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Abstract 

Mechanical properties of muscle tissue are crucial in biomechanical modeling of the human 

body. Muscle tissue is a combination of Muscle Fibers (MFs) and connective tissue including 

collagen and elastin fibers. There are a lot of passive muscle models in the literature but most of 

them do not consider any distinction between Collagen Fibers (CFs) and MFs, or at least do not 

consider the mechanical effects of the CFs on the Three-Dimensional (3-D) behavior of tissue. As 

a consequence, unfortunately, they cannot describe the observed stress-stretch behavior in tissue 

in which the reinforced direction is not parallel to the MF direction. In this research, a new passive 

muscle model is presented, in which the CFs are separately considered in the formulation: they are 

distributed along the MFs in a cross-shaped arrangement. Thanks to this new architecture, a 

mechanical reinforced direction can be proposed, in addition to the muscle main fiber direction. 

The passive biomechanical properties of the genioglossus muscle of a bovine tongue have 

been measured under uniaxial tensile tests. To characterize the 3-D response of the tissue, tests 

have been performed in different directions with respect to the MF direction. Moreover, a 

Constitutive Law (CL) has been proposed for modeling this behavior. In addition to our 

measurements on the bovine genioglossus muscle, results published in the literature on 

experimental data from the longissimus dorsi of pigs and the chicken pectoralis muscle were used 

to appraise the applicability of the proposed model. It is demonstrated that the proposed passive 

muscle model provides an accurate description of the fiber-oriented nature of muscle tissue. Also, 

it has been shown that using Finite Element Analysis (FEA) it might be possible to predict the 

angle 𝜃 between CFs and MF. 

Keywords: Muscle model; Passive behavior; Collagen fibers; Inverse FEA.   
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1. Introduction 

Accounting properly the physical characteristics of the musculoskeletal system significantly 

affects the accuracy of computational models in predicting human body behavior in a variety of 

applications such as impact biomechanics, surgical simulations and tissue engineering (Takaza et 

al. 2013). Besides an accurate geometrical description, these models also need a comprehensive 

Constitutive Law (CL) to fully take into consideration the tissue material properties such as 

nonlinearity, viscoelasticity and anisotropy (Yousefi et al. 2018, Van Loocke et al. 2006, Gras et 

al. 2012, Morrow et al. 2010, Parente et al. 2009, Calvo et al. 2010 and Pioletti et al. 1998). In 

most of the studies, skeletal muscles have been considered as fiber-reinforced materials in which 

the stiffest direction is parallel to the Muscle Fiber (MF) direction (Morrow et al. 2010, Calvo et 

al. 2010, Martins et al. 1998, Humphrey and Yin 1987, Parente et al. 2009, Song et al. 2007 and 

Blemker et al. 2005). However, to the authors’ knowledge, muscles have not been sufficiently 

investigated experimentally yet and the available CLs fail in describing their Three-Dimensional 

(3-D) passive behavior, especially for those that show less resistance in loading along the MF 

direction (Gindre et al. 2013, Nie et al. 2011 and Wheatley et al. 2016). Takaza and colleagues 

(2013) measured passive stress-stretch responses of the pig longissimus dorsi muscle under 

uniaxial tensile tests. The reported results show that the MF direction is the weakest direction in 

this muscle in terms of mechanical resistance to elongation. A more surprising behavior has been 

reported for the chicken pectoralis muscle in which the tissue is stiffer in the direction of 45° with 

respect to the MF direction (Mohammadkhah et al. 2016). 

Muscle tissue has frequently been considered as a network of MFs, Collagen Fibers (CFs), 

and elastin fibers embedded in an isotropic matrix (Hernández et al. 2011). The MFs are 

surrounded by connective tissue of three different anatomical properties made of CFs, which are 

from the most external to the most internal level: epimysium (surrounding the whole muscle), 

perimysium (surrounding fiber bundles), and endomysium (around each individual fiber) (Purslow 

2010). The main course of the CFs determines one of the directions of material anisotropy and 

such fibers are mainly responsible for the passive behavior of the tissue. The active response, 

which is responsible for the contractile behavior, usually refers to the response of the muscular 

fibers (Grasa et al. 2016 and Gindre et al. 2013). 
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In some long strap-like muscles, two parallel sets of wavy CFs in a crossed-ply arrangement 

have been observed in the epimysium (Purslow 1989 and 2010). Depending on the sarcomere 

length, the mean CF angle with respect to the MF axis varies in the range of 20° to 80°. This 

explains why mechanical passive properties of some muscles are stronger in the direction 

transverse to the MF direction (Takaza et al. 2013, Mohammadkhah et al. 2016 and Wheatley et 

al. 2016). For these muscles, the available CLs, in which the CFs and the MFs are identified with 

the same direction, cannot describe the observed stress-stretch behavior. In these models, the 

existence of any reinforced direction other than the MF direction may impose some negative values 

on the anisotropic part of the stress tensor, which violates the convexity condition of the Strain 

Energy Function (SEF). To the authors knowledge, only for the cases in which the stiffest direction 

is perpendicular to the MF direction, the convexity condition is satisfied and it is possible to 

explain this behavior either using the invariants and structural tensors proposed by Schröder and 

Neff (2003) or assuming an ellipsoidal distribution of fibers in muscles in which the shortest 

diameter is along the direction of MFs (Wheatley et al. 2017). So, it seems that the effects of the 

MF and CFs and their respective directions have to be separately defined in the passive CLs of 

muscle tissue. 

The tongue is one of the most intriguing human organs because it plays a vital role in 

respiration, suckling, gathering and manipulating food, swallowing, and speech. The mammalian 

tongue is a complex muscular structure, which is composed of the mucous membrane, intrinsic 

and extrinsic muscles, and connective tissue (Shall et al. 2012). Extrinsic muscles originate from 

bones external to the tongue and insert into the body of the tongue: the genioglossus, the 

hyoglossus, the styloglossus and the palatoglossus. These muscles are the main responsible for the 

large displacements and shaping of the tongue. Intrinsic muscles are fully embedded in the body 

of the tongue and determine more locally the shape of the tongue: the superior longitudinal, the 

inferior longitudinal, the verticalis and the transversalis (Gerard et al. 2006). Each of these muscles 

has some specific orientation dependent properties. 

The human tongue has been widely investigated experimentally and numerically to describe 

its actions in the vocal tract (Rohan et al. 2017, Gerard et al. 2005 and 2006, Dang and Honda 

2002, Vogt et al. 2006 and Fujita et al. 2007). Yousefi et al. (2018) proposed a visco-hyperelastic 

CL to describe the rate-dependent and anisotropic stress-stretch behavior in the superior 

longitudinal muscle and the mucous membrane of bovines. Finite element models intend to 
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improve the understanding of the role of the tongue in speech production (Buchaillard et al. 2009) 

and swallowing (Stavness et al. 2006). Unfortunately, the complex behavior of the tongue tissue 

has been reduced by simplified models in previous researches. Due to the lack of experiments in 

tongue tissue, a passive CL considering specifically the nonlinear nature and the anisotropic 

behavior of each muscle has not been proposed yet.  

In higher order mammals, the musculatures of tongues are similar (Gilbert et al. 2006 and 

Shall et al. 2012). It was therefore decided to focus this paper on bovine tongue tissue since it is 

still complicated to characterize the biomechanical properties of human tongue tissue. It is 

hypothesized that tongue tissue has similar passive constitutive behavior in humans and bovines. 

Obviously, the bovine tongue, which wraps around the grass and heaves to rip it off, has very 

specific abilities. We believe that this peculiarity can be explained by the size of the bovine tongue 

and by its capacity of producing an active force that is significantly higher than human tongue 

(Yousefi et al. 2018). 

In this research, the mechanical properties of the genioglossus muscle of bovine tongue are 

investigated to propose a new passive mechanical model for muscle tissue, which can completely 

predict its fiber-oriented responses. To do this, the stress-stretch response of the bovine 

genioglossus muscle is measured under uniaxial tensile tests. Furthermore, a new CL is proposed 

for the passive behavior of muscle tissue which can specifically take into consideration the 3-D 

effects of the CFs. To evaluate the proposed model, its accuracy in approximating the experimental 

data is demonstrated for our data about the bovine genioglossus tissue as well as for published 

experimental data about the pig longissimus dorsi muscle (Takaza et al. 2013) and the chicken 

pectoralis muscle (Mohammadkhah et al. 2016). 

The paper is organized in the following manner. In section 2, a new model of passive muscle 

behavior describing the nonlinear and orientation dependent response of muscle tissue is proposed. 

In section 3, the details of the bovine tongue sample preparation and test procedures are presented. 

In addition, the proposed model is used to approximate the stress-stretch response of the bovine 

tongue genioglossus muscle. The ability of this model in predicting the experimental data on the 

pig longissimus dorsi muscle and the chicken pectoralis muscle is examined in section 4. A 

discussion with perspectives closes this article. 
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2. A New Passive Muscle Model 

Most of the passive muscle models in the literature do not consider any distinction between 

CFs and MFs, or at least do not consider the mechanical effects of CFs on the 3-D behavior of 

tissue. These models cannot provide a realistic account of the observed stress-stretch responses in 

muscle tissue, especially in tissue that amazingly shows stronger resistance against elongation in 

a direction different from the MF alignment (Takaza et al. 2013, Hernández et al. 2011, 

Mohammadkhah et al. 2016 and Wheatley et al. 2016). Recently, Grasa et al. (2016) have 

introduced the CFs in their passive muscle model that can describe such an amazing stress-stretch 

behavior, but this model does not include the 3-D distribution of the CFs. Moreover, Wheatley et 

al. (2017) have proposed a model for muscles in which it is possible to predict that the stiffest 

direction can be perpendicular to the MFs direction. But their model uses a lot of material 

parameters and cannot explain the cases in which the stiffest direction is neither parallel to the 

MFs direction nor perpendicular to them (Mohammadkhah et al. 2016). From our point of view, 

to model the passive behavior of muscle tissue, it is essential to separately take into consideration 

the direction and action of the CFs, which are distinct from the ones of the MFs. 

2.1. Structure of the Muscle Tissue 

Regarding the approximately helical distribution of the CFs along each MF (Purslow 2010 

and Gindre et al. 2013), we propose to consider them as a pair of crossed fibers in any plane 

containing the MFs as they can be approximately observed in practice in any cross-section parallel 

to the MF direction (Purslow 1989). Figure 1 schematically shows a slice of a muscle tissue and 

two arbitrary perpendicular planes P1 and P2. These planes are mechanically equivalent and 

contain the cross-shaped arrangement of CFs with angle 𝜃 with respect to the MF direction. 

Regardless of the dispersion of CFs, angle 𝜃 represents the average direction of CFs in skeletal 

muscles. As depicted in figure 1, due to the symmetrical distribution of the CFs along the MFs, 

our model of the passive muscle tissue is similar to the transversely isotropic materials which show 

the same material properties in any direction in the isotropy plane which is perpendicular to the 

MF direction. But for 𝜃 ≠ 0°, compared with the transversely isotropic materials, the reinforced 

direction is not necessarily either in the isotropy plane or the normal vector of the isotropy plane, 

namely the MF direction. Thus, the proposed model in figure 1 provides the possibility of the 
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existence of some other direction with mechanical properties stronger than the ones in the direction 

of MFs. 

Another significant effect of the CFs on the stress-stretch response, which has not been 

considered in the literature yet, is their 3-D nature as they are distributed in any plane containing 

the MFs. To characterize this, let us suppose that a muscle sample undergoes a uniaxial extension 

along the direction 𝑋1 with acute angle 𝜙 with respect to the direction of the MFs, as depicted in 

figure 2. In general, there is a coordinate system 𝑋1𝑋2𝑋3 which at least includes one of the 

symmetry planes of this sample. Such a plane contains 𝑋1 and the MF direction as the CFs 

symmetrically surround it. Hence, there is no shear deformation out of this plane. Further, let 𝑋2 

be in the plane of symmetry and 𝑋3 perpendicular to this plane. 

 

Figure 1. Schematic model of a muscle tissue in which a pair of cross-shaped CFs exists in any plane 

containing the MF direction. 

In figure 2, as mentioned before, there are two mechanically equivalent CFs with unit vectors 

𝐚 = (cos(𝜃 − 𝜙) , sin(𝜃 − 𝜙) , 0) and 𝐚 = (cos(𝜃 + 𝜙) , − sin(𝜃 + 𝜙) , 0) in the plane 𝑋1𝑋2. 

To measure the contribution of the other pairs of CFs to the stress response out of the 𝑋1𝑋2 plane, 

it is sufficient to consider the one which is located in the plane constructed with 𝑋3 and the MF 

direction. Furthermore, it can easily be shown that these two families of CFs are along the unit 

vectors 𝐠 = (cos 𝜃 cos 𝜙 , − cos 𝜃 sin 𝜙 , sin 𝜃) and 𝐠 = (cos 𝜃 cos 𝜙 , −cos 𝜃 sin 𝜙 , −sin 𝜃).  
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Figure 2. The configuration of the CFs and the MF direction in the coordinate system 𝑋1𝑋2𝑋3. 

2.2. Kinematics and Stress Tensors 

A CL has to be chosen to describe the stress-stretch relationship of passive muscle tissue. 

Chagnon et al. (2015) reviewed and classified the most popular hyperelastic CLs for soft tissue. 

For a specific muscle tissue, based upon the material structure and shape of the measured stress-

stretch curves, an appropriate CL can be defined. To show how a stress-stretch response is related 

to a CL, let us briefly review the large deformation formulation in the framework of 

hyperelasticity. Let 𝐗 and 𝐱 be the position vector of material points in the reference (undeformed) 

and deformed configurations, respectively. For any function 𝜒 describing the motion 𝐱 = 𝜒(𝐗) 

which maps any position vector of the reference configuration to the deformed configuration, let 

𝐅(𝐗) = ∂𝐱 ∂𝐗⁄  be the deformation gradient tensor and 𝐽 = det 𝐅(𝐗) > 0 the Jacobian representing 

the ratio of volume change during the deformation. Following Flory (1961), 𝐅 can be decomposed 

as: 

𝐅 = (𝐽 ⁄ 𝐈)𝐅 (1) 

with a dilatational part 𝐽 ⁄ 𝐈 and a distortional part 𝐅, in which 𝐈 represents the second order 

identity tensor. The modified right Cauchy-Green strain tensor is given by 𝐂 = 𝐅 𝐅. For 3-D 

hyperelastic CLs representing isotropic materials, the invariants of a strain tensor are used as 

variables to define a SEF in order to meet the requirement of objectivity. So, taking 𝐂 as this strain 

tensor, its two modified principal invariants are defined as: 
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𝐼 ̅ = tr 𝐂,   𝐼 ̅ =
1

2
[(tr 𝐂) − tr(𝐂 )] (2) 

For anisotropic materials reinforced with two families of fibers, the modified principal invariants 

defined by equation (2) are not sufficient to describe the behavior. Hence, for such materials with 

two preferred fiber directions specified by the referential unit vectors 𝐧  and 𝐧 , the symmetric 

structural tensors 𝐀  and 𝐀  are defined as: 

𝐀 = 𝐧 ⨂𝐧 ,   𝐀 = 𝐧 ⨂𝐧  

𝐼 ̅
𝐚 = tr(𝐂𝐀 ) 

𝐼 ̅
𝐚 = tr(𝐂𝐀 ) 

(3a) 

(3b) 

(3c) 

in which 𝐼 ̅
𝐚  and 𝐼 ̅

𝐚  are modified additional invariants (pseudo-invariants), which are the most 

common variables in defining the CLs for anisotropic materials (Spencer 1984). Also, ⨂ in 

equation (3a) represents the dyadic multiplication of two vectors.  

In hyperelasticity, to describe the stress response for muscle tissue, it is postulated that a 

scalar-valued free energy function exists, which is called the Helmholtz free energy function 𝜓, 

also referred to as strain energy function or elastic potential energy function (Gasser et al. 2006). 

For isothermal processes, the thermodynamical principles reduce to the satisfaction of the 

Clausius-Duhem inequality 

𝐒 − 2
∂𝜓

∂𝐂
:
�̇�

2
≥ 0    ∀𝐂, �̇� (4) 

where the operator “:” represents the double contraction of two tensors, 𝐂 = 𝐽 ⁄ 𝐂 represents the 

right Cauchy-Green strain tensor, �̇� is its material time derivative, and 𝐒 is the second Piola-

Kirchhoff stress tensor. Without energy dissipations, 𝐒 = 2
𝐂
 can be a solution for equation (4).  

2.3. Constitutive Law 

To describe the stress-stretch response of the muscle tissue which is assumed to behave 

nearly incompressible, it was decided to propose the SEF 𝜓 in the decoupled form with a purely 

volumetric part 𝜓  as a measure of the required strain energy to change the volume and a purely 

isochoric part 𝜓  representing the stored strain energy by the distortion part of a deformation. 

The volumetric part is a function of 𝐽 and the isochoric part is defined as a function of the modified 
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right Cauchy-Green strain tensor, the structural tensors constructed by the direction of the CFs and 

MFs, and the activation parameter 𝛼 which determines the amount of the active stress in the muscle 

tissue. Therefore, in the general form, the SEF of the skeletal muscles can be stated as: 

𝜓 𝐂, 𝐀 , 𝐀 , 𝐆 , 𝐆 , 𝐀 , 𝛼 = 𝜓 (𝐽) + 𝜓 𝐂, 𝐀 , 𝐀 , 𝐆 , 𝐆 , 𝐀 , 𝛼  (5) 

with the structural tensors 𝐀 = 𝐚 ⨂𝐚 , 𝐀 = 𝐚 ⨂𝐚 , 𝐆 = 𝐠 ⨂𝐠 , and 𝐆 = 𝐠 ⨂𝐠  in which 

the unit vectors 𝐚 , 𝐚 , 𝐠 , and 𝐠  have been introduced in figure 2. Also, 𝐀 = 𝐚 ⨂𝐚  with 

the referential unit vector 𝐚  in the direction of the MFs. Equation (5) shows how the proposed 

model of this study distinguishes between the CFs and the MFs. In other words, 𝐀  is required 

to define to active response. 

Moreover, the isochoric part of the SEF itself can be divided into the passive (𝜓 ) and active 

(𝜓 ) parts as: 

𝜓 𝐂, 𝐀 , 𝐀 , 𝐆 , 𝐆 , 𝐀 , 𝛼 = 𝜓 (𝐂, 𝐀 , 𝐀 , 𝐆 , 𝐆 ) + 𝜓 𝐂, 𝐀 , 𝛼  (6) 

Since characterizing the passive behavior of the muscle tissue is the concern of this study, 

from now on the active part of the SEF is discarded. 𝜓  is generally defined by the invariants 𝐼 ̅ , 

𝐼 ̅ , 𝐽, and 𝐼 ̅ . Hence, the SEF is proposed as:  

𝜓(𝐼 ̅ , 𝐼 ̅ , 𝐽, 𝐼 ̅ ) = 𝜓 (𝐽) + 𝜓 (𝐼 ̅ , 𝐼 ̅ , 𝐼 ̅ ) 

𝜓 (𝐽) =
1

2
𝑘(𝐽 − 1)  

𝜓 (𝐼 ̅ , 𝐼 ̅ , 𝐼 ̅ ) = 𝑐 (𝐼 ̅ − 3) + 𝑐 (𝐼 ̅ − 3)

+
𝑐

𝑐
𝐼 ̅

𝐚 − 1 + 𝐼̅
𝐚 − 1 + 𝐼 ̅

𝐠 − 1

+ 𝐼 ̅
𝐠 − 1  

(7a) 

(7b) 

 

 

(7c) 

 

with the Lagrange multiplier 𝑘 and the material parameters 𝑐 . All of the material parameters 

have to be non-negative to warrant the convexity condition of the SEF. Also, the modified fourth 

invariants 𝐼 ̅
𝐚  and 𝐼 ̅

𝐠  are equivalent to the square of the stretch along the unit vectors 𝐚  and 𝐠  

scaled by 𝐽 ⁄ , respectively. These invariants are separately considered in the proposed model to 

apply the 3-D effects of the CFs on the stress tensor. In equation (7c), the first two terms are added 

to take into account the contribution of the matrix-fiber ensemble in an anisotropic material, and 
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the third term characterizes the CFs resistance to elongation. Since all of the CFs have made of the 

same matter, they have the same mechanical properties and as a consequence, their contribution 

has been proposed by the same material parameters in equation (7c). 

Although recent studies indicate that MFs and CFs have a contribution in compression (Van 

Loocke et al. 2006 and 2008 and Böl et al. 2014 and 2016), the overall resistance of muscle tissue 

in compression is a way lower than its resistance against tension (Mohammadkhah et al. 2016). 

Therefore, since the concern of this study is to approximate the stress-stretch response of muscle 

tissue in tension, the influence of the resistance of the CFs in compression was considered to be 

negligible. In other words, for 𝐼 ̅
𝐚 < 1 and 𝐼 ̅

𝐠 < 1, the corresponding anisotropic terms in 

equation (7c) are considered to be negligible. 

For the proposed model in equations (7), 𝐒 can be defined in the decoupled form too 

(Holzapfel 2000). In this manner, 𝐒 is given by:  

𝐒 = 2
∂𝜓

∂𝐂
= 𝐒 + 𝐒  

𝐒 = 𝑘𝐽(𝐽 − 1)𝐂  

𝐒 = 𝐽 ⁄ 𝐒 −
1

3
tr(𝐒𝐂)𝐂  

𝐒 = 2
∂𝜓

∂𝐂
= 4𝑐 (𝐼 ̅ − 3)𝐈 + 2𝑐 (𝐼 ̅ 𝐈 − 𝐂)

+ 𝑐

⎩
⎪
⎨

⎪
⎧ 𝐼 ̅

𝐚 − 1

𝐼 ̅
𝐚

( )

𝐀 +

𝐼̅
𝐚 − 1

𝐼 ̅
𝐚

( )

𝐀

+

𝐼 ̅
𝐠 − 1

𝐼̅
𝐠

( )

𝐆 +

𝐼 ̅
𝐠 − 1

𝐼̅
𝐠

( )

𝐆

⎭
⎪
⎬

⎪
⎫

 

(8a) 

(8b) 

(8c) 

 

 

 

(8d) 

where 𝐒 is called the fictitious second Piola-Kirchhoff stress tensor. See Holzapfel (2000) for 

calculating the required derivatives in writing equation (8) and more detailed explanations of 

extracting equation (8c). 
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Generally, when a muscle tissue is loaded along the 𝑋1 direction as depicted in figure 2, 𝐅 

can be written as: 

𝐅 =

𝐹 𝐹 0
𝐹 𝐹 0
0 0 𝐹

 (9) 

in which the off-diagonal components vanish only for 𝜙 = 0° and 𝜙 = 90°; 𝐹 =

1 (𝐹 𝐹 −⁄ 𝐹 𝐹 ) due to the near incompressibility assumption. Thus, using the 

relationship 𝐏 = 𝐅𝐒, from equations (8) and (9), the components of the nominal stress tensor 𝐏 

can be obtained as a function of the components of 𝐅. In general, it is not possible to determine all 

the components of 𝐅 for an arbitrary 𝜙. For 𝜙 ≠ 0° sample undergoes shear stress in the 𝑋1𝑋2 

plane and for 𝜙 = 90° equality of 𝐹  and 𝐹  depends on the value of 𝜃. Therefore, there is no 

explicit relationship between the stress and the controllable parameters of the machine. Thus, an 

inverse finite element method has to be used in order to determine the uncontrollable components 

of 𝐅 from the experimental data.  

2.4. Adjustment of Material Parameters 

The material parameters can be determined by adjusting the nominal stress-stretch relationship 

in order to fit the experimental data points at 𝜙 = 0° and 𝜙 = 90°. Since 𝐏 in the case of 𝜙 = 90° 

is not necessarily only a function of the controllable parameters of the machine, some 

complementary tools like an Finite Element Analysis (FEA) have to be employed to determine the 

uncontrollable components of 𝐅. To do this, a first guess of the values of the material parameters 

is inferred from the results of tensile tests at 𝜙 = 0° and 𝜙 = 90° with a MATLAB script based 

on the Genetic optimization algorithm (Goldberg 2006), in which 𝐅 is assumed to be symmetric in 

the directions 𝑋2 and 𝑋3, which enables to simplify the stress-stretch relationship to a function of 

stretch 𝐹 . In other words, the material parameters are estimated by minimizing the objective 

function 𝑓(𝑐 ) which represents a measure of the error between the experimental stress and the 

model prediction as: 

𝑓(𝑐 ) =
1

𝑚
𝑃 − 𝑃 ° +

1

𝑛
𝑃 − 𝑃

°
 (10) 



12 
 

in which 𝑃  and 𝑃  are the experimental and predicted nominal stress values along the 

direction 𝑋1, respectively. Also, 𝑚 and 𝑛 are the number of data points for the cases of 𝜙 = 0° 

and 90°.  

Then, the tensile test with 𝜙 = 90° is simulated with ABAQUS explicit solver by 

implementing a user-defined material model in subroutine VUMAT. After the FEA, changes of 

the non-zero components of 𝐅 during the loading time are ready to be used in 𝐏. Thus, updated 

values of the material parameters can be calculated through the optimization process using 

equation (10), in which 𝐅 is taken from the FEA. The proposed procedure of the material 

parameters estimation has to be iterated with the updated parameters to converge to constant 

values. Figure 3 shows the required steps to calculate the material parameters 𝑐  of our proposed 

CL via uniaxial tensile tests.  

 

Figure 3. Flowchart of the material parameters estimation procedure for muscle tissue via uniaxial 
tensile tests. 

 

Start 
1st guess of 𝑐  

Obtain 𝐅 from FEA of the 
tensile test at 𝜙 = 90° 

Update 𝑐  from fitting 𝐏 to 
the experimental data points 

at 𝜙 = 0° and 90° 

Did 𝑐  
converge? 

Stop 

Yes 

No 
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3. Bovine Tongue Genioglossus Muscle 

In this section, the mechanical properties of the genioglossus muscle of bovine tongue are 

investigated under uniaxial tensile tests. Furthermore, the proposed CL in equations (7) is 

evaluated by approximating the measured stress-stretch responses of this muscle. 

3.1. Experimental Tensile Tests 

In order to accurately measure the mechanical properties of the bovine tongue tissue, three 

freshly slaughtered adult bovine tongues were used. Immediately after the sacrifice done early 

morning, the tongue was cut from the larynx and immersed in a saline solution at 4°C to keep it 

fresh and to prevent it from degradation (Hernández et al. 2011 and Gras et al. 2012). Due to the 

complex structure and the direction variation of tongue fibers (Gilbert et al. 2006), cutting an 

appropriate sample with a fixed fiber direction from each muscle part is difficult in practice. So in 

the current research, the samples were cut from the genioglossus tissue which is the largest muscle 

of the tongue. The ratio of the grip-to-grip length to width of the samples was set at least around 7 

which was recommended by Hernández-Gascón et al. (2014). Besides, finite element results show 

that such long ratio is sufficient to achieve a uniform stretch distribution in the central area of a 

sample even in the presence of the anisotropy and shear deformations. These samples underwent 

a uniaxial tensile test on a Santam STM-1 machine with a 6 kg full-scale load cell. All of the 

reported data in this paper have been averaged among the measured stress-stretch behavior in 

different samples dissected from three bovine tongues. Figure 4 shows the bovine tongue and a 

corresponding sample during a tensile test. 

The genioglossus originates on the genial tubercle on the inside of the anterior mandible and 

inserts on the ventromedial base of the tongue. It can therefore pull the tongue toward the mandible 

and as a result of tissue incompressibility protrude the tongue outside the mouth (Gerard et al. 

2006). We assume that the response of the genioglossus tissue to the uniaxial tensile tests is 

strongly dependent on the angle between the CFs direction and the tensile force. To examine this 

dependency, some rectangular shape samples were dissected from the genioglossus with angles 

90°, 45°, and 0° with respect to the MF alignment. Six samples along the MF direction, five 

samples at 45°, and five samples at 90° were prepared to measure the average response in the 

genioglossus tissue. Although there are some difficulties in dissecting samples from muscle tissue, 

it was tried to cut them in a rectangular shape as much as possible since geometrical imperfections 
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may adversely affect the accuracy of the identified material parameters (Böl et al. 2012). Tests 

were performed at the speed of 2 mm/min to measure only the quasi-static response of the tissue. 

Table 1 presents the number of samples dissected from the bovine genioglossus muscle and their 

mean geometrical dimensions as well as the standard deviation values (sdv).  

 

Figure 4. Bovine tongue (a) and a sample of bovine tongue muscle under uniaxial tension test (b). 

Table1. Geometrical information of the samples dissected from the bovine genioglossus muscle.  

Orientation to the 
muscle fibers 

Number of 
samples (-) 

Average 

length*±std (mm) 

Average 

width±std (mm) 

Average 

height±std (mm) 

𝜙 = 0° 6 49.0±2.7 7.1±0.2 6.5±0.3 

𝜙 = 45° 5 45.1±3.1 6.6±0.3 6.3±0.2 

𝜙 = 90° 5 42.3±1.9 6.0±0.3 5.8±0.4 
*Length means the distance between the grips before starting a test, it does not include the gripped parts of the samples.  

Also, the stretch ratio has been measured by dividing the instantaneous distance between the 

grips to the initial one. Of course there are some optical techniques to measure the stretch ratio in 

the middle section of a sample, but the differences between these two methods remain less than 

1% even after applying 50% of stretch (Tian et al. 2015). After fastening the grips, the amount of 

the gripped length between the platens was controlled by a marker line on the platens as an 
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indicator to show whether slippage occurred or not. Then, tests started and continued until rupture 

and the stress-stretch curves have been reported up until a considerable decrease in the load cell. 

To prevent the damage caused by fastening the grips and increase the friction between the muscle 

and platens, a particular glue named mitreapel was used just in those areas. This method 

considerably facilitates obtaining smoother stress-stretch curves to higher ranges of stretch. 

3.2. Model Predictions 

Experimental tests from samples of the genioglossus muscle have been performed at 𝜙 =

0°, 45°, and 90°. Although the angle 𝜃 between CFs and MFs has not been experimentally 

measured, it seems to be possible to estimate this angle thanks to FEA, since 𝜃 is a parameter of 

this analysis. To do this, the material parameters have been determined for different values of 𝜃; 

then the accuracy of the prediction of each set of 𝜃 has been examined. As the genioglossus tissue 

is stronger when it is loaded perpendicular to the MFs direction, the searching space of angle 𝜃 

has been limited to values greater than 45°. Following the material parameters estimation 

procedure described in figure 3, 𝑐  have been accurately determined for some arbitrary values 

of 𝜃 = 60°, 63°, 65°, and 70°. For instance, in the case of 𝜃 = 65°, figure 5 shows the nominal 

stress-stretch responses of the proposed model in equations (7) fitted to the experimental data 

points at 𝜙 = 0° and 90°. The standard deviation curves around the mean values are also shown in 

gray lines. In this figure, the coefficient of determination 𝑅 , provides a measure of goodness of 

fitting, shows that the material parameters are well-defined to fit the experimental points. The 

corresponding estimated values of 𝑐  and 𝑘 are provided in table 2. Also, in table 2 the goodness 

of fitting of the proposed model for each set of 𝜃 has been provided. The large value of 𝑘 ensures 

the incompressibility of material. Moreover, a convergence study to show that the final values of 

the material parameters are independent of a first guess has been presented in appendix A. 

Table 2. Material parameters of the bovine genioglossus muscle tissue estimated for the proposed model. 

 𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(-) 

𝑘 
(kPa) 

𝑅  for 
𝜙 = 0° 

𝑅  for 
𝜙 = 90° 

𝜃 = 60° 9.668 7.369 373.012 2.379 

1E7 

0.992 0.996 

𝜃 = 63° 10.566 7.034 328.219 2.419 0.994 0.999 

𝜃 = 65° 10.566 7.034 313.181 2.462 0.994 0.999 

𝜃 = 70° 10.566 7.034 278.269 2.534 0.994 0.999 
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Figure 5. Stress-stretch responses of the bovine genioglossus muscle tissue to the uniaxial tension tests 

in different loading angles with respect to the MF direction. Also, the best approximation of the 

proposed model is plotted. 

For the cases of 𝜃 > 63°, when the genioglossus muscle is extended parallel to the MFs 

direction, the CFs have no contribution to bearing the tensile load. Although the angle 𝜃 has 

changed, the parameters 𝑐  and 𝑐  remained constant in table 2. It can be explained by the fact that 

for those values of 𝜃, CFs do not undergo any stretch over the reported ranges of stretch in figure 

5. Theoretically and physically, of course they can be recruited but beyond the reported ranges of 

stretch. Moreover, 𝑐  and 𝑐  vary as 𝜃 increases since the CFs become a more contributor to the 

overall response when the muscle is loaded perpendicular to the MFs direction. 

Using these estimated material parameters, the accuracy of the proposed model in equations 

(7) has been examined at 𝜙 = 45°. In this case, the nominal stress-stretch relationship is plotted in 

figure 6 together with the standard deviation curves. The proposed model has been implemented 

in the ABAQUS explicit solver. Nominal stresses for 𝜃 = 60°, 63°, 65°, and 70° at the most central 

point of the sample are plotted in figure 6. As can be seen from this figure, the proposed passive 

muscle model with the tuned material parameters for 𝜃 = 63° accurately predicts the behavior of 
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the genioglossus muscle. So, it seems that the mean angle between CFs and MFs in the reference 

configuration might be very close to 𝜃 = 63° for the genioglossus tissue. 

 

Figure 6. Comparison of the accuracy of the stress-stretch prediction of the proposed model for the 

bovine genioglossus muscle tissue in loading at different angles 𝜃. 

In order to provide a better understanding of the tensile behavior of muscles predicted by the 

proposed model, the distribution of the nominal stress 𝑃  in each loading direction is shown in 

figure 7. To do this, using the estimated material parameters for the case of 𝜃 = 63°, 3 samples 

with the same mesh and geometrical dimensions 7𝑚𝑚 × 7𝑚𝑚 × 49𝑚𝑚 underwent a 40% 

increase in the total length. To apply the boundary conditions, the bottom surface of samples with 

the normal vector x was pinned and the top surface was subjected to 40% of an increase in length 

along the x-direction. Moreover, the top surface was fixed in the directions of y and z (Gasser et 

al. 2006). Figure (7b) shows that even in the presence of shear deformations caused by the non-

symmetrical distribution of the CFs along the loading direction, the length to width ratio of 7 is 

sufficient to filter the gripping effects and provide a uniform stress distribution in the middle area. 
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(a) 

 
(b) 

 
(c) 

Figure 7. Distribution of the nominal stress 𝑃  after applying 40% of stretch to the total length in the 

genioglossus muscle for 𝜃 = 63°. (a) is for 𝜙 = 0° and muscle fibers are along the x-direction, in (b) 

the direction of muscle fibers makes angle 𝜙 = 45° with the x-direction in the plane xz, and in (c) 

muscle fibers are along the z-direction which means 𝜙 = 90°. 
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Moreover, for the case of 𝜙 = 90° in figure 7, the transversal stretch ratios 𝜆  and 𝜆  are not 

equivalent which is in agreement with some experimental findings (Takaza et al. 2013 and 

Mohammadkhah et al. 2016). To be more specific, when a sample is loaded in a direction 

perpendicular to the direction of the muscle fibers, in the transverse plane there will be a higher 

amount of shortening along the muscle fibers. The authors guess that there are two contributors to 

this behavior. First, in such condition, the stretched collagen fibers in the plane xz have a 

compressive component of stress along the muscle fibers. Consequently, the tissue is forced into 

a biased shortening in that direction. Second, it seemed that the existence of the cross-bridges is 

something that allows the actin and myosin filaments to have more spaces for shortening even in 

the passive state. For instance, figure 8 shows the initial and deformed shape of the cross-section 

in the middle section of samples shown in figure 7. As depicted in figure 8 for the case of 𝜙 = 90°, 

the sample underwent a higher amount of shortening in the z-direction which is parallel to the 

muscle fibers.  

 

Figure 8. Changes in the middle cross-section after applying 40% increase to the total length (x-

direction) in the genioglossus muscle. In the case of 𝜙 = 0°, there is a symmetric deformation in the 

transversal directions y and z. In the case of 𝜙 = 45° in which the muscle fibers are in the plane xz, the 

amount of shear deformation is a parameter that affects the values of the transversal stretches. Also, for 

𝜙 = 90°, the muscle fibers are along the z-direction. 
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4. Model Evaluation on Literature Data 

To provide a broader evaluation of our CL, we propose to confront it with experimental data 

describing the elastic responses of the pig longissimus dorsi muscle tissue (Takaza et al. 2013 and 

Gindre et al. 2013) and the chicken pectoralis muscle (Mohammadkhah et al. 2016). 

4.1. Pig Longissimus Dorsi Muscle 

The experimental stress-stretch responses of the pig longissimus dorsi muscle were 

measured at 𝜙 = 0°, 30°, 45°, 60° and 90° by Takaza et al. (2013). Results show that not only the 

tissue becomes stronger by increasing the loading angle 𝜙 but also the curvature of the stress-

stretch curve changes. So, it is difficult to find a CL which can smoothly describe this curvature 

variation with a few number of material parameters. These experimental measurements suggest 

that the CFs have more contribution to the resultant response when the tissue is loaded at 𝜙 = 90° 

than at 𝜙 = 0°. So, the angle 𝜃 must be greater than 45°. Similar to the method used for the bovine 

genioglossus muscle tissue, 𝑐  have been determined for different values of 𝜃. In this case, the 

Cauchy stress tensor 𝛔 = 𝐽 𝐅𝐒𝐅  which has been used by Takaza to report the behavior of the 

longissimus dorsi muscle can be computed from equations (8) and (9). Then, 𝑐  have been 

estimated by fitting the Cauchy stress-stretch relationship to the experimental measurements at 

𝜙 = 0° and 90° according to the procedure proposed in figure 3. The estimated values of the 

parameters 𝑐  for 𝜃 = 59°, 63°, and 65° are given in table 3. Figure 9 shows the range of the 

approximated Cauchy stress in the proposed model for these values of 𝜃. 

Table 3. Material parameters of the pig longissimus dorsi muscle tissue estimated for the proposed model. 

 𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(-) 

𝑘 
(kPa) 

𝑅  for 
𝜙 = 0° 

𝑅  for 
𝜙 = 90° 

𝜃 = 59° 89.451 12.194 220.296 1.511 

1E7 

0.998 0.977 

𝜃 = 63° 98.736 11.073 251.194 1.637 0.999 0.986 

𝜃 = 65° 98.750 11.067 216.285 1.630 0.999 0.993 
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Figure 9. Stress-stretch responses of the pig longissimus dorsi muscle tissue to the uniaxial tension tests 
in different loading angles with respect to the fiber direction. Also, the ranges of the best approximations 

of the proposed model for 𝜙 = 0° and 90° are depicted as gray bands.  

As shown on figure 9, the proposed CL with the reported parameters 𝑐  has been 

accurately adapted to fit the experimental data. For 𝜙 = 0°, there is a slight slope change around 

𝜆 = 1.24 in the corresponding gray band, which indicates the immediate recruitment of the CFs 

and their contribution to the resultant stress at 𝜃 = 59°. Also, similar to the explanations provided 

to interpret the estimated parameters of table 2, the parameters 𝑐  and 𝑐  approximately remained 

constant for the cases of 𝜃 = 63° and 𝜃 = 65° in table 3 which indicates that over the ranges of 

stretch used to estimate the material parameters, there would not be any recruitment in the CFs. 

Using the estimated material parameters in table 3, the stress-stretch behavior of the 

longissimus dorsi muscle has been predicted at 𝜙 = 30°, 45°, and 60° by implementing the 

proposed model in equations (7) in the ABAQUS explicit solver. Then, the Cauchy stress at the 

most central point of the sample is plotted in figure 10. In this figure, the range of the predicted 

stress is depicted inside the gray bands for this specific range 59° ≤ 𝜃 ≤ 65°. Also, coefficient 𝑅  

indicates the goodness of the model prediction with respect to the middle curve of each gray band. 
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Figure 10. Comparison of the accuracy of the stress-stretch prediction of the proposed CL for the pig 

longissimus dorsi muscle tissue in loading at different angles 𝜃. 

Predicted response for 𝜙 = 60° begins with a steep slope which is due to the ability of the proposed 

model to provide a curvature variation for the tissue response. In this case, although the model 

prediction does not seem to be acceptable for the small values of the stretch, it will be improved if 

the CL is replaced with another SEF for the CFs contribution, in which the CFs resistance is more 

smoothly. Providing such a SEF needs including some extra material parameters in the CL. Also, 

from the plotted bands of figure 10, it is deduced that the mean angle 𝜃 in the longissimus dorsi 

muscle might be in the range of 59° ≤ 𝜃 ≤ 65° in the reference configuration. 

4.2. Chicken Pectoralis Muscle 

To complete the evaluation of our model, we use the elastic stress-stretch data of the chicken 

pectoralis muscle at 𝜙 = 0°, 45°, and 90° (Mohammadkhah et al. 2016). The reported results show 

that the MF direction is the weakest direction in terms of mechanical resistance and the direction 

along 45° with respect to the MF alignment is the stiffest direction. As a result, according to the 

proposed passive muscle model, obviously, the CFs have a higher contribution to the overall stress 

for 𝜙 = 90° than for 𝜙 = 0°. Therefore, the angle 𝜃 must be greater than 45°. With the same policy 
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as described above, material parameters 𝑐  have been estimated for different values of 𝜃 by 

fitting the Cauchy stress-stretch relationship to the experimental measurements at 𝜙 = 0° and 90°. 

The estimated values of the parameters 𝑐  for 𝜃 = 51°, 53°, and 55° are given in table 4. For 

instance, in the case of 𝜃 = 53°, figure 11 shows the approximated Cauchy stress-stretch 

relationship in the directions parallel and perpendicular to the MF direction. 

 
Figure 11. Stress-stretch responses of the chicken pectoralis muscle tissue to the uniaxial tension tests 

in different loading angles with respect to the MF direction. Also, the best approximation of the 

proposed model is plotted. 

Table 4. Material parameters of the chicken pectoralis muscle tissue estimated for the proposed model. 

 𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(-) 

𝑘 
(kPa) 

𝑅  for 
𝜙 = 0° 

𝑅  for 
𝜙 = 90° 

𝜃 = 51° 84.344 9.642 460.859 2.007 

1E7 

0.999 0.972 

𝜃 = 53° 121.045 13.489 219.279 1.936 0.999 0.993 

𝜃 = 55° 137.198 14.877 197.613 2.016 0.998 0.992 

For the chicken pectoralis muscle in which the stiffness of the tissue in the directions of  𝜙 =

0° and 90° are much closer to each other, there are two possible deductions. First, the distribution 

of the CFs is similar to the previous two cases but they must be weaker. Second, their distribution 
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is less aligned to the directions perpendicular to the MFs, it means that 𝜃 might have a smaller 

value. On the other hand, Since chicken pectoralis is stiffer at 𝜙 = 45°, there must be a family of 

fibers very close to this direction in order to provide such stiffness. Therefore, the second 

explanation is anticipated to be the case for the chicken pectoralis muscle. 

Finally, using these estimated material parameters, the accuracy of the proposed model has 

been examined at 𝜙 = 45°. In this case, the approximated Cauchy stress-stretch relationship is 

plotted in figure 12. The FEA results for 𝜃 = 51°, 53°, and 55° at the most central point of the 

sample are plotted in this figure. It can obviously be seen from figure 12 that the proposed passive 

muscle model with the tuned material parameters for 𝜃 = 51° accurately approximates the 

behavior of the chicken pectoralis muscle. So, it seems that the angle 𝜃 in the reference 

configuration might be around 𝜃 = 51° for this muscle. It is remarkable that without any 

distinction between CFs and MFs, it is impossible to predict such a complex stress-stretch 

behavior. 

 

Figure 12. Comparison of the accuracy of the stress-stretch prediction of the proposed CL for the 

chicken pectoralis muscle tissue in loading at different angles 𝜃. 
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5. Discussions 

The passive mechanical modeling of muscle tissue is very important in various applications 

of biomechanical studies. However, most of the proposed passive muscle models in the literature 

cannot rigorously explain all of the observed stress-stretch behaviors in muscle tissue, especially 

in tissue that amazingly shows less resistance to the applied load along the fiber alignment. In such 

muscle models that do not distinguish the MFs and the CFs, approximating such an amazing 

material behavior might need a negative contribution for the anisotropic part of the stress tensor, 

which violates the convexity condition of the CL. This paper has proposed a new muscle 

architecture to overcome these drawbacks by taking into consideration the 3-D distribution of the 

CFs in the muscle tissue. The model is based on the separation of the CFs and their directions from 

the MFs in some muscles which first was presented by Purslow (1989). Therefore, in such model, 

the reinforced direction of muscle tissue is not necessarily parallel to the direction of the MFs and 

it is dependent on the angle 𝜃 between CFs and MFs. 

With the aid of an inverse finite element method, an iteration based procedure was proposed 

for material parameters estimation of muscle tissue under uniaxial tensile tests. Also, it was shown 

that it is possible to predict the angle 𝜃 between CFs and MFs without any dedicated experimental 

measurement. 

The mechanical properties of the bovine tongue tissue were studied by dissecting some 

samples from the genioglossus muscle tissue and by measuring its response under uniaxial tensile 

tests. Among the various muscle groups of the tongue, the genioglossus was chosen because of its 

ability to provide acceptable macroscopic samples in any direction with respect to the MFs. 

Samples were stretched in different directions to determine the fiber oriented nature of the 

genioglossus tissue. To demonstrate the relevance and the adequacy of the proposed passive 

muscle model, it was appraised in the stress-stretch response prediction of the bovine genioglossus 

muscle tissue, the pig longissimus dorsi muscle and the chicken pectoralis muscle. A good 

agreement between FEA results and experimental data points in different angles validates the 

ability of the proposed muscle model in fully taking into account the nonlinear and orientation 

dependent nature of muscle tissue. 

According to the proposed model, without any dedicated experimental measurement for the 

angle 𝜃, to completely determine the 3-D behavior of muscle tissue, it is required to perform 
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uniaxial tensile tests at least in three different directions. Only for 𝜃 = 0°, the elastic properties 

can be determined with two tensile tests. In general, there is no restriction for loading directions, 

but if tests were performed at 𝜙 = 0°, 90°, and another arbitrary angle, it would result in less 

computational costs. 

Besides, although the proposed muscle model of this study is based on a simplified 

distribution of the CFs in muscles, it is the first one that not only can explain the 3-D passive stress 

response of skeletal muscles but also its transversal stretch approximations are in agreement with 

some experimental evidence. For instance, when a sample of the longissimus dorsi muscle of pigs 

is extended to 𝜆 = 1.15 (similar to figure 7c), our model prediction for the stretch ratios in the 

transverse plane zy is 𝜆 = 0.881𝜆  while its experimental value is 𝜆 = 0.938𝜆  (Takaza et al. 

2013). For the chicken pectoralis muscle, when the tissue is extended to 𝜆 = 1.2, the model 

approximation and experimental measurement are 𝜆 = 0.860𝜆  and 𝜆 = 0.887𝜆 , respectively 

(Mohammadkhah et al. 2016). Regardless of the differences between the experimental 

measurements and model predictions, the amount of the shortening in the MFs direction 

approximated by the proposed model always remains higher than the same property in the direction 

perpendicular to it (𝜆 < 𝜆 ). To provide a more accurate approximation for  𝜆  and 𝜆 , the model 

must be improved to consider the orientation dependent behavior of muscles in compression which 

seems to be necessary for modeling the 3-D responses of muscle tissue even in tensile loading. 

The sliding ability of the actin and myosin filaments in the passive behavior indicates that a muscle 

tissue is more likely to be shortened along the MF direction than others when the tissue is stretched 

non-parallel to the MF direction. So, considering the anisotropic nature of muscle tissue in 

compressive loading will anticipate the improvement of muscle models accuracy. 

Moreover, the proposed passive muscle model seems to be capable of predicting the 

asymmetric behavior of muscle tissue in compressive loading, which means that the reinforced 

direction in tension is different from the one in compression. It can be explained by the fact that 

when a muscle tissue is contracted in a certain direction, depending on the angle 𝜃, the CFs may 

be stretched in transverse directions. Hence, a higher amount of force is required to overcome this 

extra resistance to stretching in transverse directions. 
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Appendix A 

To show that the final values of the material parameters are independent of a first guess, the 

identification process has been performed two times for the genioglossus muscle. For the first case, 

the material parameters with the initial values (𝑎 ) have been provided by the above-described 

procedure in figure 3. In the second case, the initial values (𝑏 ) have been chosen by some random 

values in the range of 0 < 𝑏 ≤ 2𝑎 . Table A1 shows the initial values chosen for both cases. Also, 

figure A1 shows the convergence history of each material parameters through the optimization 

process. It is obvious that in both scenarios, the material parameters have been converged to the 

same values which indicate that their final values are independent of the initial guess. 

Table A1. Initial values of sets 𝑎  and 𝑏  which have been used to study their effects on the convergence for the case 

of 𝜃 = 60°. 

Initial value 𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(kPa) 

𝑐  
(-) 

𝑎  10.190 6.942 384.739 2.481 

𝑏  19.192 7.084 182.382 2.925 
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(a) (b) 

  
(c) (d) 

Figure A1. Convergence study of the material parameters for the case of 𝜃 = 60° using two different 

sets of initial values, graphs (a) to (d) show changes in 𝑐  to 𝑐  in each iteration, respectively. 
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