h̄1

j = 1/(1− xj)ḡj , (11)

∆rj = r̃j − rj ≥ ∆wj = Xj∆gj ,∀j, (12)

(9) and (10) sum to

tkj = rkj + wkj = r̃j +Xjgj . (13)

Then assuming that the kth departure from segment j is
realized as soon as the two constraints on the travel and on
the safe separation time are satisfied, the train dynamics are
written as follows.

dkj = max

{
d
k−bj
j−1 + r̃j +Xjgj ,

d
k−b̄j+1

j+1 + sj+1.
(14)

It has been shown in [11] that the train dynamics (14)
admit a stationary regime with a unique average growth rate,



interpreted as the asymptotic average train time-headway
h. Moreover, the latter has been derived analytically by
applying basic results of the Max-plus algebra theory [1],
[3], in function of m, the number of running trains on the
metro line, X , the passenger demand, and other parameters.
We recall this principal result below.

h(m,X) = max



∑
j

r̃j+Xjg
j

m ,

maxj

(
r̃j +Xjgj + sj

)
,

∑
j

sj
n−m

(15)

Under conditions (11) and (12), the dynamics are Max-
plus linear and admits a stationary regime with a unique
average train time-headway h(m,X) as shown in (15).
These results are very interesting since we guarantee that
under the control laws (9) and (10) on the train dwell and
run times respectively, and under the two conditions (11)
and (12), the dwell times respond, i.e. are extended due to
the passenger demand, whereas the run times are adapted in
order to compensate eventual extensions of the dwell times,
to guarantee the overall train dynamics remain stable.

However, we know that the deviation in time of the train
time-headway from its average value does not necessarily
converge to zero, but it can be periodic around zero. Conse-
quently, irregularities on the headway hkj are not minimized
over the kth departures. This is due to the fact that the Max-
plus linear system (14) may admit more than one Max-plus
eigenvectors associated to its unique Max-plus eigenvalue.

C. Review of the dynamic programming traffic model [4],
[6], [7]

We recall in this section some dynamic models proposed
and studied in [4], [6], [7]. In those models, the train run
times are assumed to be constant on all the segments of the
metro line. A first studied model fixed the train dwell times
as follows.

wkj = max{wj , (λj/αj)gkj }. (16)

Formula (16) models the fact that the train dwell times re-
spect lower bounds wj at every platform, and are eventually
extended to embark all the passengers accumulated during
the close-in time gkj . It has been recalled in [4] that the train
dynamics with such dwell times is unstable. The model (16)
justifies the natural instability of the train dynamics, which
has already been shown in [2].

In [4], [6], [7], a new control law for the train dwell times
at platforms has been proposed. The dwell times have the
following form.

wkj = max{wj , w̄j − δjgkj }, (17)

where δj are parameters inversely proportional to λj , in
such a way that wkj will be directly proportional to λj . An
important fact here is that wkj is inversely proportional to gkj ,
i.e. for a long gj , the dwell time at the upcoming platforms
is shortened. This is advantageous to minimize headway

irregularities without degrading the frequency, as it would be
the case for a holding control policy. However, this is contra-
intuitive from a passenger point of view, since, a retard leads
to an accumulation of passengers on the platform, i.e. trains
entering the station with a long interval to the preceding
train, have to cope with a higher demand.

The authors of [4] have shown that with dwell time
control (17), and under the condition 0 ≤ δj ≤ 1,∀j,
the train dynamics admits an asymptotic regime with a
unique average growth rate interpreted here as the average
train time-headway. Therefore the train dynamics are stable.
Moreover, they are interpreted as the dynamic programming
system of a stochastic optimal control problem of a Markov
chain.

III. TRAFFIC MODEL WITH HEADWAY VARIANCE
MINIMIZATION

On the one side the Max-plus linear traffic model of
section II-B from [11] guarantees stability and controls both
dwell and run times to take into account the passenger travel
demand. However, it does not harmonize train departure time
intervals on the line.

On the other side, the dynamic programming model of
section II-C from [4], [6], [7] guarantees stability but controls
only the dwell times at platforms without controlling the run
times. However, this model is better in term of harmonization
of train departure time intervals, comparing to the Max-plus
one.

The new model we propose here extends the Max-plus
model (14) of section II-B to a dynamic programming model
as the model of section II-C. Consequently, our new model
benefits from the advantages of both models.
• Accounting for passenger demand with (partially)

demand-dependent dwell times and run time control,
• Minimizing train time-headway variances on the plat-

forms via a dwell time control without degrading the
average frequency.

We consider here the same train run time control law (10),
and propose a new train dwell time control law which
modifies (9) as follows.

wkj = min
{

(1− γj)xjhkj , w̄j
}
, (18)

with 0 ≤ γj ≤ 1.
We notice that by activating the control (0 < γj ≤ 1)

in case of a perturbation on the train headway, we limit
excessively long dwell times, which would have been a direct
consequence of a long headway.

Let us use the following additional notations.
• ∆wj := w̄j − wj .
• ∆gj := ḡj − gj .
• ∆rj := r̃j − rj .

It is then easy to check that ∆wj = 1/(1− xj)∆gj .
Proposition 1: If for all j, h1

j ≤ h̄j and ∆rj ≥ ∆wj ,
then tkj = r̃j +Xjgj − γjXjg

k
j ,∀j.

Proof: The proof is by induction. It is similar to the one
of Theorem 1 in [11].



The train dynamics is then written as follows.

dkj = max


(1− δj)d

k−bj
j−1 + δjd

k−1
j + (1− δj)(r̃ +Xjgj),

d
k−b̄j+1

j+1 + sj .
(19)

with δj := (γjxj)/(1 + γjxj).
Let us notice that the dynamics (19) extends (14), since in

the case where δj = 0 (i.e. γj = 0), (19) coincides with (14).
This is a direct consequence of the fact that the train dwell
time control law (18) extends (9).

It is easy to see that if m = 0 (zero trains) or if m = n (the
metro line is full of trains), then the dynamic system (19)
is fully implicit. Indeed, if m = 0, then bj = 0,∀j, i.e. the
first term of the maximum operator in (19) is implicit for
every j. Similarly, if m = n, then b̄j = 0,∀j, i.e. the second
term of the maximum operator in (19) is implicit for every
j. We notice that in both cases, m = 0 and m = n, no train
movement is possible. On the other side it is not difficult to
check that if 0 < m < n, then the dynamic system is implicit
but triangular, i.e. there exists an order on j of updating the
variables dkj in such a way that the system will be explicit. In
fact, this order corresponds to the one of the train movements
on the metro line. In the following, we consider only the case
0 < m < n. Therefore, the dynamic system (19) admits an
equivalent triangular system.

The train dynamics (19) can be written as follows.

dkj = max
u∈U

{(
Mudk−1

)
j

+
(
Nudk

)
j

+ cuj

}
,∀j, k, (20)

where Mu, u ∈ U and Nu, u ∈ U are two families of
square matrices, and cu, u ∈ U is a family of column
vectors. Moreover, since 0 ≤ δj < 1,∀j by definition, then
Mu
ij ≥ 0,∀u, i, j and Nu

ij ≥ 0,∀u, i, j. Furthermore, we have∑
j

(
Mu
ij +Nu

ij

)
= 1,∀u, i.

The equivalent triangular system of system (19) can be
written as follows.

dkj = max
u∈U

{(
M̃udk−1

)
j

+ c̃uj

}
,∀j, k, (21)

where M̃u, u ∈ U is a family of square matrices, and c̃u, u ∈
U is a family of column vectors, which can be derived
from Mu, Nu and cu, u ∈ U . Moreover, we still guarantee
M̃u
ij ≥ 0,∀u, i, j and

∑
j M̃

u
ij = 1,∀u, i. By consequent, the

system (21) can be seen as a dynamic programming system
of an optimal control problem of a Markov chain, whose
transition matrices are M̃u, u ∈ U associated to every control
action u ∈ U , and whose associated rewards are c̃u, u ∈ U .

Theorem 1: If 0 < m < n, then the dynamics (19) admits
a stationary regime, with a unique asymptotic average growth
vector (independent of the initial state vector d0) whose
components are all equal to h, which is interpreted here as
the asymptotic average train time-headway.

Proof: We give only a sketch of the proof here. Since the
dynamics (19) are interpreted as the dynamic programming
system of a stochastic optimal control problem of a Markov
chain, it is sufficient to prove that the Markov chain in

question, which is acyclic since 0 < m < n, is irreducible
for every control strategy. This is not obvious from the dy-
namics (19). We need to show it on the equivalent triangular
system (21). An alternative proof is the one of Theorem 5.1
in [4].

Theorem 1 does not give an analytic formula for the
asymptotic average train time-headway h. However, it guar-
antees its existence and its uniqueness. Therefore, h can be
approximated by numerical simulation based on the value
iteration, as follows.

h ≈ dKj /K,∀j, for a large K. (22)

Let us now go back to the objective of the extended
model we propose here, i.e. our model (19) extending the
model (14) of [11]. We give here the main ideas explain-
ing why the control we proposed permits to minimize the
asymptotic average train time-headway variance. Rigorous
arguments with proved theorems will be given in our forth-
coming articles.

As mentioned above, if γj = 0,∀j, the dynamics (19)
are Max-plus linear, and are equivalent to (14). In this case,
if we write the dynamics (19) or equivalently (14) under
the triangular form (21), then the associated matrices M̃u

are boolean circulant matrices. The latter may then have
eigenvalue 1 with multiplicity bigger than 1. Therefore,
although the average growth rate of the dynamics is unique
and independent of the initial state d0, the asymptotic state
dk (up to an additive constant) may depend on the initial
state d0.

However, in case of the dynamics (19) with 0 < γj ≤ 1
for some j, the application of γj will force the dynamics to
converge a stationary regime where the activated matrices
M̃u are the ones having eigenvalue 1 as a simple one,
i.e. with multiplicity 1. In this case, dk will converge, up
to an additive constant, independent of the initial state d0.
Moreover, the asymptotic state d will correspond to the case
where the train time-headway is the same at all the platforms.

We will show in the next section by means of numerical
simulation, that in this case, the train dynamics converge to
a state of traffic where the train departures are harmonized.
In other words, while the train time-headway converges to
its asymptotic value h, the variance in time of the train time
headways, i.e. its deviation with respect to its average value
h, converges to zero.

With regard to dwell time equation (18), we notice that
in case γj > 0 where the control is applied, we do not only
ensure train headway convergence at platforms, but are also
sure not to degrade the train frequency. Indeed, with this,
dwell times are slightly shortened to allow minimization of
variances on the train time-headway. This means, in case
of a big interval, train dwell times are no longer extended
excessively, but are expanded just a little bit. On networks
with a very high demand, as for the RATP network in Paris,
this is highly advantageous to a holding control, because it
allows a passenger load harmonization while maintaining a
high train frequency.



IV. SIMULATION RESULTS

In Tab. I we present some simulation results for different
values of parameter γj . First, we depict the results for the
Max-plus dynamics, i.e. γj = 0. Second, we fix γj = 0.1,
which is close to the Max-plus dynamics. Third, γj degrades
linearly from 0.5 to 0, over the simulation horizon K. The
simulation horizon K is fixed accordingly to the time span,
after which the train positions should be harmonized. It has
been chosen to K = 80 departures here. In the left column,
we show the train trajectories, i.e. the departure times over all
the segments on the metro loop line. In the right column, we
give the last observed headways h(γj) = d(γj)

K
j −d(γj)

K−1
j

over all the segments j on the line, indeed a good way
to analyze the efficiency of the proposed control strategy,
aiming to minimize headway variance.

The first row presents the results for γj = 0, i.e. without
control where the dynamics (19) are a Max-plus linear
system, as in [11]. It can easily be seen, that, depending on
the initial train positions, we observe some areas with more
trains on the line, and others with less, i.e. the headways
are irregular. Moreover, this irregularity persists over the
simulation. In fact, it has been shown in [11] that the
train time-headways along the line do not converge. They
rather reach a periodic regime which makes their asymptotic
average convergent. We notice that the train time-headways
do not diverge although dwell times are modeled depending
on the headway, which remain constant with the applied run
time control. The graph giving the last observed headway
shows clearly that important irregularities on the headway
persist without control, depending on the number of trains,
ranging from less than 5 minutes up to over 15 minutes.

The second row depicts the results for a static control
where γj = 0.1 for all j which include a platform. In the
left graph we see some irregularities at the beginning of the
simulation, i.e. at the bottom, which tend to be minimized
over time. In fact, with regard to the final headways in the
right graph, it can be seen that headways clearly converge
along the line. However, due to the low γj = 0.1, larger
initial variances cannot be minimized fast enough, i.e. they
still can be observed at the end of the simulation. Variances
finally range between less than 5 minutes and 10 minutes,
i.e. a maximum variance of around 5 minutes.

In the last row, we give the results for a dynamic linear
control where γj = 0.5 − (0.5/K)k for all j with a
platform. The graph in the left column shows that some
headway irregularities at the beginning are quickly being
minimized and headways converge. In the right column, the
graph giving the final headways observed along the line,
shows that headways converge more quickly than for the
static control. For the same simulation horizon as in the
static case, the final headway variance does not exceed 2.5
minutes, i.e. headways range between slightly less than 5
minutes and around 7.5 minutes. Finally, the dynamic control
is advantageous because it applies stronger controls right
after a perturbation in the transient regime, but returns to a
γj = 0 once the perturbation has been absorbed, i.e. once the

stationary regime has been reached. From a passenger point
of view, this is preferable since for a γj = 0, dwell times
respond once more fully to the time needed for passenger
de- and embarking.

V. CONCLUSION AND FUTURE WORKS

Our series of traffic models for metro lines, ranging from
a standard model with static run and dwell times, over an
enhanced version with demand-dependent dwell times and
a run time control, has been completed here by a real-
time control with minimization of the train time-headway
variance. The simulation results have underpinned the ef-
fectiveness of the here proposed traffic control. The figures
clearly show headway convergence for the here proposed
control. Moreover, they strongly suggest that a dynamic
control, where a stronger control is applied right after a
perturbation, followed by a fade-out time, leads to better
results, i.e. faster headway variance minimization than a light
but permanent control.

To complete this control model series, this paper will be
followed by an application of this control policy to the traffic
model for a metro line with a junction. At this point, we
assume to have a complete toolbox of traffic models which
will allow an on-site implementation on the RATP network
in Paris. Possible applications are metro loop lines as well as
metro lines with junctions, where the here presented model
ensures headway regularity while maintaining a desired train
frequency, with passenger demand-dependent dwell times
and run time control. There is always room for further
improvement, e.g. for a passenger stock model in the trains
and on the platforms, as well as an extension towards more
complicated operational concepts, i.e. including intermediate
terminus stations and non-stopping policy at selected sta-
tions.
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TABLE I
SIMULATION RESULTS FOR A METRO LOOP LINE OF RATP, PARIS. IN THE LEFT COLUMN, THE TRAIN TRAJECTORIES OVER ALL SEGMENTS j FOR 20

TRAINS, IN THE RIGHT COLUMN THE HEADWAYS BETWEEN TWO CONSECUTIVE TRAINS ON THE LINE AT THE END OF THE SIMULATION, FOR 20, 21, 22
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