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Note on a differential inequality

Daniel Barlet∗.

12/09/18

Abstract. We study a second order differential inequality for a function of one
real variable which allows to control the behaviour at the origin of a positive C 2

function F on a punctured ball with center 0 in Rn (n ≥ 2) such that ∆(F )(x) is
bounded by C.||x||−2.F (x) near x = 0.
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Introduction

The motivation of this note is to look for an analogous result to the classical Gron-
wald lemma which gives some estimate of the growth of a positive function F
near the center of a punctured disc D∗ of the plane which satisfies the inequality
∆F (x) ≤ C.||x||−2.F (x). Using the invariance by rotation of the Laplacian allows
to reduce our problem to a special case of the following differential inequality

x2.f ′′(x) + x.θ(x).f ′(x) ≤ η(x).f(x) ∀x ∈]0, 1[ (1)

for a positive function f ∈ C 2(]0, 1[) where θ is a C 1 function in [0, 1[ and η is a
continuous function on [0, 1[.
We do not obtain a point-wise estimate for such an f when x goes to 0 but an
integral estimate which corresponds precisely to the point-wise estimate we would
wait for. But we show that such a point-wise estimate does not hold in general.

∗Institut Elie Cartan, Géomètrie,
Université de Lorraine, CNRS UMR 7502 and Institut Universitaire de France.
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1 The estimate

1.1 The standard situation

We fix the real valued functions θ ∈ C 1([0, 1[) and η ∈ C 0([0, 1[). Let a := η(0). We
shall say that we are in the standard situation when the following conditions are
fulfilled

1. If q := θ(0) 6= 1 we assume that

lim sup
x→0+

(η(x)− a).(−Log x) = α1 < +∞.

2. If q = 1 we assume that

lim sup
x→0+

(η(x)− a).(−Log x)2 = α2 < +∞.

We want to study the behaviour when x→ 0+ of C 2 functions f :]0, 1[→ R+ which
are solutions of the differential inequality

x2.f ′′(x) + x.θ(x).f ′(x) ≤ η(x).f(x) ∀x ∈]0, 1[ (1)

1.2 Reduction to the case θ′(0) < 0

Assume that we are under the standard situation defined above. Then for a given
real number u that we shall choose later on, define the function g :]0, 1[→ R+ by
letting f(x) = exp(u.x).g(x). Then

f ′(x) = u.exp(u.x).g(x) + exp(u.x).g′(x)

f ′′(x) = u2.exp(u.x).g(x) + 2u.exp(u.x).g′(x) + exp(u.x).g′′(x)

so we obtain

x2.f ′′(x) + θ(x).x.f ′(x)− η(x).f(x) =

exp(u.x).
[
x2.g′′(x) + (θ(x) + 2u.x).x.g′(x)− (η(x)− u.x.θ(x)− u2.x2).g(x)

]
So the differential inequality (1) for f is equivalent to the following differential
inequality for the function g (which depends on the choice of u):

x2.g′′(x) + θu(x).x.g′(x) ≤ ηu(x).g(x) ∀x ∈]0, 1[ (1u)

with θu(x) := θ(x) + 2u.x and ηu(x) := η(x)− u.x.θ(x)− u2.x2. Then we are again
in the standard situation with

θu(x) = θ(x) + 2u.x and ηu(x) = η(x) + o(1/(−Log x)2).

So we have θu(0) = θ(0) and choosing u � 0 we obtain that θ′u(0) < 0 so the
following condition will be fulfilled

• There exists ε > 0 such that θu(x)− θu(0) ≤ 0 on [0, ε]. (@)
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Remark. The behaviour when x → 0+ of the function f and of the function
g are equivalent, so to study the behaviour when x → 0+ of a solution f of the
differential inequality (1) we may always assume that the condition (@) is satisfied
by the function θ.

1.3 The case η(0) = 0 and q > 1

Proposition 1.3.1 We fix the functions θ ∈ C 1([0, 1[) and η ∈ C 0([0, 1[) as in the
standard situation. We make the hypotheses that q := θ(0) > 1, a := η(0) = 0 and
that the condition (@) is fulfilled. Then we have the following estimate:∫ 1/2

0

tq−2.(−Log t)−β−1.f(t).dt < +∞ (2)

for all β > 0 satisfying β.(q − 1) > α1

Proof. First remark that the convergence in (2) is satisfied for q > 1 and any
β when f is bounded near 0. This is of course the case if f is increasing on some
interval ]0, c[ with c > 0. So we may assume that there exists a decreasing sequence
(xν)ν≥0 in ]0, ε[ with limit 0 such that f ′(xν) < 0 for each ν ≥ 0 where ε is the
positive number which exists from the condition (@).
Let us compute the following quantity for x ∈]0, 1/2] and β ≥ 0 fixed:

Aλ(x) :=

∫ 1/2

x

tλ.(−Log t)−β.f ′′(t).dt+

∫ 1/2

x

tλ−1.(−Log t)−β.θ(t).f ′(t).dt ≤∫ 1/2

x

tλ−2.(−Log t)−β.η(t).f(t).dt (1 bis)

Then, integrating by parts the first integral:

Aλ(x) = 2−λ.(Log 2)−β.f ′(1/2)− xλ.(−Log x)−β.f ′(x) +

− β.

∫ 1/2

x

tλ−1.(−Log t)−β−1.f ′(t).dt+

∫ 1/2

x

tλ−1.(−Log t)−β.(θ(t)− λ).f ′(t).dt
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and integrating by parts again:

Aλ(x) = 2−λ.(Log 2)−β.f ′(1/2)− xλ.(−Log x)−β.f ′(x)− β.21−λ.(Log 2)−β−1f(1/2) +

β.xλ−1.(−Log x)−β−1.f(x) + β.(λ− 1).

∫ 1/2

x

tλ−2.(−Log t)−β−1.f(t).dt +

+ β.(β + 1).

∫ 1/2

x

tλ−2.(−Log t)−β−2.f(t).dt+
[
tλ−1.(−Log t)−β.(θ(t)− λ).f(t)

]1/2
x

+

− (λ− 1).

∫ 1/2

x

tλ−2.(−Log t)−β.(θ(t)− λ).f(t).dt +

− β.
∫ 1/2

x

tλ−2.(−Log t)−β−1.(θ(t)− λ).f(t).dt +

−
∫ 1/2

x

tλ−1.(−Log t)−β.θ′(t).f(t).dt (3)

So we have:

Aλ(x) =

2−λ.(Log 2)−β.f ′(1/2) + (a)

− xλ.(−Log x)−β.f ′(x) + (b)

− β.21−λ.(Log 2)−β−1f(1/2) + (c)

β.xλ−1.(−Log x)−β−1.f(x) + (d)

β.(λ− 1).

∫ 1/2

x

tλ−2.(−Log t)−β−1.f(t).dt + (e)

β.(β + 1).

∫ 1/2

x

tλ−2.(−Log t)−β−2.f(t).dt + (f)[
tλ−1.(−Log t)−β.(θ(t)− λ).f(t)

]1/2
x

+ (g)

− (λ− 1).

∫ 1/2

x

tλ−2.(−Log t)−β.(θ(t)− λ).f(t).dt + (h)

− β.
∫ 1/2

x

tλ−2.(−Log t)−β−1.(θ(t)− λ).f(t).dt + (i)

−
∫ 1/2

x

tλ−1.(−Log t)−β.θ′(t).f(t).dt (j)

where the term (g) is the sum of the following two terms:

21−λ.(Log 2)−β.(θ(1/2)− λ).f(1/2) (g1)

− xλ−1.(−Log x)−β.(θ(x)− λ).f(x) (g2)

Now we have
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1. (b) is non negative for x = xν as f ′(xν) ≤ 0 by assumption.

2. (d) is non negative as β and f are non negative.

3. (g2) is non negative for x = xν , ν � 1, when we assume that θ(x) − λ is non
positive for x near enough to 0.

So, under the hypothesis that the terms (b), (d) and (g2) are non negative, and this
is the case choosing λ = q and x := xν < ε, the inequality (1bis) gives

∫ 1/2

xν

tq−2.(−Log t)−β−1.f(t).Z(t).dt ≤ −2−q.(Log 2)−β.f ′(1/2) +

β.21−q.(Log 2)−β−1f(1/2)− 21−q(Log 2)−β.(θ(1/2)− q).f(1/2) (*)

with

Z(t) = β.(q − 1) +
β.(β + 1)

−Log t
− (θ(t)− q).

(
(q − 1).(−Log t) + β

)
+

− θ′(t).t.(−Log t)− (−Log t).η(t) (**)

Now if β > sup{α1/(q − 1), 0} we obtain that Z(t) is bounded below by a fixed
positive number when t is small enough, and then (2) holds true. �

Remark. Looking to the proof above, the reader may see that the following hy-
potheses on the function θ are enough to obtain the conclusion of the proposi-
tion, but replacing the condition β > sup{α1/(q − 1), 0} by the (better) condition1

β > sup{α1/(q − 1) + γ, 0}.

i) θ is C 1 on ]0, 1[.

ii) θ extends continuously at the origin and let θ(0) := q. (@@)

iii) The majoration θ(x) ≤ q is valid for x ∈]0, ε[ for some ε > 0.
Then define γ := lim supx→0+ (θ(x)− q).(−Log x).

iv) limx→0+ θ′(x).x.(Log x) = 0. �

Note that iii) and iv) are consequences of the condition (@) which can always be
assumed when θ is in C 1([0, 1[) or may be written θ(x) = θ0(x)− 2/(−Log x) with
θ0 ∈ C 1([0, 1[).

1Note that by condition iii) γ ≤ 0.
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1.4 The case η(0) = 0 and q = 1

We consider now the standard situation with the conditions q = 1, a = η(0) = 0 and
(@). The the computation above in this case gives the inequality:

∫ 1/2

xν

t−1.(−Log t)−β−1.f(t).Z(t).dt ≤ −2−1.(Log 2)−β.f ′(1/2) +

β.(Log 2)−β−2f(1/2)− (Log 2)−β.(θ(1/2)− 1).f(1/2) (*bis)

with

Z(t) =
β.(β + 1)

−Log t
− (θ(t)− 1).β − θ′(t).t.(−Log t)− (−Log t).η(t) (**bis)

Now if β.(β + 1) − α2 > 0 we have Z(t).(−Log t) ≥
(
β.(β + 1) − α2

)/
2 when t is

small enough, and then we obtain:∫ 1/2

0

t−1.(−Log t)−β−2.f(t).dt < +∞ (2.1)

for all β > 0 such that β.(β + 1) > α2, so for β > sup{−1/2 +
√

1/4 + α2 , 0} when
α2 > −1/4 or for all β > 0 when α2 ≤ −1/4.

Note that, in this case, it would be enough to assume for θ the conditions i), ii), iii)
and

iv)-bis limx→0+ θ′(x).x.(Log x)2 = 0.

in order to obtain (2.1) for β > sup{(γ − 1)/2 +
√

(γ − 1)2/4 + α2 , 0} when
(γ − 1)2 + 4α2 > 0 or for all β > 0 when (γ − 1)2 + 4α2 ≤ 0.

1.5 The case η(0) = 0 and q < 1

Assume now that q < 1 and define g(x) := x−s.f(x) where s is a real number that
we shall choose later on. We have

f ′(x) = s.xs−1.g(x) + xs.g′(x) and

f ′′(x) = s.(s− 1).xs−2.g(x) + 2s.xs−1.g′(x) + xs.g′′(x) so

x2.f ′′(x) + θ(x).x.f ′(x)− η(x).f(x) =

xs.
[
s(s− 1).g(x) + 2s.x.g′(x) + x2.g′′(x) + θ(x).

(
s.g(x) + x.g′(x)

)
− η(x).g(x)

]
So the differential inequation (1) for f is equivalent to the differential inequation

x2.g′′(x) + (θ(x) + 2s).x.g′(x)−
(
η(x)− s.θ(x)− s.(s− 1)

)
.g(x) ≤ 0. (1s)
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The differential inequality (1s) is obtained from (1) by the transformation

θ 7→ θ + 2s and η 7→ η − s.θ − s.(s− 1).

Now choose s = 1− q > 0 ; then we obtain for g the differential inequality (1) with
θ̃(x) = θ(x) + 2 − 2q, so q̃ := θ̃(0) = 2 − q > 1 as we assumed q = θ(0) < 1, and
with η̃(x) = η(x)− (1− q).(θ(x)− q). Note that η̃ is continuous and vanishes at 0;
because θ is C 1 we have

α1 = lim sup
x→0+

η̃(x).(−Log x) = lim sup
x→0+

η(x).(−Log x).

Now we apply the case q > 1 to g and we conclude that (2) holds for g and this
gives: ∫ 1/2

0

tq̃−2.(−Log t)−β−1.tq−1.f(t).dt < +∞ and then∫ 1/2

0

t−1.(−Log t)−β−1.f(t).dt < +∞ (2.2)

for all β > sup{α1/(1− q), 0}.

Note that, in fact, the conditions (@@) on θ are enough to obtain (2.2) for

β > sup{α1/(1− q) + γ, 0}.

1.6 The case η(0) > 0 and q 6= 1

We consider now the case where a is positive and q := θ(0) 6= 1.
We assume that θ : [0, 1[→ R is still a C 1 and satisfies2 θ(x)− θ(0) ≤ 0 for x ∈ [0, ε]
and we look at positive solutions of the differential inequality

x2.f ′′(x) + x.θ(x).f ′(x) ≤ η(x).f(x) ∀x ∈]0, 1[ (1)

where f is a C 2 function on ]0, 1[.

Defining g(x) = x−s.f(x) we have seen that (1) is equivalent to

x2.g′′(x) + x.θ̃(x).g′(x) ≤ η̃(x).g(x) ∀x ∈]0, 1[

with
θ̃(x) = θ(x) + 2s and η̃(x) = η(x)− s.θ(x)− s.(s− 1),

so, choosing for s a solution of the equation s2 + (q − 1).s− a = 0 where q = θ(0),
we obtain

η̃(0) = 0, lim sup
x→0+

η̃(x).(−Log x) = α1 and q̃ = θ̃(0) = q + 2s.

2But see the remark at the end of 1.3.
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In fact we shall choose the positive root of s2 + (q − 1).s− a = 0:

s := s+ = −(q − 1)/2 +
√

(q − 1)2/4 + a.

Then q̃ = q + 2s+ = 1 +
√

(q − 1)2 + 4a > 1 so we may apply to g the proposition
1.3.1. This gives ∫ 1/2

0

tq̃−2.(−Log t)−β−1.g(t).dt < +∞

for all β > 0 such that β > α1

/
(q̃ − 1), that is to say∫ 1/2

0

t(q−3)/2+
√

(q−1)2/4+a.(−Log t)−β−1.f(t).dt < +∞

for all β > sup{α1

/√
(q − 1)2 + 4a , 0}.

Note that for a = 0 this computation gives for q > 1

(q − 3)/2 +
√

(q − 1)2/4 + a = q − 2

and for q < 1
(q − 3)/2 +

√
(q − 1)2/4 + a = −1.

1.7 The case η(0) > 0 and q = 1

We assume now that the continuous function η satisfies

lim sup
x→0+

(η(x)− a).(−Log x) = 0.

where a is a positive real number (so α1 = 0 and η(0) > 0).
Then let the function g defined by the equality f(x) = xs.(−Log x).g(x). Then we
have

x2.f ′′(x) + θ(x).x.f ′(x)− η(x).f(x) =

xs.(−Log x).
[
x2.g′′(x) + 2s.x.g′(x)− 2s.g′(x)/(−Log x) + s.(s− 1).g(x)

]
+ (2s− 1).xs.g(x)+

θ(x).
[
xs.(−Log x).x.g′(x) + s.xs.(−Log x).g(x) + xs.g(x)

]
− η(x).xs.(−Log x).g(x)

So the inequality x2.f ′′(x) + θ(x).x.f ′(x) ≤ η(x).f(x) is equivalent to the inequality

x2.g′′(x)+
(
θ(x)+2s−2/(−Log x)

)
.x.g′(x) ≤

[
η(x)−s.θ(x)−s.(s−1)−θ(x) + 2s− 1

−Log x
]
.g(x).

Choosing s := −
√
a we obtain as θ̃(x) := θ(x) + 2s− 2/(−Log x) and, if θ satisfies

the conditions (@@), the same will be true for θ̃ (but changing γ to γ − 2), then

q̃ := θ̃(0) = 1− 2
√
a and η̃(x) := η(x)− s.θ(x)− s.(s− 1)− θ(x) + 2s− 1

−Log x
.
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Then η̃ satisfies η̃(0) = 0, as θ(0) = 1 and

lim sup
x→0+

η̃(x).(−Log x) = 2
√
a.

So we are under the hypothesis of the case q̃ < 1 and η̃(0) = 0 for g, as η̃ has the
suitable estimate at 0+. As α1

/
(1− q̃) = 1 we obtain that (here γ = −2)∫ 1/2

0

t
√
a−1.(−Log t)−β−1.f(t).dt < +∞ ∀β > 0 (2.3)

1.8 Examples

The following computation shows that the result of proposition 1.3.1 is optimal.
Let f(x) := x−λ.(−Log x)β and η(x) := α1/(−Log x) + α2/(−Log x)2 for x positive
small enough, where α1 is positive.
Then we have

f ′(x) = −λ.x−λ−1.(−Log x)β − β.x−λ−1.(−Log x)β−1

f ′′(x) = (λ+ 1).λ.x−λ−2.(−Log x)β + β.(2λ+ 1).x−λ−2.(−Log x)β−1+

+ (β − 1).β.x−λ−2.(−Log x)β−2

If we define g by the equality

x2.f ′′(x) + q.x.f ′(x) = g(x).f(x)

we obtain

g(x) :=
[
λ.(λ+ 1− q) + β.(2λ+ 1− q).(−Log x)−1 + (β − 1).β.(−Log x)−2

]
.

Assuming that q > 1 and choosing

λ+ 1− q = 0 and β.(2λ+ 1− q) = α1

so λ = q − 1 and β.(q − 1) = α1, we obtain, for q − 1 small enough in order that
β.(β − 1) < α2 implies g(x) ≤ η(x) for x small enough,

x2.f ′′(x) + q.x.f ′(x) ≤ η(x).f(x)

Remark now that, for the choice β = α1/(q − 1) the convergence of the integral∫ 1/2

0

xq−2.(−Log x)−δ−1.f(x).dx

holds if and only if β − δ − 1 < −1 that is to say for δ > β = α1/(q − 1) (compare
with proposition 1.3.1).
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For q = 1, choosing η(x) := α2

/
(Log x)2 where α2 is positive, λ = 1 and β := β+,

the positive root of (β − 1).β = α2, the integral∫ 1/2

0

x−1.(−Log x)−δ−2.f(x).dx

converges if and only if β+ − δ − 2 > −1 so for

δ > β+ − 1 = −1/2 +
√

1/4 + α2 (compare with the conclusion of 1.4).

The following example shows that for q = 1 and η(0) = 0 the differential inequality
(1) does not implies the point-wise bound near 0 of a solution by C.(−Log x) for
any positive constant C:

For x ∈]0, 1/3[, let
f(x) = (−Log x).Log(−Log x).

Then

f ′(x) =
−1

x
.Log(−Log x)− 1

x

f ′′(x) =
1

x2
.Log(−Log x) +

1

x2.(−Log x)
+

1

x2

and so, we obtain

x2.f ′′(x) + x.f ′(x) =
1

(−Log x)
= η(x).f(x)

where

η(x) :=
1

(Log x)2.Log(−Log x).
.

We have limx→+∞ (Log x)2.η(x) = 0 but f(x)/(−Log x) goes to +∞ when x goes
to 0+. �

10



2 An application

Our application is devoted to a kind of generalization of Gronwald’s lemma for the
Laplacian in a punctured ball in Rn. We begin by the case n ≥ 3.

Corollary 2.0.1 Let n ≥ 3 be an integer and consider a C 2 function F : B∗r → R+

on the punctured ball B∗r with center 0 and radius r in Rn endowed with its natural
euclidian norm. Assume that there is a continuous function η : Br → R with

lim sup
||x||→0

η(x).||x||−2.(−Log ||x||) = α1 < +∞

such that F satisfies on B∗r

∆F (x) ≤ η(x).F (x) (6)

where ∆ is the standard Laplace operator on Rn.
Then we have, for any β > sup{α1

/
(n− 2), 0}∫

B∗
r/2

||x||−2.(−Log(||x||))−β−1.F (x).dx < +∞ (7)

where dx is the euclidian measure.

Proof. Define the function f :]0, r[→ R+ by f(t) :=
∫
St
F (t.σ).dσ where (t, σ)

are polar coordinates on Rn and where dx = tn−1.dt ∧ dσ where dσ is the rotation
invariant measure on the sphere S1 with a suitable normalization. Then the function
f is C 2 on ]0, r[ and we have

f ′′(t) +
n− 1

t
.f ′(t) =

∫
St

∆(F )(t.σ).dσ ∀t ∈]0, r[ (8)

thanks to the rotation invariance of the Laplacian.
Then it is easy to apply the proposition 1.3.1 to the function f with θ ≡ n− 1. �

The case n = 2 corresponds to the case λ = q = 1. It gives in a similar way the
following corollary.

Corollary 2.0.2 Let n = 2 and consider a C 2 function F : B∗r → R+ on the
punctured disc D∗r with center 0 and radius r in R2 endowed with its natural euclidian
norm. Assume that there is a continuous function η : Dr → R with

lim sup
||x||→0

η(x).||x||−2.(−Log ||x||)2 = α2 < +∞

such that F satisfies on D∗r

∆F (x) ≤ η(x).F (x) (6)
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where ∆ is the standard Laplace operator on Rn.
Then we have, for any β > 0 such that β.(β + 1) > α2:∫ ∗

Dr/2

||x||−2.(−Log(||x||))−β−2.F (x).dx < +∞ (7)

where dx is the euclidian measure.
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