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ABSTRACT

In this paper, we propose a method for capturing High Dynamic
Range (HDR) light fields with dense viewpoint sampling. Anal-
ogously to the traditional HDR acquisition process, several light
fields are captured at varying exposures with a plenoptic camera.
The RAW data is de-multiplexed to retrieve all light field view-
points for each exposure and perform a soft detection of saturated
pixels. Considering a matrix which concatenates all the vector-
ized views, we formulate the problem of recovering saturated
areas as a Weighted Low Rank Approximation (WLRA) where
the weights are defined from the soft saturation detection. We
show that our algorithm successfully recovers the parallax in the
over-exposed areas while the Truncated Nuclear Norm (TNN)
minimization, traditionally used for single view HDR imaging,
does not generalize to light fields. Advantages of our weighted
approach as well as the simultaneous processing of all the view-
points are also demonstrated in our experiments.

Index Terms— High Dynamic Range (HDR), Light Fields,
Low Rank Matrix Completion, Weighted Low Rank Approximation.

1. INTRODUCTION

The emerging technologies in light field capture and HDR imag-
ing allow increased freedom for content creation and manipula-
tion by producing a richer description of a scene than traditional
images. For instance, light fields make it possible to change
the focus after taking a picture and HDR images can be freely
re-exposed without unveiling either noise in dark areas or satu-
rated pixels in the bright parts of the image. A light field is typ-
ically represented as an array of viewpoints. Many capture sys-
tems have been designed, including camera arrays, single cam-
eras mounted on moving gantries and plenoptic cameras with a
micro-lens array placed in front of the sensor. Regarding HDR
images, their acquisition generally involves taking several pic-
tures of the scene at different exposures. A large panel of meth-
ods have been developed for merging the captured images into an
HDR one, including patch-based methods [1–3], Low Rank Ma-
trix Completion (LRMC) [4–7], and more recently deep learn-
ing [8]. A comprehensive review of the subject is provided in [9].

While both HDR and light field imaging have received a lot
of attention, only a few attempts have been made at combining
these technologies. Manakov et al. [10] have developed a cam-
era add-on capable of transforming a standard camera into either
a HDR or a light field camera. In [11, 12], a focused plenoptic
camera with a micro-lens aperture pattern is designed to capture
an HDR image in a single shot. However, the authors of [10–12]
do not discuss the simultaneous HDR and light field capture.

Fig. 1. HDR Light Field acquisition pipeline.

Based on a camera array setup, the method in [13] is able to cap-
ture HDR light field videos by varying the exposure time both
sequentially (between successive frames) and spatially (over the
different cameras). Note that the sparse view sampling resulting
from the large baseline of camera array devices causes strong an-
gular aliasing when generating refocused images from the light
field (i.e. sharp structures in the out of focus areas). This issue is
observed in the results of [13]. Similarly, related methods in mul-
tiview HDR capture [14] are not suitable for light field rendering
that require dense viewpoint sampling. Finally, Li et al. [15] cap-
ture multiple exposures with a plenoptic camera and merge them
into a HDR light field by applying directly the method of De-
bevec and Malik [16] to 4D light fields instead of 2D images.
This can be seen as treating each viewpoint independently. How-
ever, the method in [16] is known for requiring many different
exposures with overlapping well-exposed areas, which compli-
cates the acquisition task. Furthermore, the large amount of data
to process increases the computational load, particularly for light
fields with densely sampled viewpoints.

In this paper, we propose a new HDR light field acquisition
method based on multiple plenoptic captures (typically two or



three) with varying exposure as depicted in Fig.1. By taking the
highest exposure as a reference, generating the HDR light field
amounts to recovering the saturated areas using the lower expo-
sure captures. For that purpose, soft detection of the saturated
pixels is performed from the RAW data. It accounts for the fact
that in practice, sensor response is not linear close to saturation.
The whole set of views (all sub-aperture images at all exposures)
is then arranged in a matrix where each column is a vectorized
view. The matrix is completed with Weighted Low Rank Ap-
proximation (WLRA) naturally exploiting the redundancies be-
tween views. In our approach, the WLRA problem is solved
by extending the matrix completion algorithm of [17] to non-
binary weights, thus accounting for the soft saturation model.
We show that our non-binary approach better handles the transi-
tion between the saturated and non-saturated areas. Furthermore,
unlike the the Truncated Nuclear Norm minimization previously
used in several HDR imaging methods [4–7], our rank minimiza-
tion successfully applies to light fields where the rank is expected
to be higher than 1 because of the parallax. We finally show the
advantage of processing the different viewpoints simultaneously.

2. RAW DATA PROCESSING
2.1. De-multiplexing and Soft Saturation Detection
The plenoptic RAW data is first de-multiplexed into light field
views by adapting the method in [18] (we use the enhance-
ments in [19]). In order to exploit the full dynamic range
of each captured light field, we removed the clipping opera-
tions previously used for pixels close to saturation. Instead,
soft saturation detection is performed directly on sensor data
(i.e. before the devignetting and demosaicing steps of [18]).
For a pixel of normalized value x, we compute its saturation
s(x) = min((x+ (1− τ))12, 1) as illustrated in Fig.2. In prac-
tice, even if a pixel is not fully saturated (x < 1), neighboring
pixels associated to the other color components on the bayer
pattern may saturate. Hence, the level of full saturation τ is set
to 0.9 to account for unreliable colors of high pixel values.

Fig. 2. Soft saturation detection model.
Similarly to the color data, the sensor saturation image is de-

multiplexed using [18] (without devignetting and demosaicing)
to obtain a saturation map of each light field view.

2.2. Construction of Matrices for WLRA
In order to cope with possible movements of the camera when
capturing the different exposures, a homography alignment is
performed. For fast computations, homography parameters are
determined only from the central views of the high and low ex-
posure light fields employing homography based low rank ap-
proximation (HLRA) [20]. All the views of the low exposure
light fields are then aligned to the high exposure one using the
same homography. Prior to the WLRA, we convert RGB data to
luminance Y and CIE chromaticity components u′v′. Indepen-
dent processing of the Y , u′ and v′ components has been shown
in [17] to be advantageous both in terms of quality and comput-
ing speed for light field completion with low rank matrix approx-
imation. Additional conversion of the saturation s into weights w
is also necessary to perform weighted low rank approximation:

w =
1− s

s+ 1/wmax
. (1)

The non-saturated pixels (s = 0) are thus associated to the maxi-
mum weight wmax indicating a high confidence, while the fully
saturated pixels (s = 1) have a null weight. In our experiments,
we use wmax = 100.

Finally, weights and image data are arranged into respective
matrices W and M ∈ Rm×n such that each column contains a
vectorized light field view (n is the total number of views includ-
ing all exposures and m is the number of pixels per view). In the
case where an object is over-exposed even in the lowest expo-
sure, some rows of the matrix may have only unknown elements
(zero weight). This may result in arbitrary completed values in
these areas. In order to avoid this situation, the weights of all the
views of the lowest exposure are set to wmax.

3. WEIGHTED LOW RANK APPROXIMATION
3.1. General Formulation
Our WLRA method generalizes the matrix completion algorithm
in [17] to the case of non-binary weights. While most methods,
relying on the results of [21], solve a simpler convex problem
by minimizing the nuclear norm (i.e. sum of singular values),
the algorithm in [17] keeps the rank in the objective function
and solves the problem using the Alternating Direction Method
of Multipliers (ADMM) [22]. We use the same approach as it
was shown to outperform conventional matrix completion for the
closely related light field inpainting application. Given the ma-
trix M to approximate, a global noise tolerance parameter ε, and
the element-wise weight matrix W, the problem formulation is:

min
X

rank(X)

s.t. X = Z

‖W ◦ (Z −M)‖2F ≤ ε,

(2)

where the operator ◦ is the element-wise multiplication. The in-
troduction of the matrix Z and the constraint X = Z makes it
possible to use the Alternating Direction Method of Multipliers.
The constraint X = Z is taken into account by defining the aug-
mented Lagrangian function:

L(X,Z,Λ, ρ) = rank(X) + Tr(Λ>(X − Z)) +
ρ

2
‖X − Z‖2F ,

(3)
where Λ is a matrix of lagrangian multipliers and ρ is a positive
scalar. At each iteration k, the ADMM algorithm for our WLRA
problem then consists in updating X, Z, Λ, and ρ as:

Xk = arg min
X

L(X,Zk−1,Λk−1, ρk−1), (4)

Zk = arg min
Z s.t. ‖W◦(Z−M)‖2F≤ε

L(Xk, Z,Λk−1, ρk−1), (5)

Λk = Λk−1 + ρk−1 · (Xk − Zk), (6)
ρk = t · ρk−1 (with t > 1), (7)

where t is a parameter controlling the tradeoff between accurate
minimization (t ≈ 1) and fast convergence (t� 1). For our HDR
light field application, we use t = 1.1 and t = 4 respectively for
the luminance and the chromaticity components.

In the following subsections we describe how to efficiently
solve the X and Z sub-problems introduced in Eqs. (4) and (5)
respectively. For simplicity of notation, the iteration indices k
are ignored in the rest of the paper.



3.2. X sub-problem
Defining Hτ as the singular value hard thresholding operator
with threshold τ , it was shown in [17] that the X sub-problem
in Eq.(4) has a closed form solution given by:

arg min
X

L(X,Z,Λ, ρ) = H√
2
ρ

(
Z − Λ

ρ

)
. (8)

3.3. Z sub-problem
The Z sub-problem in Eq.(5), can be equivalently rewritten:

arg min
Z

‖N − Z‖2F

s.t. ‖W ◦ (Z −M)‖2F ≤ ε,
(9)

where N = X + Λ
ρ . Let us define the Lagrangian function:

LZ(Z, λ) = ‖N − Z‖2F + λ
(
‖W ◦ (M − Z)‖2F − ε

)
. (10)

By deriving the stationary condition (i.e. ∂LZ
∂Z (Z) = 0), we

obtain the following expression of Z for all entries Zij :

Zij = (Nij + λW 2
ij ·Mij)/(1 + λW 2

ij). (11)

In order to determine the value of the lagrangian multiplier λ
such that Z is the solution of Eq.(9), we use the Karush-Kuhn-
Tucker complementary slackness conditions:{

λ ≥ 0

λ = 0 or f , ‖W ◦ (M − Z)‖2F − ε = 0.

(12)

(13)

The expression f in Eq.(13) can be seen as a function of λ by
substituting Z into its expression from Eq.(11). We obtain:

f(λ) =
∑
i,j

(
Wij(Mij −Nij)

1 + λW 2
ij

)2

− ε = 0. (14)

As Eq.(14) does not have a closed form solution for λ, we solve
it numerically. The value of λ is initialized as 0 and is itera-
tively updated following Newton’s method, by subtracting f(λ)

f ′(λ)
,

where the derivative f ′ of f is given by:

f ′(λ) =
∑
i,j

−2W 2
ij

1 + λW 2
ij

·

(
Wij(Mij −Nij)

1 + λW 2
ij

)2

. (15)

Note that f is monotonically decreasing on R+. Thus, if
f(0) < 0, there is no positive solution to Eq.(14). In this case,
the value of λ satisfying the conditions (12), (13) as well as the
constraint in Eq.(9) is 0, and no further iteration is required.
Otherwise, there is a unique positive solution. In practice, for
our problem, less than 10 iterations are usually required to find
λ with the stopping criterion: |f(λ)| < 10−4.

In order to accelerate each iteration of the λ computation, the
elements of the input weight matrix W are quantized to a limited
set of values {wq}q∈J1,qmaxK. Then, instead of computing f and
f ′ by summing terms over all matrix elements i, j, they are de-
termined as a sum of only qmax terms:

f(λ) =

qmax∑
q=1

(
w2
q

(1 + λw2
q)2
·Rq

)
− ε, (16)

f ′(λ) =

qmax∑
q=1

(
−2w2

q

1 + λw2
q
·

w2
q

(1 + λw2
q)2
·Rq

)
, (17)

where Rq does not depend on λ and therefore only needs to be
computed once as:

Rq =
∑
i,j

(Mij −Nij)2 · δWij
wq , (18)

with δ the Kronecker delta (equal to 1 if wq = Wij and 0 oth-
erwise). Using this method with a number of weight values
qmax = 256, the computing cost of λ is negligible with respect
to the rest of the algorithm. Hence, the per-iteration cost of our
WLRA method is not increased compared to the algorithm [17]
restricted to binary weights. Additional discussion on computing
cost is given in the next section.

4. EXPERIMENTAL RESULTS

For all our experiments, light fields are captured using a Lytro Il-
lum camera. We first validate the choice of the rank minimization
formulation by comparing our results with those obtained by re-
placing the rank in Eq.(2) by the Truncated Nuclear Norm ‖X‖r
(sum of the singular values excluding the r highest ones). This
problem is solved by replacing the hard thresholding in Eq.(8)
by the Partial Singular Value Thresholding operator Pr, 1ρ defined
in [23]. For both rank and TNN minimizations, Z is initialized
as Z0 = M and we use the parameters ε = 0.003 · ‖W ◦M‖2F
for the luminance component, and ε = 0.04 · ‖W ◦M‖2F for the
u′v′ components. For our rank minimization, the penalty param-
eter ρ is initialized according to [17] as ρ0 = 8/(σ1 + σ2)2 (with
σ1 and σ2 the two largest singular values of M ). For TNN mini-
mization, we use ρ0 = 1.25/σ1 as suggested in [7].

(a) TNN minimization (r=100) (b) TNN minimization (r=20)

(c) TNN minimization (r=1) (d) Our rank minimization
(e)
(f)
(g)
(h)

Fig. 3. 13x13 HDR Light field reconstructed from 3 expo-
sures: (a)-(d) show the central view in false color for each method.
(e),(f),(g),(h) are the epipolar images corresponding to the blue seg-
ment in (a),(b),(c),(d) respectively (vertical axis shows vertical view-
point change). The epipolar image in (g) shows that the structures
completed using TNN minimization with r=1 are blurred and identi-
cal in all the views (parallax is not preserved).



(a) Viewpoints processed independently

(b) All viewpoints processed simultaneously

Fig. 4. One view of a HDR light field captured from two signifi-
cantly different exposures (images are gamma encoded for display
purpose). Some over-exposed areas in the high exposure capture
are under-exposed in the low exposure one. Independent processing
of the viewpoints (a) highlights the presence of noise due to under-
exposition. Using all the viewpoints in the WLRA (b) naturally ex-
ploits redundancies to reduce the noise.

In single view HDR imaging, existing low rank based meth-
ods [4–7] minimize the TNN with r = 1 as the matrix rank can
be assumed to be 1. However, this assumption does not hold
for light fields with disparities between views, and produces blur
in the completed regions as shown in Fig.3(c),(g). Using higher
values of r keeps the details but not the low spatial frequencies
(Fig.3(a),(b),(e),(f)). Our rank minimization successfully recov-
ers both low and high frequencies (Fig.3(d),(h)).

Fig.4 provides further justification of our approach compared
to independently applying the WLRA to each viewpoint. By con-
sidering all the viewpoints simultaneously our method is able to
reduce the noise and thus address the challenging case of large
exposure gaps where some saturated areas of the high exposure
capture are under-exposed and noisy in the low exposure one.
Note that it also possibility to extend to correction of artifacts
that are not consistent between views (e.g. lens flare) as long as
it can be detected and used to reduce the weights.

We finally illustrate in Fig.5 the advantage of using soft sat-
uration detection along with our WLRA method instead of the
matrix completion of [17] that requires binary weights. Note
that in this example, the matrix size is 267030 × 98 (2 expo-
sures for 7 × 7× views of size 430 × 621). With our Matlab
implementation, the processing time was 54.4s for WLRA (re-
spectively 103, 8 and 8 iterations for Y,u’,v’), and 54.8s for the
low rank matrix completion (respectively 104, 8 and 8 iterations
for Y,u’,v’). Hence, for our application, the proposed extension
of matrix completion to non-binary weights does not affect the
convergence speed and has similar computing cost.

(a) Binary weigths (LRMC [17]) (b) Non-binary weigths (WLRA)

Fig. 5. Recovered saturated areas from two exposures using: (a)
Low Rank Matrix Completion of [17] (binary weights), (b) our
WLRA (non-binary weigths). In this example, the white parts of the
label were saturated in the high exposure capture. Traditional matrix
completion produces artifacts at the boundary of these regions.

5. CONCLUSION

We have presented a new method for the acquisition of high
dynamic range, densely sampled light fields, using successive
plenoptic captures at varying exposures. In order to recover the
saturated regions of the high exposure light field, we have defined
a new weighted low rank approximation algorithm. It exploits
simultaneously the information of all the viewpoints at all expo-
sures, as well as soft saturation maps previously extracted from
the RAW data. We have shown that, unlike the low rank methods
used in single view HDR acquisition, our algorithm remains suit-
able for processing dense light fields with parallax. Our weighted
approach also produces more natural results than traditional low
rank matrix completion. One can note that we do not address
the case of dynamic scenes if moving objects are partly saturated
in the high exposure capture. However, we have shown that the
proposed algorithm remains effective with large gaps between
exposures, thus simplifying the acquisition task.

As a final note, the simultaneous processing of all the views
allows for potential extension to plenoptic devices generating
differently exposed or filtered viewpoints in a single capture. Al-
though existing lenslet-based plenoptic cameras already present
such characteristics (darker external views caused by vignetting
of the micro-lenses), this is not sufficient to significantly in-
crease the dynamic range. Hence, further research is necessary
to achieve instantaneous capture of HDR light fields.
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