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Abstract

Reliable forecasting methods increase the integration level of stochastic production and reduce

cost of intermittence of photovoltaic production. This paper proposes a solar forecasting model

for short time horizons, i.e. one to six hours ahead. In this time-range, machine learning methods

have proven their efficiency. But their application requires that the solar irradiation time series is

stationary which can be realized by calculating the clear sky global horizontal solar irradiance index

(CSI), depending on certain meteorological parameters. This step is delicate and often generates

additional uncertainty if conditions underlying the calculation of the CSI are not well-defined

and/or unknown. As a novel alternative, we introduce a so-called periodic autoregressive (PAR)

model. We discuss the computation of post-sample point forecasts and forecast intervals. We show

the forecasting accuracy of the model via a real data set, i.e., the global horizontal solar irradiation

(GHI) measured at two meteorological stations located at Corsica Island, France. In particular, and

as opposed to methods based on CSI, a PAR model helps to improve forecast accuracy, especially

for short forecast horizons. In all the cases, PAR is more appropriate than persistence, and smart

persistence. Moreover, smart persistence based on the typical meteorological year gives more

reliable results than when based on CSI.
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1 Introduction1

Solar energy, mainly photovoltaic, is an energy resource which plays an increasingly important2

role in the electrical energy production due to its abundance, cleanness and cost effectiveness3

characteristics with limited environmental consequences. On the other hand, solar power has a4

fluctuating generation profile because of its inherent cyclic and time varying nature, leading to5

limitations on stability and trustworthiness of solar power grid systems (Shamshirband et al.,6

2015). To reduce the inconvenience of this stochastic and intermittent nature, and to improve the7

inclusion of solar power plants, an efficient forecasting method of solar radiation is paramount.8

Moreover, this intermittent character gives rise to additional production costs compared with9

conventional production, from 1 to 8e/MWh with an average value around 6e/MWh; Notton et10

al. (2018). Thus, a reliable production forecasting method decreases the average annual operating11

costs. In addition, it reduces the reserve shortfalls and it reduces curtailments. Several methods12

are available for forecasting depending on the time horizon and time resolution (Notton and13

Voyant, 2018).14

This paper concerns forecasting at short time horizons, i.e., one to six hours ahead with a15

one hour time step. In this time-range, machine learning methods have proven their accuracy.16

But their application requires that a solar irradiation time series is stationary which can be17

realized by calculating conditions for clear sky (CS) solar irradiation, depending on certain18

meteorological parameters (Diagne et al., 2013; Lauret et al., 2015). The use of a CS solar19

radiation model, however, induces an important source of error because this type of model20

depends on meteorological parameters which vary month by month or during a day. To avoid21

this difficulty, the purpose of the paper is to present a forecasting model which does not require22

a CS model, and which can be easily implemented in practice.23

The remainder of the paper is organized as follows. In Section 2, we introduce the concept of24

periodically correlated processes and we provide arguments why global horizontal solar irradiation25

measurements are periodic seasonal time series. In Section 3, we discuss problems induced by a26

CS model. Section 4 provides details about the data under study. The periodic autoregressive27

(PAR) model is introduced in Section 5, and expressions for point forecasts, forecast intervals, and28

forecast evaluation measures are given. Section 6 provides some information about alternative29

forecasting models. Section 7 shows PAR identification and PAR forecasting results. It includes30

results of a comparative forecasting experiment. Lastly, Section 8 offers some concluding remarks.31
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2 Periodic Phenomena32

Given a stationary time series {Yt; t ∈ Z} whose second order moments exist, we define its mean33

function by μt = E(Yt) and its autocovariance function by γs,t = Cov(Ys, Yt). The process is said34

to be periodically correlated (PC) with period H, or periodic stationary (Gladyšhev, 1961), if35

the following two conditions36

μt = μt+h for all t, and

γs,t = γs+h,t+h for every s, t in the index set
(1)37

are true for h = H but for no smaller value of h. Note that the case where μt and γs,t do not38

depend on t reduces to the ordinary covariance stationary time series. Throughout the rest of the39

paper, we assume without loss of generality that μt = 0. The periodic autocorrelation function40

at lag s = 1, 2, . . . and time t is defined by ρs,t = γs,t/γ0,t which is the theoretical counterpart of41

the autocorrelation function at lag s of a stationary time series.42

Global horizontal solar irradiation (GHI, in Wh/m2) measurements can be viewed as periodic43

seasonal time series. In general, a seasonal pattern appears when a time series is influenced by44

seasonal factors, e.g., the month of the year, the day of the week, or the hour of the day; Hokoi45

et al. (1990). As can be seen from (1) the seasonality is always of a fixed and known period, and46

hence, the time series is called periodic. In general, the average length of cycles is longer than47

the length of a seasonal pattern, and the magnitude of cycles tends to be more variable than the48

magnitude of seasonal patterns; Franses and Paap (1994). From these observations, we deduce49

the following two properties.50

1) The observed time series GHI(t) (t = 1, . . . , N ) can be considered as a periodic time series51

with two fixed seasonal periods H andD. In this study H = 24 hours (h) andD = 365 days52

(d). For simplicity, we assume that N/(H ×D) = Y is an integer representing the number53

of available years. The decomposition of GHI(t) highlights three new time series: two are54

strongly seasonal, and one time series is related to the noise, or irregular component. That55

is56

{GHI(t), t ∈ Z} = {f
(
S24h(t), S365d(t), ε(t)

)
, t ∈ Z}. (2)57

58

2) The function f(∙) defines the type of decomposition: additive, multiplicative or hybrid.59

Usually the multiplicative mode is preferred, and the term S24h ×S365d at time t is a proxy60

of the so-called CS global irradiation, i.e., CS(t) = {S24h(t) × S365d(t), t ∈ Z}.61
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The ratio GHI(t)/CS(t) defines the clear sky index CSI(t) ∈ [0, 1].62

Observe from property 1) that a solar irradiation time series contains only seasonal patterns.63

These components can be deleted by seasonal adjustment using a ratio to trend (detrending),64

divided by an estimate of a CS(t) series (Grantham et al., 2016, 2018) or, if estimation is difficult,65

divided by a moving average of the series (Voyant et al., 2011). Alternatively, one can adopt a66

classical seasonal autoregressive integrated moving average (SARIMA) model. Implicit in such67

models is the assumption of homogeneity or time invariance, i.e. the seasonally differenced series68

is sure to become stationary. However, many seasonal time series cannot be filtered, standardized69

or differenced to achieve second-order stationarity because the series exhibits a strong seasonal70

behavior such that the entire autocorrelation structure of the series depends on the season, hence71

the homogeneity assumption fails (Tiao and Grupe, 1980). In fact, the majority of GHI time72

series satisfy the property of periodic stationarity (Ula and Smadi, 1997), stating that their73

sample mean and sample autocorrelation function are periodic with respect to time. A more74

realistic family of models characterizing those kind of seasonal time series is the PAR model.75

The method of moments based on the well-known Yule-Walker equations and the least squares76

method in the univariate case are both efficient ways to estimate PAR models. In particular,77

when the seasonal data and the model for each season are used rather than the annual data,78

significant gains in parameter efficiency can be achieved. However, the number of estimated79

parameters is likely to increase with the choice of the season. Thus, in our study it will be80

easier to consider only the H = 24 hours period, giving rise to a parsimonious PAR model with81

only 24 components rather than estimating a model with D = 365 components. Moreover, it is82

often useful to put linear constraints on the parameters for a given season. Another important83

advantage is that PAR models can be studied for each season separately. It justifies the use of84

AIC and BIC information criteria and sample periodic (partial) autocorrelations to identify the85

optimal model order.86

In the next section, we will focus on two approaches to take seasonality into account. The first87

approach uses a white box model (WM) based on the knowledge model which we couple with the88

stochastic modeling of CSI(t). This approach is often called grey box modeling, or in short-hand89

notation GM. The second approach uses the previously measured data and any knowledge-based90

model, and we call it a black box model or BM. Observe that a GM (=WM+BM) is often more91

interesting to analyze than a BM since it encompasses a semi-physical model. But adopting the92

GM can add an additional uncertainty if the parameters of the model are not well-defined, and93

thus decreasing the reliability of the GM.94
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3 Clear Sky (CS) Model95

For a temporal forecast horizon up to and including six hours ahead, a CS solar irradiation

model is often used to make the time series GHI(t) stationary, before calculating the CS(t) index

(Lauret et al., 2015; Voyant et al., 2015). The chosen CS model in this study is the Solis model

(Mueller et al., 2004; Ineichen, 2008). The CS global horizontal irradiance reaching the ground

is defined by

CS(t) = I0(t) exp
( −τ

sing(η(t))

)
sin(η(t)).

Here I0 is the extraterrestrial radiation (depends on the day of the year), η is the solar elevation96

angle (depends on the hour of the day), τ is the global total atmospheric optical depth (depends97

on the day of the year and the hour of the day), and g is a fitting parameter. In order to be well-98

defined, the CS model requires meteorological parameters (Gelaro et al., 2017) to characterize the99

state of the sky such as, for instance, the aerosol optical depth (AOD) and the water vapor column100

defining the total AOD. These parameters are difficult to obtain. Moreover, they fluctuate in a101

large range from one year to another and during a day from one hour to the next. Thus, the102

average value of these parameters do not accurately reflect the CS condition at a given time t.103

Indeed, Voyant et al. (2015, Figure 5) showed the impact of AOD values on the forecast accuracy,104

as measured by the normalized mean absolute forecasting error (nMAE) for Ajaccio. Specifically,105

these authors obtain an nMAE value of 11% in the optimized parameter case, and 18% with106

very ill-optimized parameters, so an increase of 7 percentage points.107

Moreover, obtaining accurate CSI(t) series at sunset and sunrise is difficult due to a possible108

surrounding masking effect such as mountains, buildings, or vegetation. It may also be due109

to unreliable measurements of solar irradiation at low solar height (instrumental errors due to110

the cosine response). For these reasons, a pre-processing operation is applied: solar radiation111

data for which the solar elevation is lower than a threshold of 5◦ or 10◦ are removed from the112

analysis. However, the solar production during these sunset and sunrise periods are often non113

negligible and their forecasts cannot be avoided. For forecasting tilted solar irradiation, a CS114

model uses a constant albedo which, in practice, varies seasonally and sometimes during the day115

(modifications of the land cover, Notton et al., 2006). For our experimental site, the influence116

of the sea on the reflected and diffused solar radiation differs in the morning and in the evening;117

Ineichen et al. (1990). Finally, some time lags can occur between the measured and the modeled118

CS irradiances due to time synchronization or the use of various time scales.119
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4 Data120

Time series of GHI(t) observations measured at Ajaccio (41◦55′N, 8◦44′E, 4 m asl) and Bastia121

(42◦42′N, 9◦27′E, 10 m asl) meteorological stations, Corsica island, France. Both stations are122

located near the Mediterranean Sea and nearby mountains (more than 1000 m altitude at 40123

km from the two sites). This specific geographical configuration makes nebulosity or “cloud-like-124

ness” difficult to forecast. The climate of Corsica is characterized by hot summers with abundant125

sunshine and mild, dry and clear winters. For Ajaccio, hourly global horizontal solar radiation126

data are available for the time period 1998–2008 (11 years) and for Bastia the data covers the127

period 2003–2008 (6 years).128

A standard cleaning approach is applied to identify and remove bad data. Often mistakes129

appear in time series of solar data due to problems with the acquisition system; an automatic130

quality check used in the frame of GEOSS project (Group on Earth Observation System of131

System) has been applied to the data. The quality of the data (Korany et al., 2016) and the132

procedure applied to flag suspicious or erroneous measurements is described in detail by David et133

al. (2016). Both stations are equipped with pyranometers (CM 11 Kipp & Zonen) and standard134

meteorological sensors (pressure, nebulosity, etc.). A filtering approach is first applied before135

computing the various time series models. GHI values linked to a solar elevation angle less than136

10◦ are excluded from the analysis. In that case, forecasting GHI values will be very difficult137

due to inaccurate CSI values obtained between periods of sunset and sunrise.138

The comparison between machine learning models and PAR models is done during the last139

year of the available data set covering 365 × 24 = 8,760 observations. For Ajaccio the first 10140

years (87,600 observations) are used as a training set of the machine learning models, while there141

are 5 years of daily observations in the training set for Bastia. To reduce computation time,142

estimation is done only once using the training/estimation period.143

5 Periodic Autoregression144

5.1 Model145

Machine learning models are usually adopted to predict GHI (Voyant et al., 2017). They are146

often based on the assumption that the data generation process does not change over time, so147

assuming that the time series under study is stationary. As noted above, the process to make148

a time series stationary can be complex and, more importantly, can generate uncertainties. In149
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contrast, a time series fitted by a PAR model does not need the stationarity assumption. In fact,150

by definition (1) the time series process is said to be periodically stationary. Moreover, PAR151

models avoid CS modeling.152

Let {y ∈ Z|1 ≤ y ≤ Y } denote the set of years with Y the number of within-in-sample153

years. Similarly, let {d ∈ Z|1 ≤ d ≤ D} the set of days at year y, and {h ∈ Z|1 ≤ h ≤ H}154

the set of hours at day d. So, the time index parameter t may be written as t ≡ t(y, d, h) =155

H ×D(y − 1) + H(d− 1) + h. Then, a PAR stochastic process model of period h (h = 1, . . . , H)156

and order p(h), for the GHI(t) process is defined by157

GHI(t) =
p(h)∑

k=1

φk(h)GHI(t − k) + ε(t), (3)158

159

where φk(h) are the autoregressive (AR) coefficients at hour h, and ε(t) is a periodic white noise160

process with E(ε(t)) = 0 and Var(ε(t)) = σ2(h), independent of GHI(t). When h = d = 1, model161

(3) reduces to a “classical” AR model.162

Let GHI(y, d, h + H) = GHI(y, d + 1, h), GHI(y, d + D,h) = GHI(y + 1, d, h), φk(h + H) =163

φk(h), and p(h+H) = p(h). Then, with GHI(t) ≡ GHI(y, d, h) and ε(t) ≡ ε(y, d, h), Eq. (3) can164

be rewritten as165

GHI(y, d, h) =
p(h)∑

k=1

φk(h)GHI(y, d, h − k) + ε(y, d, h). (4)166

167

A convenient way to represent Eq. (4) is by using vector notation,. That is, for each hour168

h, the daily and yearly observations are stacked in the (D × Y )-dimensional column vector169

Y(h) =
(
GHI(1, 1, h),GHI(1, 2, h), . . . ,GHI(Y,D, h)

)′. Model (4) can then be written as170

Y(h) = X(h)Φ(h) + ε(h), (5)171
172

with173

X(h) =











GHI(1, 1, h − 1) GHI(1, 1, h − 2) ∙ ∙ ∙ GHI(1, 1, h − p(h))

GHI(1, 2, h − 1) GHI(1, 2, h − 2) ∙ ∙ ∙ GHI(1, 2, h − p(h))
...

...
...

GHI(Y,D, h − 1) GHI(Y,D, h − 2) ∙ ∙ ∙ GHI(Y,D, h − p(h))











(D×Y )×p(h)

174

Φ(h) =
(
φ1(h), . . . , φp(h)(h)

)′
,175

176

where ε(h) is a (D × Y )-dimensional column vector containing the stacked daily and yearly177

white noise errors corresponding to Y(h). The parameter vector Φ(h) can be estimated by least178
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squares (LS). In particular, an estimator of Φ(h) is given by Φ̂(h) =
(
φ̂1(h), . . . , φ̂p(h)(h)

)′ =179

[{X′(h)X(h)}−1X′(h)]Y(h) and the corresponding residuals are defined by ε̂(h) = Y(h) −180

X(h)Φ̂(h).181

Model (4) can be enlarged by considering yearly varying trends and constants. In the nu-182

merical study, we estimate a PAR model with a constant related to a synthetic sequence of183

hourly global horizontal irradiation denoted in this study by an approximation of the “typi-184

cal meteorological year” (TMY, Grantham et al. (2018)) or climatology. That is TMY(d, h) =185

Y −1
∑Y

y=1GHI(y, d, h). In that case a PAR model can be written as186

GHI(y, d, h) − TMY(d, h) =
p(h)∑

k=1

φk(h)
(
GHI(y, d, h − k) − TMY(d, h − k)

)
+ ε(y, d, h). (6)187

188

5.2 Forecasting189

Assuming that Eq. (6) is known in the sense that all the parameters are known, the optimal190

one-step ahead forecast is given by191

ĜHI(y, d, h + 1) =
p(h)∑

k=1

φk(h)
(
GHI(y, d, h − k + 1) − TMY(y, d, h − k + 1)

)
+ TMY(y, d, h + 1).

(7)

192

193

The corresponding forecast error is GHI(y, d, h + 1) − ĜHI(y, d, h + 1) = ε(y, d, h + 1), and the194

forecast error variance is σ2(h). In practice the coefficients φk(h) are replaced by estimates φ̂k(h).195

The optimal `-step ahead forecast (` > 1) is given by196

ĜHI(y, d, h + `) =
p(h+`−1)∑

k=1

φk(h + ` − 1)
(
ĜHI(y, d, h − k + ` − 1) − TMY(d, h − k + ` − 1)

)
197

+ TMY(y, d, h + `). (8)198
199

The corresponding `-step ahead forecast error is given by200

GHI(y, d, h + `) − ĜHI(y, d, h + `) = ε(y, d, h + `) +
`−1∑

i=1

(
ε(y, d, h + i)

`−1∏

j=i

φ∗
h+j

)
,201

202

where φ∗
h =

∑p(h)
k=1 φk(h). The forecast error variance is given as203

σ2(h, `) = σ2(h)
{

1 +
`−1∑

i=1

( `−1∏

j=i

(φ∗
h+j)

2
)}

. (9)204

205
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5.3 Forecast intervals (FIs)206

On the assumption that the forecast errors are normally distributed, a standard Box-Jenkins FI207

for an `-step ahead forecast of GHI is of the form ĜHI(y, d, h+`)±zα/2σ(h, `) where zα/2 denotes208

the (1−α/2)th percentile of the standard normal distribution. However, a preliminary analysis of209

both time series indicated non-normality (p-values <0.001) of the distribution of ĜHI(y, d, h+ `)210

with significant values of the sample skewness and kurtosis. In this case, bootstrapping FIs211

(BFIs) is a possible alternative.212

Now, assuming a PAR model is correctly specified, the residuals from a fitted PAR model213

are asymptotically uncorrelated (McLeod, 1994). This result implies that bootstrapping can be214

carried for each hour h separately. BFIs for ARs have received quite some attention; see, e.g.,215

Pan and Politis (2016) for a recent review. In this paper, we use their Algorithm 3.5 (backward216

bootstrap with fitted residuals). Monte Carlo simulations performed by these authors show that217

this algorithm performs well in terms of coverage. For a fixed h, the resulting ` step ahead218

coverage probability (1 − α) will be denoted by

BFIα(`) = [ĜHIB
(α/2)

(t + `), ĜHIB
(1−α/2)

(t + `)],219
220

where ĜHI
(α/2)

B (t + `) and ĜHI
(1−α/2)

B (t + `)] are, respectively, the (α/2)th and (1 − α/2)th221

percentiles of the empirical bootstrapped distribution function of GHI(t+`) based on B bootstrap222

replicates. We set B = 1,000 in our computation of FIs (Section 7.3).223

5.4 Forecast Evaluation224

We use three error measures to compare the out-of-sample forecasting performance of the models.225

The first criterion is the normalized root mean square error (nRMSE, unitless); it is a commonly226

used error metric for evaluating point forecasts of GHI; see, e.g., Lauret et al. (2015). The227

measure is defined as nRMSE(`) = [
∑N(`)

t=1

(
ĜHI(t) −GHI(t)

)2]1/2/
∑N

t=1GHI(t), where N(`) is228

the number of out-of-sample forecasts depending on forecast horizon ` = 1, . . . , 6. The second229

measure is the normalized mean interval length (nMIL; unitless). For a coverage probability230

(1 − α) and given set of `-step ahead forecasts {ĜHI(t + `)}, this measure is defined as the231

difference between the upper ĜHI
(1−α)

U (t + `) and lower ĜHI
(1−α)

L (t + `) limits. The resulting232

statistic is given by nMIL(1−α)(`) =
∑N(`)

t=1

(
ĜHI

(1−α)

U (t) − ĜHI
(1−α)

L (t)
)
/
∑N(`)

t=1 GHI(t). As a233

third evaluation measure, we consider the `-step ahead prediction interval coverage PICP(1−α)(`).234

This measure is defined by the probability that the target value of an input pattern lies between235

the forecast limits. That is, PICP(1−α)(`) = 100 × (1/N(`))#(j) with #(j) the number of j’s236
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Table 1: Summary of forecasting models. Short-hand notation: SP = smart persistence, AR = autore-

gressive, MLP = multilayer perceptron, PAR = periodic AR, TMY = typical meteorological year, CS =

clear sky (Solis) model.

Knowledge-based Predictor Form of the `-step ahead forecast

model type ĜHI(y, d, h + `)

With SP1 GHI(y, d, h)
CS(d, h + `)
CS(d, h)

AR(p)
p∑

i=1

φiGHI(y, d, h + ` − i)
CS(d, h + ` − i)

CS(d, h + `)

MLP∗
m∑

j=1

wjf
( p∑

i=0

wjiGHI(y, d, h − i)
CS(d, h − i)

)
CS(d, h + `)

Without SP2 GHI(y, d, h) − TMY(d, h) + TMY(d, h + `)

PAR(p(h)) Equation (7)

∗ An AR-NN model of order p with m hidden neurons and a single linear output.

The initial weights are denoted by wj and wji.

lying in the interval [ĜHI
(1−α)

L (t), ĜHI
(1−α)

U (t)]. Several test statistics can be based on PICP;237

see, e.g., De Gooijer (2017, Chapter 10).238

6 Some Alternative Models239

It is interesting to compare the proposed PAR forecasting model with existing naïve and reference240

models. Naïve models will be denoted by SP which stands for smart persistence. They are simple241

models related to the knowledge-based model CS (SP1) and to TMY (SP2) as described in Table242

1. Detailed information about CS and SP1 can be found in Lauret et al. (2015), Voyant et al.243

(2015), Mueller et al. (2004), and Ineichen (2008) and the references therein. The CS model244

under study is the so-called Solis model which is known to give good results; see, e.g., Lauret245

et al. (2015), Ruiz-Arias et al. (2017), and Voyant et al. (2015). Two reference models are an246

AR model and a multilayer perceptron (MLP) belonging to the class of artificial neural network247

models. The main equations are given in Table 1; see, e.g., Voyant et al. (2011), Voyant et al.248

(2014), and Voyant et al. (2017).249
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7 Empirical Results250

7.1 Exploratory Analysis251

The presence of periodic correlation in the series GHI(t) can be detected by the sample periodic252

autocorrelation function at time lag s and period h, i.e. rs,h = cs,h/(c0,hc0,h−s)1/2 where cs,h =253

Y −1
∑

y

(
GHI(y, d, h)−TMY(d, h)

)(
GHI(y−s, d, h)−TMY(d, h)

)
(y = 1, . . . , Y ; h = 1, . . . , H).254

This statistic can also be used to test the null hypothesis: ρs,h ≡ ρs, (s = 1, 2, . . .). Using255

the function peracf in the R-perARMA package, we reject the null hypothesis for all values s =256

1, . . . , 30 (p-values < 0.001). This indicates that both GHI(t) series are properly PC and is not257

just an amplitude modulated stationary sequence. In addition, we reject the null hypothesis258

ρs,h = 0 (p-values < 0.001). So the series are not PC white noise.259

A suitable PAR model can be selected by examining plots of the sample periodic partial260

autocorrelation (perPACF), say ρ̂∙,s,h, or by using an information criterion such as AIC or BIC.261

Sakai (1982) showed that if the correct order is p(h) for period h, the estimate of the asymptotic262

standard deviation of ρ̂∙,s,h equals 1/
√

n, s > p(h). The order p(h) can be identified by finding263

the lowest lag for which the sample perPACF cuts off. BIC may be factored to obtain a separate264

criterion for each period. Thus265

BIC
(
p(1), . . . , p(H)

)
=

H∑

h=1

BIC
(
p(h)

)
(10)266

267

with268

BIC
(
p(h)

)
= log

(
σ̂2

h(p(h))
)

+
log(n)

n
p(h), (11)269

270

where σ̂2
h(p(h)) corresponds to the LS estimator of the residual variance, and n = 3,650 (1,825)271

in the case of Ajaccio (Bastia). Thus, the total minimization of Eq. (10) can be established272

by minimizing each BIC
(
p(h)

)
about p(h). Replacing log(n) in Eq. (11) by 2 gives AIC. It273

should be pointed out that for identifying subsets of PAR models with AIC or BIC a local search274

algorithm (e.g., a genetic algorithm, Ursu and Turkman, 2012) is recommended to avoid lengthy275

computations.276

Table 2 summarizes the significance of the sample perPACF values for Ajaccio at a 5%277

nominal significance level, in terms of two indicator symbols and for h = 4, . . . , 20. Since global278

solar radiation is zero during the night, depending on the season, the sunrise and the fluctuation279

of sunshine, sample perPACF results for h = 1, 2, 3 and h = 21, . . . , 24 are not included. Observe280

that for almost all values of h, significant values of ρ̂ ∙,s,h occur at lags s = 1, 2, 3. For h =281
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Table 2: Indicator pattern of statistically significant values of the sample perPACF for Ajaccio; “+”

indicates a value > 1.96n−1/2 and “−” a value < −1.96n−1/2 with n = 3,650.

Lags (s)

h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

4 − + + + + +
5 + + + + + + −
6 + − + +
7 + − + +
8 + −
9 + − −
10 +
11 + +
12 + +
13 +
14 + +
15 + + + + + −
16 + + + +
17 + − − + −
18 + − − + + −
19 + − −
20 +

4, . . . , 20, AIC selects a PAR model of order (24, 25, 25, 26, 18, 2, 3, 1, 3, 7, 4, 7, 8, 12, 26, 25, 26) at282

forecast horizon ` = 1 while BIC suggests a PAR(24, 25, 25, 14, 2, 2, 2, 1, 3, 4, 1, 3, 8, 9, 26, 25, 2)283

model. These results are broadly in agreement with the orders selected by perPACF for the284

GHI series of Ajaccio. Note, BIC prefers low order PAR models. Similar results are observed285

for the GHI series of Bastia at ` = 1. Forecast results will be based on the PAR model orders286

determined by AIC and BIC.287

7.2 Forecasting288

The nRMSE forecasting results are summarized in Table 3, where PAR-AIC (PAR-BIC) denote289

the PAR models selected by AIC (BIC). Observe that a simple model of persistence (P) has been290

added to the set of models. It is defined by ĜHI(y, d, h + `) = GHI(y, d, h). It assumes that291

all `-step ahead forecast values of GHI are equal to GHI at hour h, independent of y and d. It292

is also worth mentioning that the three models “simple SP”, “smart SP1”, and “smart SP2” are293

well-specified at both sites, i.e. their specification has benefited from long work experience.294

Initially, the AOD and w parameters are updated each month from the aeronet database295

(https:aeronet.gsfc.nasa.gov/) where AOD values fluctuate between 0.1 and 0.5 and w be-296

tween 0.2cm and 0.9cm. If we select constant and ill-chosen values; AOD = 0.9 and w = 0.9, the297
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Table 3: nRMSE(`) values (` = 1, . . . , 6). MLP results are based on the best of 10 training sets with

random initialization. Bold values show the best results in each row.

Horizon Climatology Persistence AR MLP PAR

(`) TMY Simple P Smart SP1 Smart SP2 AIC BIC

Ajaccio
1 0.3554 0.3409 0.1978 0.1950 0.1965 0.1961 0.1908 0.1838
2 0.3354 0.5938 0.3120 0.2683 0.2642 0.2661 0.2640 0.2639
3 0.3554 0.7974 0.4299 0.3062 0.3037 0.3027 0.2982 0.3008
4 0.3554 0.9563 0.5666 0.3313 0.3307 0.3267 0.3160 0.3149
5 0.3554 1.0699 0.7054 0.3486 0.3497 0.3419 0.3259 0.3282
6 0.3554 1.1449 0.8346 0.3585 0.3627 0.3540 0.3353 0.3383

Bastia
1 0.3606 0.3609 0.2435 0.2103 0.2231 0.2235 0.1968 0.1972
2 0.3606 0.6184 0.4013 0.2942 0.2931 0.2909 0.2660 0.2678
3 0.3606 0.8261 0.5545 0.3384 0.3298 0.3269 0.2995 0.3048
4 0.3606 0.9853 0.7095 0.3629 0.3515 0.3456 0.3205 0.3271
5 0.3606 1.0963 0.8540 0.3745 0.3642 0.3593 0.3331 0.3425
6 0.3606 1.1676 0.9821 0.3781 0.3725 0.3677 0.3409 0.3495

one-step ahead (` = 1) nRMSE increases to 0.2394 for SP1, to 0.2300 for MLP, and to 0.2481 for298

AR. In this case, the accuracy of the CS is poor and widely influences the forecasts. For ` = 6299

the results are worse, i.e. 0.9927 (SP1), 0.4404 (MLP), and 0.4571 (AR). This confirms that the300

accuracy of the CS model plays an important role in establishing its reliability, and that a PAR301

model is all the more an interesting alternative.302

As compared to Ajaccio, the nRMSE results are slightly worse for Bastia. The reason is that303

as the nebulosity becomes more important for this site, the CS model is very difficult to optimize.304

Moreover, the training set covers only 5 years of data. In summary, even when a CS model is305

well-specified, PAR models give the best forecasting results for all horizons. GM models (AR306

and MLP) give good nRMSE results, albeit with some variability. Overall, SP2 based on TMY307

gives lower nRMSE results than SP1 based on CS. The use of TMY with PAR methodology308

improves the forecasting results. In particular, for Ajaccio nRMSE(1) = 0.1838 (PAR-BIC) with309

TMY and 0.2125 without. This effect is equivalent for the other forecast horizons `, i.e. the gain310

of including TMY in a PAR model specification comes close to 4 percentage points.311
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7.3 Forecasts intervals312

The reliability of a FI can be assessed by nMIL and PICP. An optimal methodology is associated313

with a high PICP (close to 100%) and a low nMIL. The choice of a lower (L) and upper (U) FI314

limit is essential here. To explore the null hypothesis that the GHI(y, d, h) data comes from a315

symmetrical distribution (skewness) with an unknown median, we used the triplestest available316

from MATLAB Central. At the 5% nominal significance level, the test statistic indicates that317

the null hypothesis cannot be rejected for h = 6, 7, 8, 17 and 20. For the remaining 12 series,318

we obtained small p-values casting doubt about the validity of the null hypothesis. Nevertheless,319

we set Lt+`(h) ≡ −Ut+`(h) throughout the rest of the analysis.320

Figure 1 shows a plot of nMIL(`) versus PICP(`) (` = 1, . . . , 6) for Ajaccio aggregated over321

all values of h ∈ [4, 20]. Clearly, the best compromise between these accuracy measures is for322

1 ≤ Ut+`(h) ≤ 2 with PICP in the range [0.7, 0.8] and nMIL∈ [0.3, 0.6] for Ut+`(h) = 1, while323

PICP ∈ [0.8, 0.9] and nMIL ∈ [0.7, 1.2] for Ut+`(h) = 2. Interestingly, mixed results emerge from324

using BFIs. For instance, at α = 0.05 and taken across all values of h, nMIL(1) = 0.02 and325

PICP(1) = 0.46 with the mean length of the BFI0.05(1) interval ranging between 1.97 (h = 4)326

and 302.9 (h = 13).327

The bootstrapped nMIL and PICP values may be tentatively compared with those obtained328

when Ut+1(h) = 1.96 which corresponds to a 95% FI if, for the moment, the forecast errors are329

assumed to be normally distributed. Then nMIL(1) = 1.1, PICP(1) = 0.92 and the mean length330

of the FI, averaged over all h, equals 84.9. So, with bootstrapping the value of nMIL in this case331

is considerably smaller than in the non-bootstrapping case, but with bootstrapping there is also332

a marked decrease in the value of PICP. This observation applies to all values of `.333

Observe that the above results are taken over all values of h jointly. Since the selected PAR334

orders are different for each h, it is interesting to present nMIL and PICP values for each h335

separately. Table 4 shows these results for Ut+1(h) = 1, 1.5, and 2. We see that for h = 8, . . . , 16336

the one-step ahead PICP values for Ajaccio and Bastia are very close to 100%. The nMIL values337

on the other hand increase for h = 8, . . . , 16 with values for Bastia about two times larger than338

those for Ajaccio. At this point it is worth noting that the choice of the upper and lower FI bands339

depends on the operational system in place, and on the prerogative of the network manager. But340

the results in Figure 1 and Table 4 show that PAR models can result in quite accurate one-step341

ahead forecasts with high confidence.342

Table 5 shows the impact of TMY on the PAR forecasts. Introducing TMY in a PAR model343
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Figure 1: nMIL(`) versus PICP(`) for various values of Ut+`(h) (` = 1, . . . , 6) for Ajaccio. PAR

orders are selected by BIC.

Table 4: nMIL and PICP values (in percentages) for different values of Ut+1(h) (h = 4, . . . , 20).

Ajaccio Bastia

Ut+1(h) = 1 Ut+1(h) = 1.5 Ut+1(h) = 2.0 Ut+1(h) = 1 Ut+1(h) = 1.5 Ut+1(h) = 2.0

h nMIL PICP nMIL PICP nMIL PICP nMIL PICP nMIL PICP nMIL PICP

4 0.0 1.1 0.0 1.1 0.0 1.1 0.4 0.0 0.6 0.0 0.9 0.0
5 0.7 37.5 1.1 37.5 1.5 37.5 1.4 24.1 2.1 24.1 2.7 24.1
6 6.6 62.5 9.7 62.5 12.8 62.5 12.8 55.9 18.8 55.9 24.6 55.9
7 16.4 78.6 24.2 78.6 31.9 78.6 32.5 78.4 48.0 78.4 63.2 78.4
8 27.7 98.4 40.7 98.4 53.3 98.4 58.9 97.5 86.6 97.5 113.2 97.5
9 40.8 98.9 60.5 98.9 79.9 98.9 84.0 99.5 124.4 99.5 163.9 99.5
10 49.3 99.2 73.5 99.2 97.4 99.2 105.1 100.0 156.5 100.0 207.0 100.0
11 58.3 99.7 86.9 99.7 115.1 99.7 132.7 99.7 197.6 99.7 261.4 99.7
12 63.3 100.0 94.2 100.0 124.6 100.0 132.2 99.7 196.7 99.7 260.1 99.7
13 64.2 100.0 95.3 100.0 125.5 100.0 136.9 100.0 203.4 100.0 268.6 100.0
14 60.1 100.0 89.0 100.0 117.1 100.0 128.0 99.7 188.9 99,7 247.7 99.7
15 53.1 100.0 78.6 100.0 103.4 100.0 111.5 99.2 164.1 99.2 214.6 99.2
16 38.8 97.3 57.0 97.3 74.7 97.3 75.6 95.6 11.2 95.6 145.5 95.6
17 24.6 83.6 35.8 83.6 46.7 83.6 47.4 80.5 69.6 80.5 91.1 80.5
18 12.6 58.4 18.5 58.4 24.3 58.4 23.3 59.2 34.5 59.2 45.5 59.2
19 4.2 34.0 6.2 34.0 8.2 34.0 8.1 44.4 12.0 44.4 15.9 44.4
20 0.5 0.0 0.8 0.0 1.1 0.0 1.2 21.4 1.8 21.4 2.4 21.4
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Table 5: Forecast interval evaluation measures for the fitted PAR models; Ut+`(h) = 2.

Horizon PICP(%) Gain(%) nMIL(%) Gain(%)

(`) Without With Without With
TMY TMY TMY TMY

Ajaccio
1 91.0 91.4 +0.4 70.3 65.7 -4.6
2 89.3 91.3 +2.0 92.5 85.6 -6.9
3 88.2 91.2 +3.0 104.5 96.0 -8.5
4 87.2 92.1 +4.9 112.6 102.8 -9.8
5 86.8 92.4 +5.6 118.4 107.8 -10.6
6 86.6 92.3 +5.7 122.5 111.0 -11.5

Bastia
1 95.0 94.7 -0.3 78.3 70.4 -7.9
2 94.3 94.3 0 102.3 91.6 -10.7
3 94.1 94.1 0 114.6 102.4 -12.2
4 94.0 94.0 0 122.3 109.3 -13.0
5 94.0 94.1 +0.1 127.6 113.8 -13.8
6 94.2 94.2 0 131.0 116.8 -14.2

specification, reduces the values of nMIL(`) significantly; between 4.6% and 11.5% for Ajaccio,344

and between 7.9% and 14.2% for Bastia. Interestingly, for Bastia the PICP(`) values remain345

constant and close to 95% across all values of `. This phenomenon is quite different for Ajaccio346

with decreasing values of nMIL(`) and increasing values of PICP(`).347

8 Concluding Remarks348

We have introduced the PAR family of models and applied these models to forecast GHI time349

series. PAR models are intended for periodic time series. They are not restricted to stationary350

time series. In contrast, classical models like AR, and MLP need a preprocessing transformation351

to make the GHI series stationary. Thereby, in the PAR case, the use of a knowledge-based352

model is not necessary. Usually a CS radiation model is fitted to the data to remove certain353

components, and hence the initial time series is transformed in a new stationary series of CSIs.354

This transformation is efficient if all parameters are perfectly known. But if this is not the case,355

the introduction of a CS model can become ineffective and can even give rise to an additional356

source of error. The results obtained in this study show that even if a CS model is well-specified,357

AR and MLP coupled with CS are less efficient than a PAR model. Indeed, for all the horizons,358
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PAR gives the best results even if the improvement is small compared with other models. If a359

CS model is not perfectly known for a site, a PAR model becomes an interesting alternative with360

minimal forecast errors. The model allows FIs and through the use of upper and lower forecast361

bands the length of the FIs can be adjusted to gain forecast efficiency.362

A related study is by Pedro et al. (2018) based on 5 minutes GHI and direct normal irradi-363

ance (DNI) data obtained from Folsom, CA, USA. With the purpose of building an intra-hour364

forecasting model, they use two machine learning algorithms, i.e. k-nearest-neighbors (kNN) and365

gradient boosting. At a nominal coverage of 80% and a 30 minute forecast horizon, the best result366

is obtained for a kNN method with cloud cover information derived from sky images (Pedro et367

al., 2018, Table 6). The reported values are PICP = 81.5% and nMIL = 9.9%, with nMIL called368

PINAW (Prediction Interval Normalized) by these authors. In contrast, a PAR model gives369

84.7% (PICP) and 73.5% (nMIL) at a one hour forecast horizon while with bootstrapping we370

have 49.5% (PICP) and 3.9% (nMIL). It is evident that these results should be interpreted with371

care. Especially, since data location, data frequency, forecast horizon, and forecasting methods372

are different. Nevertheless, it is clear that PAR models perform pretty well in this special case.373

Moreover, PAR models need no additional forecast information in the form of sky images.374

In summary, while PAR models are known since many years, they are rarely used for GHI375

forecasting. A PAR model is a good and recommended model when a forecasting tool must be376

developed for a new meteorological site. In particular, if there is not sufficient hindsight and377

historical data for which a CS model is not well-defined by, for instance, lack of meteorological378

data. This frequently happens when a new project of photovoltaic plant implementation occurs379

at a new site. Some further research is needed for greater validation of the proposed methodology.380

For instance, comparing PAR forecasts with other models/methods, using GHI data obtained381

from a larger set of meteorological sites, and studying different time granularities382
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