Alexandre Le Borgne
email: alexandre.le-borgne@mines-ales.fr

David Delahaye
email: david.delahaye@lirmm.fr

Marianne Huchard
email: marianne.huchard@lirmm.fr

Christelle Urtado
email: christelle.urtado@mines-ales.fr

Sylvain Vauttier
email: sylvain.vauttier@mines-ales.fr

Recovering Three-Level Architectures from the Code of Open-Source Java Spring Projects

Keywords: Component-Based Software Engineering, Model-driven engineering, Architecture retro-engineering from code, Architecture evolution, Component reuse, Architecture reuse

Despite the well-admitted benefits of keeping design decisions as a documentation all along the lifecycle of software, many software projects have lost this information. In order to use design information to guide software maintenance and evolution, this paper proposes to retroengineer architecture descriptions from source code. The originality of this work is to target a three-leveled architecture description language which represents software specification, configuration and deployment. Retro-engineering these three levels will provide a more precise source of guidance for the maintenance of software. Targeted projects are open-source Java projects that use Spring to describe the implemented "architecture".

I. Introduction

As software systems constantly become more complex, retrieving design decisions has become an increasingly important problematics when conceptual documentation is missing. However, despite numerous researches in the field of software architecture reconstruction, few work was dedicated to extract raw ("as implemented") componentbased description. It is important, in the first place, to understand design decisions to recover architectures as they are implemented and to not perform any improvement (re-engineering tasks) altogether. Moreover, it is important to represent the software at three abstraction levels in order to trace design decisions through the whole development process. To do so, we use the Dedal [START_REF] Zhang | Architecture-centric component-based development needs a three-level ADL[END_REF], [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] architecture description language (ADL) developed by our team. This paper proposes to reconstruct component-based architectures from Java Spring [START_REF] Johnson | The spring framework -reference documentation[END_REF] projects.

The remainder of this paper is organized as follows. Section II presents the background of our approach. The core of the paper is developed in Section III where component-based architecture reconstruction from Java Spring projects is explained. Section IV details the existing work in software architecture reconstruction and Section V concludes on perspectives.

II. Background

A. Dedal, a Three-Level Architecture Description Language Dedal [START_REF] Zhang | Architecture-centric component-based development needs a three-level ADL[END_REF], [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] is a three-level architecture description language (ADL) designed to give a representation of the entire life cycle of architectures and a support to manage their evolution. Design is represented by the Specification level which is composed of abstract component types. Those types are called roles which means that they define the functionalities present in the components of the future software. Implementation choices are captured by the Configuration level. This architecture level is composed of concrete component classes which are realizations of DOI reference number: 10.18293/SEKE2018-140 the roles. Deployment is described in the Assembly level. This level is composed of a set of component instances that define how to tailor software for specific execution contexts.

B. Spring

Java Spring framework [START_REF] Johnson | The spring framework -reference documentation[END_REF] is widely used in industry to manage the deployment of software architectures. It provides standardized architecture deployment capabilities thanks to a container that is able to handle explicit architecture descriptors. Architecture descriptors are defined as XML files or directly embedded in the code as annotations. They are based on the concept of beans, which define the objects that the container must instantiate and connect in order to set the initial architecture up. For instance, the deployment descriptor of Figure 1a is composed of four beans: lampDesk, lampSitting, clock1 and orchestrator1.

Connections between beans are handled by the container using dependency injection to preserve decoupling. Beans only declare reference attributes corresponding to their dependencies with other beans. These dependencies are then resolved at runtime thanks to the connections defined in the deployment descriptor. For instance, the deployement descriptor in Figure 1a defines three connections between the orchestrator, the lamps and the clock beans. Those connections are defined by the property tag which corresponds to the injection of dependencies. For instance, < property name = "clock" ref = "clock1"/ > sets the clock1 bean as the clock property of the orchestrator1 bean.

As compared to raw code, Spring projects provide some explicit architectural descriptions. However, these descriptions do not capture design decisions and thus cannot be considered as abstractions of the software architecture.

III. Extracting Component-Based Software Architectures

In order to ease the extraction of information from the Spring descriptor, using a model-driven approach, a small domain specific language named SpringDSL has been developed. It consists of an implementation of the Spring XML descriptor grammar in EMF 1 . XText 2 has been used to automatically generate the corresponding EMF metamodel since we could not find an already developed metamodel. This metamodel enables thus to parse Spring XML descriptors and get all their content as concept instances.

This section discusses how each concept of Dedal is extracted from the source code and a Spring deployment description.

A. Extracting Components

Considering component extraction as a model transformation between SpringDSL and Dedal, only a simple mapping is required to extract the assembly and also a small part of the configuration models. To do so, the eclipse QVTo 3 language is used since it defines model to <bean class="AdjustableLamp" id="lampDesk" /> <bean class="AdjustableLamp" id="lampSitting" /> <bean class="Clock" id="clock1" /> <bean class="Orchestrator" id="orchestrator1" > <property name="lamps"> <set><ref bean="lampDesk" /> <ref bean="lampSitting" /></set></property> <property name="clock" ref="clock1" /> </bean> Figures 1b and1c present an extract from the Java code of the Home Automation Software (HAS) example. Code introspection enables to extract complementary information required to build higher level architecture models and more detailed component definitions.

For generating the component roles of the architecture Specification, the type hierarchy of the beans classes is analyzed, in order to extract the most generic, thus reusable, architecture model as possible. The main idea is to retrieve the abstract superclasses that are realized by the bean class corresponding to a component class. To extract the component role, the type hierarchy is traversed and the role which is picked is the most generic component role which still holds all the required interfaces that are present in the corresponding component class and which preserves the connections which exist in the Configuration. Figure 2 is the component role HomeOrchestrator role that is realized by the primitive component class Orchestrator.

B. Extracting Interfaces

Two types of interfaces are distinguished: (i) provided and (ii) required interfaces. All the methods that are provided by the beans classes must be provided into respective component interfaces. However, in order to not provide only one large interface per component, the interfaces are cut according the type hierarchy of classes. In other words, each implemented interface is mapped as a component interface and if a class does not implement an interface, a "conceptual" interface is extracted, which is composed of the public methods of the beans class, except for getters / setters that are used whether to initialize properties or to manage connections. For extracting required interfaces, The HomeOrchestrator role extracted interfaces are described in Figure 2 with their names, direction and implemented types.

C. Extracting Connections

The XML description (Figure 1a) makes it possible to start the extraction of connections between components. Indeed, thanks to the dependency injection, clients and servers of connections are identifiable. For instance, in the current example, the orchestrator1 bean contains a property which refers to clock1, so it is possible to map a new connection between orchestrator1 and clock1. This connection is propagated to the Configuration level by creating a connection between the two instantiated component classes. Following the same principle, the connection between the realized component roles is created.

Then the interfaces that are implied in connections must be set. To do so, we search among two connected components which are their matching interfaces. For matching two interfaces, their types must be equal and their direction complementary (provided with required). Thus, for instance in our case, Clock provides the IT ime interface of type T ime and, Orchestrator requires an interface of the same type (Figure 3). Then those two interfaces match and the connection presented in Figure 4 can be set. Then it is propagated following the instantiate relation between component class interfaces and component instance interface (Figure 3). Finally, connection between roles are set in the same way as the connections between component classes.

Figure 3 is the visual representation of the three-level Dedal architecture which is composed of four component instances into the Assembly (that correspond to the beans of the Spring description), the component classes of the Configuration that are instantiated by the component instances and also the component roles into the Specification which are realized by component classes. The connections between components are also represented.

IV. Related Work

This section narrows the studied approaches to the ones which extract component-based architecture descriptions and, if possible, from object-oriented code. Moreover, retro-engineering approaches which consist in simply abstracting the software artifacts for retrieving raw design decisions are differentiated from re-engineering ones which intend to re-organize the extracted information and / or the software artifacts.

In their work, Ducasse et al. [START_REF] Ducasse | Software architecture reconstruction: A process-oriented taxonomy[END_REF] defined a taxonomy for categorizing software architecture reconstruction approaches. Following this taxonomy, the goals of the discussed approach are twofold. The first goal is to improve component reuse, by extracting component-based architecture descriptions, such as MAP [START_REF] Stoermer | Map-mining architectures for product line evaluations[END_REF], PuLSE / SAVE [START_REF] Knodel | Static evaluation of software architectures[END_REF] and ROMANTIC [START_REF] Alshara | Materializing architecture recovered from objectoriented source code in component-based languages[END_REF], [START_REF] Shatnawi | Reverse engineering reusable software components from object-oriented APIs[END_REF] approaches, but targeting the Dedal [START_REF] Zhang | Architecture-centric component-based development needs a three-level ADL[END_REF], [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] ADL. The second goal is to provide the foundations for managing conformance checking (Bauhaus [START_REF] Eisenbarth | Locating features in source code[END_REF], [START_REF] Christl | Equipping the reflexion method with automated clustering[END_REF], DiscoTect [START_REF] Yan | DiscoTect: a system for discovering architectures from running systems[END_REF], PuLSE / SAVE [START_REF] Knodel | Static evaluation of software architectures[END_REF]), evolution, co-evolution (PuLSE / SAVE [START_REF] Knodel | Static evaluation of software architectures[END_REF], Huang et al. [START_REF] Huang | Runtime recovery and manipulation of software architecture of component-based systems[END_REF]) and maintenance using the formal rules that have previously [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] been defined in Dedal.

However none of the studied methods intends to extract raw information of how the software is implemented. Moreover, all the discussed approaches only deal with two levels of abstraction (i.e., implementation and architecture) that may not correspond to the same paradigms (code vs component-based architecture description). Indeed three component-based architecture descriptions are essential for maintaining, evolving, tracking software life-cycle since it gives a more global and direct understanding to the architect which can get an overview of the code structure by managing components. Moreover, even the approaches which seem to fit with the discussed one, either recover architecture in a semi automatic manner from execution trace of software (i.e., DiscoTect [START_REF] Yan | DiscoTect: a system for discovering architectures from running systems[END_REF]) or do not reconstruct raw architecture such as ROMANTIC [START_REF] Alshara | Materializing architecture recovered from objectoriented source code in component-based languages[END_REF], [START_REF] Shatnawi | Reverse engineering reusable software components from object-oriented APIs[END_REF] approach which performs re-engineering of the deployed architecture by clustering classes into bigger semantic components that encapsulate classes. This is why a retro-engineering approach is proposed that builds three-level component-based architecture description from structural artifacts.

V. Conclusion and Future Work

This paper introduces an approach for software architecture reconstruction, using three levels of architecture models (Assembly, Configuration, Specification). An aspect of future work will be to improve and refine the extraction of the Specification for making it more abstract.

Real Spring projects have already been identified in open-source repositories in order to perform large scale experimentations on evolution and reuse. Getting projects from open-source repositories will also allow the implementation of versioning mechanisms.

 (a) HAS Spring description public class Clock implements Time { public void run() {...} } public class AdjustableLamp extends Light { ... public void switchState(State s) {...} public void adjustInensity(int value) {...} } public class Orchestrator extends HomeOrchestratorImpl { protected void run(){...} } (b) HAS classes instantiated in Figure 1a public interface Time { public void run(); } public abstract class Light { ... public abstract void switchState(State s); } public abstract class HomeOrchestrator { Light[] lights; Time clock; public abstract void run(); } public class HomeOrchestratorImpl extends HomeOrchestrator { protected void run(){...} public HomeOrchestratorImpl (Light[] lights, Time clock) {...} public Light[] getLights() {...} public void setLights(Light[] lights) {...} public Time getClock() {...} public void setClock(Time clock) {...} } (c) HAS most abstract classes

Figure 1 :

 1 Figure 1: HAS implementation

Figure 2 :

 2 Figure 2: Extracted component class: Orchestrator

Figure 3 :Figure 4 :

 34 Figure 3: HAS generated Dedal three-level architecture