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Introduction

The motivation of this note is to look for an analogous result to the classical Gronwald lemma which gives some estimate of the growth of a positive function F near the center of a punctured disc D * of the plane which satisfies the inequality ∆F (x) ≤ C.||x|| -2 .F (x). Using the invariance by rotation of the Laplacian allows to reduce our problem to a special case of the following differential inequality

x 2 .f (x) + x.θ(x).f (x) ≤ η(x).f (x) ∀x ∈]0, 1[ (1) 
for a positive function f ∈ C 2 (]0, 1[) where θ is a C 1 function in [0, 1[ and η is a continuous function on [0, 1[. We do not obtain a point-wise estimate for such an f when x goes to 0 but an integral estimate which corresponds precisely to the point-wise estimate we would wait for. But we show that such a point-wise estimate does not hold in general.

1 The estimate

The standard situation

We fix the real valued functions θ ∈ C 1 ([0, 1[) and η ∈ C 0 ([0, 1[). Let a := η(0). We shall say that we are in the standard situation when the following conditions are fulfilled 1. If q := θ(0) = 1 we assume that lim sup x→0 +

(η(x) -a).(-Log x) = α 1 < +∞.

2. If q = 1 we assume that lim sup

x→0 + (η(x) -a).(-Log x) 2 = α 2 < +∞.
We want to study the behaviour when x → 0 + of C 2 functions f :]0, 1[→ R + which are solutions of the differential inequality

x 2 .f (x) + x.θ(x).f (x) ≤ η(x).f (x) ∀x ∈]0, 1[ (1)
1.2 Reduction to the case θ (0) < 0

Assume that we are under the standard situation defined above. Then for a given real number u that we shall choose later on, define the function g :]0, 1[→ R + by letting f (x) = exp(u.x).g(x). Then f (x) = u.exp(u.x).g(x) + exp(u.x).g (x) f (x) = u 2 .exp(u.x).g(x) + 2u.exp(u.x).g (x) + exp(u.x).g (x)

so we obtain

x 2 .f (x) + θ(x).x.f (x) -η(x).f (x) = exp(u.x). x 2 .g (x) + (θ(x) + 2u.x).x.g (x) -(η(x) -u.x.θ(x) -u 2 .x 2 ).g(x)
So the differential inequality (1) for f is equivalent to the following differential inequality for the function g (which depends on the choice of u):

x 2 .g (x) + θ u (x).x.g (x) ≤ η u (x).g(x) ∀x ∈]0, 1[ (1 u ) with θ u (x) := θ(x) + 2u.x and η u (x) := η(x) -u.x.θ(x) -u 2 .x 2 .
Then we are again in the standard situation with

θ u (x) = θ(x) + 2u.x and η u (x) = η(x) + o(1/(-Log x) 2 ).
So we have θ u (0) = θ(0) and choosing u 0 we obtain that θ u (0) < 0 so the following condition will be fulfilled

• There exists ε > 0 such that θ u (x) -θ u (0) ≤ 0 on [0, ε]. (@)
Remark. The behaviour when x → 0 + of the function f and of the function g are equivalent, so to study the behaviour when x → 0 + of a solution f of the differential inequality (1) we may always assume that the condition (@) is satisfied by the function θ.

1.3 The case η(0) = 0 and q > 1 Proposition 1.3.1 We fix the functions θ ∈ C 1 ([0, 1[) and η ∈ C 0 ([0, 1[) as in the standard situation. We make the hypotheses that q := θ(0) > 1, a := η(0) = 0 and that the condition (@) is fulfilled. Then we have the following estimate:

1/2 0 t q-2 .(-Log t) -β-1 .f (t).dt < +∞ (2)
for all β > 0 satisfying β.(q -1) > α 1

Proof. First remark that the convergence in (2) is satisfied for q > 1 and any β when f is bounded near 0. This is of course the case if f is increasing on some interval ]0, c[ with c > 0. So we may assume that there exists a decreasing sequence (x ν ) ν≥0 in ]0, ε[ with limit 0 such that f (x ν ) < 0 for each ν ≥ 0 where ε is the positive number which exists from the condition (@).

Let us compute the following quantity for x ∈]0, 1/2] and β ≥ 0 fixed:

A λ (x) := 1/2 x t λ .(-Log t) -β .f (t).dt + 1/2 x t λ-1 .(-Log t) -β .θ(t).f (t).dt ≤ 1/2 x t λ-2 .(-Log t) -β .η(t).f (t).dt (1 bis)
Then, integrating by parts the first integral:

A λ (x) = 2 -λ .(Log 2) -β .f (1/2) -x λ .(-Log x) -β .f (x) + -β. 1/2 x t λ-1 .(-Log t) -β-1 .f (t).dt + 1/2 x t λ-1 .(-Log t) -β .(θ(t) -λ).f (t).dt
and integrating by parts again:

A λ (x) = 2 -λ .(Log 2) -β .f (1/2) -x λ .(-Log x) -β .f (x) -β.2 1-λ .(Log 2) -β-1 f (1/2) + β.x λ-1 .(-Log x) -β-1 .f (x) + β.(λ -1). 1/2 x t λ-2 .(-Log t) -β-1 .f (t).dt + + β.(β + 1). 1/2 x t λ-2 .(-Log t) -β-2 .f (t).dt + t λ-1 .(-Log t) -β .(θ(t) -λ).f (t) 1/2 x + -(λ -1). 1/2 x t λ-2 .(-Log t) -β .(θ(t) -λ).f (t).dt + -β. 1/2 x t λ-2 .(-Log t) -β-1 .(θ(t) -λ).f (t).dt + - 1/2 x t λ-1 .(-Log t) -β .θ (t).f (t).dt (3) 
So we have:

A λ (x) = 2 -λ .(Log 2) -β .f (1/2) + (a) -x λ .(-Log x) -β .f (x) + (b) -β.2 1-λ .(Log 2) -β-1 f (1/2) + (c) β.x λ-1 .(-Log x) -β-1 .f (x) + (d) β.(λ -1). 1/2 x t λ-2 .(-Log t) -β-1 .f (t).dt + (e) β.(β + 1). 1/2 x t λ-2 .(-Log t) -β-2 .f (t).dt + (f) t λ-1 .(-Log t) -β .(θ(t) -λ).f (t) 1/2 x + (g) -(λ -1). 1/2 x t λ-2 .(-Log t) -β .(θ(t) -λ).f (t).dt + (h) -β. 1/2 x t λ-2 .(-Log t) -β-1 .(θ(t) -λ).f (t).dt + (i) - 1/2 x t λ-1 .(-Log t) -β .θ (t).f (t).dt (j)
where the term (g) is the sum of the following two terms:

2 1-λ .(Log 2) -β .(θ(1/2) -λ).f (1/2) (g 1 ) -x λ-1 .(-Log x) -β .(θ(x) -λ).f (x) (g 2 )
Now we have 1. (b) is non negative for x = x ν as f (x ν ) ≤ 0 by assumption.

2. (d) is non negative as β and f are non negative.

3. (g 2 ) is non negative for x = x ν , ν 1, when we assume that θ(x) -λ is non positive for x near enough to 0. So, under the hypothesis that the terms (b), (d) and (g 2 ) are non negative, and this is the case choosing λ = q and x := x ν < ε, the inequality (1bis) gives

1/2 xν t q-2 .(-Log t) -β-1 .f (t).Z(t).dt ≤ -2 -q .(Log 2) -β .f (1/2) + β.2 1-q .(Log 2) -β-1 f (1/2) -2 1-q (Log 2) -β .(θ(1/2) -q).f (1/2) (*)
with

Z(t) = β.(q -1) + β.(β + 1) -Log t -(θ(t) -q). (q -1).(-Log t) + β + -θ (t).t.(-Log t) -(-Log t).η(t) (**)
Now if β > sup{α 1 /(q -1), 0} we obtain that Z(t) is bounded below by a fixed positive number when t is small enough, and then (2) holds true.

Remark. Looking to the proof above, the reader may see that the following hypotheses on the function θ are enough to obtain the conclusion of the proposition, but replacing the condition β > sup{α 1 /(q -1), 0} by the (better) condition1 β > sup{α 1 /(q -1) + γ, 0}.

i) θ is C 1 on ]0, 1[.
ii) θ extends continuously at the origin and let θ(0) := q. (@@)

iii) The majoration θ(x) ≤ q is valid for x ∈]0, ε[ for some ε > 0.

Then define γ := lim sup x→0 + (θ(x) -q).(-Log x).

iv) lim x→0 + θ (x).x.(Log x) = 0.
Note that iii) and iv) are consequences of the condition (@) which can always be assumed when

θ is in C 1 ([0, 1[) or may be written θ(x) = θ 0 (x) -2/(-Log x) with θ 0 ∈ C 1 ([0, 1[).
1.4 The case η(0) = 0 and q = 1

We consider now the standard situation with the conditions q = 1, a = η(0) = 0 and (@). The the computation above in this case gives the inequality:

1/2 xν t -1 .(-Log t) -β-1 .f (t).Z(t).dt ≤ -2 -1 .(Log 2) -β .f (1/2) + β.(Log 2) -β-2 f (1/2) -(Log 2) -β .(θ(1/2) -1).f (1/2) (*bis)
with

Z(t) = β.(β + 1) -Log t -(θ(t) -1).β -θ (t).t.(-Log t) -(-Log t).η(t) (**bis) Now if β.(β + 1) -α 2 > 0 we have Z(t).(-Log t) ≥ β.(β + 1) -α 2 2
when t is small enough, and then we obtain:

1/2 0 t -1 .(-Log t) -β-2 .f (t).dt < +∞ (2.1)
for all β > 0 such that β.(β + 1) > α 2 , so for β > sup{-1/2 + 1/4 + α 2 , 0} when α 2 > -1/4 or for all β > 0 when α 2 ≤ -1/4.

Note that, in this case, it would be enough to assume for θ the conditions i), ii), iii) and iv)-bis lim x→0 + θ (x).x.(Log x) 2 = 0.

in order to obtain (2.1) for β > sup{(γ -1)/2 + (γ -1) 2 /4 + α 2 , 0} when (γ -1) 2 + 4α 2 > 0 or for all β > 0 when (γ -1) 2 + 4α 2 ≤ 0.

1.5 The case η(0) = 0 and q < 1 Assume now that q < 1 and define g(x) := x -s .f (x) where s is a real number that we shall choose later on. We have

f (x) = s.x s-1 .g(x) + x s .g (x) and f (x) = s.(s -1).x s-2 .g(x) + 2s.x s-1 .g (x) + x s .g (x) so x 2 .f (x) + θ(x).x.f (x) -η(x).f (x) =
x s . s(s -1).g(x) + 2s.x.g (x) + x 2 .g (x) + θ(x). s.g(x) + x.g (x) -η(x).g(x)

So the differential inequation (1) for f is equivalent to the differential inequation

x 2 .g (x) + (θ(x) + 2s).x.g (x) -η(x) -s.θ(x) -s.(s -1) .g(x) ≤ 0.

(1 s )

The differential inequality (1 s ) is obtained from (1) by the transformation θ → θ + 2s and η → η -s.θ -s.(s -1).

Now choose s = 1 -q > 0 ; then we obtain for g the differential inequality (1) with θ(x) = θ(x) + 2 -2q, so q := θ(0) = 2 -q > 1 as we assumed q = θ(0) < 1, and with η(x) = η(x) -(1 -q).(θ(x) -q). Note that η is continuous and vanishes at 0; because θ is C 1 we have

α 1 = lim sup x→0 + η(x).(-Log x) = lim sup x→0 + η(x).(-Log x).
Now we apply the case q > 1 to g and we conclude that (2) holds for g and this gives:

1/2 0 t q-2 .(-Log t) -β-1 .t q-1 .f (t).dt < +∞ and then

1/2 0 t -1 .(-Log t) -β-1 .f (t).dt < +∞ (2.2)
for all β > sup{α 1 /(1 -q), 0}.

Note that, in fact, the conditions (@@) on θ are enough to obtain (2.2) for

β > sup{α 1 /(1 -q) + γ, 0}.
1.6 The case η(0) > 0 and q = 1

We consider now the case where a is positive and q := θ(0) = 1. We assume that θ : [0, 1[→ R is still a C 1 and satisfies 2 θ(x) -θ(0) ≤ 0 for x ∈ [0, ε] and we look at positive solutions of the differential inequality

x 2 .f (x) + x.θ(x).f (x) ≤ η(x).f (x) ∀x ∈]0, 1[ (1)
where f is a C 2 function on ]0, 1[. Defining g(x) = x -s .f (x) we have seen that ( 1) is equivalent to

x 2 .g (x) + x. θ(x).g (x) ≤ η(x).g(x) ∀x ∈]0, 1[ with θ(x) = θ(x) + 2s and η(x) = η(x) -s.θ(x) -s.(s -1),
so, choosing for s a solution of the equation s 2 + (q -1).s -a = 0 where q = θ(0), we obtain η(0) = 0, lim sup x→0 + η(x).(-Log x) = α 1 and q = θ(0) = q + 2s.

2 But see the remark at the end of 1.3.

In fact we shall choose the positive root of s 2 + (q -1).s -a = 0: s := s + = -(q -1)/2 + (q -1) 2 /4 + a.

Then q = q + 2s + = 1 + (q -1) 2 + 4a > 1 so we may apply to g the proposition 1.3.1. This gives 1/2 0 t q-2 .(-Log t) -β-1 .g(t).dt < +∞ for all β > 0 such that β > α 1 (q -1), that is to say

1/2 0 t (q-3)/2+ √ (q-1) 2 /4+a .(-Log t) -β-1 .f (t).dt < +∞ for all β > sup{α 1 (q -1) 2 + 4a , 0}.
Note that for a = 0 this computation gives for q > 1 (q -3)/2 + (q -1) 2 /4 + a = q -2 and for q < 1 (q -3)/2 + (q -1) 2 /4 + a = -1.

1.7 The case η(0) > 0 and q = 1

We assume now that the continuous function η satisfies lim sup

x→0 + (η(x) -a).(-Log x) = 0.
where a is a positive real number (so α 1 = 0 and η(0) > 0). Then let the function g defined by the equality f (x) = x s .(-Log x).g(x). Then we have

x 2 .f (x) + θ(x).x.f (x) -η(x).f (x) =
x s .(-Log x). x 2 .g (x) + 2s.x.g (x) -2s.g (x)/(-Log x) + s.(s -1).g(x) + (2s -1).x s .g(x)+ θ(x). x s .(-Log x).x.g (x) + s.x s .(-Log x).g(x) + x s .g(x) -η(x).x s .(-Log x).g(x)

So the inequality x 2 .f (x) + θ(x).x.f (x) ≤ η(x).f (x) is equivalent to the inequality x 2 .g (x)+ θ(x)+2s-2/(-Log x) .x.g (x) ≤ η(x)-s.θ(x)-s.(s-1)- θ(x) + 2s -1 -Log x .g(x)
.

Choosing s := -√ a we obtain as θ(x) := θ(x) + 2s -2/(-Log x) and, if θ satisfies the conditions (@@), the same will be true for θ (but changing γ to γ -2), then

q := θ(0) = 1 -2 √ a and η(x) := η(x) -s.θ(x) -s.(s -1) - θ(x) + 2s -1 -Log x .
Then η satisfies η(0) = 0, as θ(0) = 1 and lim sup

x→0 + η(x).(-Log x) = 2 √ a.
So we are under the hypothesis of the case q < 1 and η(0) = 0 for g, as η has the suitable estimate at 0 + . As α 1 (1 -q) = 1 we obtain that (here γ = -2)

1/2 0 t √ a-1 .(-Log t) -β-1 .f (t).dt < +∞ ∀β > 0 (2.3)

Examples

The following computation shows that the result of proposition 1.3.1 is optimal. Let f (x) := x -λ .(-Log x) β and η(x) := α 1 /(-Log x) + α 2 /(-Log x) 2 for x positive small enough, where α 1 is positive.

Then we have

f (x) = -λ.x -λ-1 .(-Log x) β -β.x -λ-1 .(-Log x) β-1 f (x) = (λ + 1).λ.x -λ-2 .(-Log x) β + β.(2λ + 1).x -λ-2 .(-Log x) β-1 + + (β -1).β.x -λ-2 .(-Log x) β-2
If we define g by the equality

x 2 .f (x) + q.x.f (x) = g(x).f (x) we obtain g(x) := λ.(λ + 1 -q) + β.(2λ + 1 -q).(-Log x) -1 + (β -1).β.(-Log x) -2 .

Assuming that q > 1 and choosing λ + 1 -q = 0 and β.(2λ + 1 -q) = α 1 so λ = q -1 and β.(q -1) = α 1 , we obtain, for q -1 small enough in order that β.(β -1) < α 2 implies g(x) ≤ η(x) for x small enough,

x 2 .f (x) + q.x.f (x) ≤ η(x).f (x)
Remark now that, for the choice β = α 1 /(q -1) the convergence of the integral 1/2 0 x q-2 .(-Log x) -δ-1 .f (x).dx holds if and only if β -δ -1 < -1 that is to say for δ > β = α 1 /(q -1) (compare with proposition 1.3.1).

For q = 1, choosing η(x) := α 2 (Log x) 2 where α 2 is positive, λ = 1 and β := β + , the positive root of (β -1).β = α 2 , the integral 1/2 0

x -1 .(-Log x) -δ-2 .f (x).dx converges if and only if β + -δ -2 > -1 so for δ > β + -1 = -1/2 + 1/4 + α 2 (compare with the conclusion of 1.4).

The following example shows that for q = 1 and η(0) = 0 the differential inequality (1) does not implies the point-wise bound near 0 of a solution by C.(-Log x) for any positive constant C:

For x ∈]0, 1/3[, let f (x) = (-Log x).Log(-Log x). Then f (x) = -1 x .Log(-Log x) - 1 x f (x) = 1 x 2 .Log(-Log x) + 1 x 2 .(-Log x) + 1 x 2
and so, we obtain

x 2 .f (x) + x.f (x) = 1 (-Log x) = η(x).f (x)
where η(x) := 1 (Log x) 2 .Log(-Log x).

.

We have lim x→+∞ (Log x) 2 .η(x) = 0 but f (x)/(-Log x) goes to +∞ when x goes to 0 + .

An application

Our application is devoted to a kind of generalization of Gronwald's lemma for the Laplacian in a punctured ball in R n . We begin by the case n ≥ 3.

Corollary 2.0.1 Let n ≥ 3 be an integer and consider a C 2 function F : B * r → R + on the punctured ball B * r with center 0 and radius r in R n endowed with its natural euclidian norm. Assume that there is a continuous function

η : B r → R with lim sup ||x||→0 η(x).||x|| -2 .(-Log ||x||) = α 1 < +∞ such that F satisfies on B * r ∆F (x) ≤ η(x).F (x) ( 6 
)
where ∆ is the standard Laplace operator on R n . Then we have, for any β > sup{α 1 (n -2), 0}

B * r/2
||x|| -2 .(-Log(||x||)) -β-1 .F (x).dx < +∞ (7

)
where dx is the euclidian measure.

Proof. Define the function f :]0, r[→ R + by f (t) := St F (t.σ).dσ where (t, σ) are polar coordinates on R n and where dx = t n-1 .dt ∧ dσ where dσ is the rotation invariant measure on the sphere S 1 with a suitable normalization. Then the function f is C 2 on ]0, r[ and we have

f (t) + n -1 t .f (t) = St ∆(F )(t.σ).dσ ∀t ∈]0, r[ (8) 
thanks to the rotation invariance of the Laplacian. Then it is easy to apply the proposition 1.3.1 to the function f with θ ≡ n -1.

The case n = 2 corresponds to the case λ = q = 1. It gives in a similar way the following corollary. where dx is the euclidian measure.

  Let n = 2 and consider a C 2 function F : B * r → R + on the punctured disc D * r with center 0 and radius r in R 2 endowed with its natural euclidian norm. Assume that there is a continuous function η :D r → R with lim sup ||x||→0 η(x).||x|| -2 .(-Log ||x||) 2 = α 2 < +∞ such that F satisfies on D * r ∆F (x) ≤ η(x).F (x) (6)where ∆ is the standard Laplace operator on R n . Then we have, for any β > 0 such that β.(β + 1) > α 2 : * D r/2 ||x|| -2 .(-Log(||x||)) -β-2 .F (x).dx < +∞ (7)

Note that by condition iii) γ ≤ 0.