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ABSTRACT. In this paper we study the behaviour of the magnetization in a thin layer of ferro-

magnetic material when the exchange coefficient is small. We explain the interaction between the

boundary layer phenomenon and the thin layer phenomenon.
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1. INTRODUCTION

We consider here ferromagnetic media which are spontaneously magnetized. They

are used for example in computers and in aeronautics for the skins of the planes. In the

quasi-stationary case, the behaviour of the magnetization, denoted by u, is described

by the Landau-Lifschitz equation:

(1)



∂u

∂t
= u ∧He − u ∧ (u ∧He) in R+

t × Ω,

∂u

∂n
= 0 on ∂Ω,

u(0, ·) = u0 in Ω,

where Ω is a domain filled with ferromagnetic material and immersed in the vacuum,

n is the outward unitary normal to ∂Ω and He is the effective magnetic field given

by:

(2) He = ε2∆u+H(u).

Here, ε2 is a small parameter called the exchange coefficient, H(u) is called the de-

magnetizing field given by the magnetostatic equations (we assume that we always

are at the electromagnetic equilibrium):

(3)


H(u) ∈ L2(R3),

div (H(u) + u) = 0 in D′(R3),

curl H(u) = 0 in D′(R3),
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where u is the extension of u by 0 outside Ω.

When the exchange coefficient ε is fixed, G. Carbou and P. Fabrie have proved in

[6] the existence and uniqueness of local regular solutions for the equations (1)-(3).

When the exchange coefficient ε goes to zero, G. Carbou, P. Fabrie and O. Guès have

proved in [8] the following theorem on uε, solution of the previous equations:

Theorem 1.1 (G. Carbou, P. Fabrie, O. Guès). Let u0 ∈ H5(Ω), |u0| = 1,(
∂u0

∂n

)
|∂Ω

= 0, there exists a function U0 ∈ C ([0,+∞[;H5(Ω)) solution of

(4)


∂U0

∂t
= U0 ∧H(U0)− U0 ∧

(
U0 ∧H(U0)

)
in [0,+∞[×Ω,

U0(0, x) = u0(x) on Ω,

which, moreover, fulfills |U0(t, x)| = 1 for all (t, x) ∈ [0,+∞[×Ω. There also exists a

function Ũ1 ∈ L∞
loc

(
R+

t ;H4(Ω)⊗H4(R+)
)
and a time T ε > 0 such that lim

ε→0
T ε = +∞,

so that the solution uε of the equations (1)-(3) can be written in the form

uε(t, x) = U0(t, x) + εŨ1

(
t, x,

φ(x)

ε

)
+ εvε(t, x), t ∈ [0, T ],

∀ T < T ε and with φ(x) = dist(x, ∂Ω). Moreover vε is bounded in L∞(0, T ;H1(Ω)),

and εvε is bounded in L∞(0, T ;H2(Ω)) ∩ L2(0, T ;H3(Ω)).

So the solution uε of the equations (1)-(3) admits an asymptotic expansion when

ε goes to zero on a time interval [0, T ε[ with T ε → +∞, whose first order term is

the solution of the Landau-Lifschitz equation with ε = 0 and whose second order

term is a perturbation which lives in a neighbourhood of the boundary ∂Ω and whose

characteristic thickness is ε.

In [16] we study the case where the demagnetizing field is replaced by an anisotropic

field Ψ(x, u) in He.

Remark 1.2. We can study these equations with both the demagnetizing field and

the anisotropic field but we ignore the latter for simplification.

According to the previous result, the perturbation occurs in a ε-thick neighbour-

hood of ∂Ω. If we now consider a domain with thickness ε, there will be a competition

between the behaviours due to the small thickness and the boundary layer that we

will describe in the following: in a previous work (see [17]) we considered the case of

a ε-thick periodic sheet of ferromagnetic material immersed in the vacuum. We will

present here the case of a thin layer of ferromagnetic material spread on a non-flat

perfect conductor. We then take into account the geometry of the domain (see [18]

for the whole proof).
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2. THIN LAYERS

Let us precise the notations. Let Ω be a regular bounded domain of R3. We

denote Γ = ∂Ω. For x ∈ Ω we introduce φ(x) = dist(x,Γ) and PΓ(x) the orthogonal

projection of x onto Γ. We remark that since Γ is a regular surface of R3, φ and PΓ

are regular in a neighbourhood of Γ.

We set

ωε = {x ∈ Ω, 0 < φ(x) < ε} .

Γ

Γε

ωε

n

Perfect conductor

Vacuum

We denote U ε = Ω \ ωε the domain where lies the perfect conductor.

The equations we will consider are:

(5)



∂uε

∂t
= uε ∧

(
ε2∆uε +H(uε)

)
− uε ∧

(
uε ∧ (ε2∆uε +H(uε))

)
in ωε,

∂uε

∂n
= 0 on ∂ωε,

uε(0, .) = u0 in ωε,

where the operator H fulfills now

(6)



H(uε) ∈ L2 (R3 \ U ε) ,

curl H(uε) = 0 in R3 \ U ε,

div (H(uε) + uε) = 0 in R3 \ U ε,

[H(uε) ∧ n] = 0 on Γ,

H(uε) ∧ n = 0 on Γε, (Boundary condition for a perfect conductor)

[(H(uε) + uε) · n] = 0 on Γ,

(H(uε) + uε) · n = 0 on Γε, (Boundary condition for a perfect conductor)

where n denotes the outward unitary normal to ∂ωε and [v] denotes the jump of v at

the interface ∂ωε.

In order to perform an asymptotic expansion and get the profiles we deal with the

rescaled equation. We assume the following conditions are fulfilled:
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(H1) The initial data uε
0 satisfies

∂uε
0

∂n
= 0 on ∂ωε and can be written in the form:

uε
0(x) = U0

0 (P (x)) +εU1
0

(
P (x),

φ(x)

ε

)
+ ε2U2

0

(
P (x),

φ(x)

ε

)
+ε3U3

0

(
P (x),

φ(x)

ε

)
+ ε3rε0 (x) , ∀x ∈ ωε,

(H2) |uε
0(x)| = 1 for all x ∈ ωε,

(H3) U0
0 ∈ W7,∞ (Γ) such that |U0

0 | ≡ 1,

(H4) U1
0 ∈ H6 (Γ)⊗H5(0, 1),

(H5) U2
0 ∈ H5 (Γ)⊗H5(0, 1),

(H6) U3
0 ∈ H4 (Γ)⊗H5(0, 1),

(H7) rε0 ∈ H2(ωε) is the initial data for the remainder term rε and fulfills the additional

condition:

∥rε0∥2L2(ωε)
+ ∥∇Γzr

ε
0∥2L2(ωε)

+ ∥ε∂zrε∥2L2(ωε)
+ ε2

(
∥∆Γzr

ε
0∥2L2(ωε)

+ ∥∂2
zr

ε
0∥2L2(ωε)

)
≤ C,

where C is an ε-independent constant, ∇Γz and ∆Γz are the tangential parts of

the gradient and Laplace operators.

Remark 2.1. We work with Sobolev spaces adapted to the anisotropy of the problem:

Lp(ωε) =

{
u ∈ D(ωε),

1

|ωε|

∫
ωε

|u|p dx
}
, H0(ωε) = L2(ωε),

Hp+1(ωε) =
{
u ∈ L2(ωε), ∇Γzu ∈ Hp(ωε) and ε∂zu ∈ Hp(ωε)

}
,

and with the natural norms on these spaces.

Our main result is the following:

Theorem 2.2. Under the assumptions (H1)-(H7), if T ε is the maximum time of

existence of the regular solution uε of the equation (5) then lim
ε→0

T ε = +∞ and there

exists some profiles U0, U1, U2, U3 defined on R+
t ×Γ×(0, 1) such that for all T < T ε,

x ∈ ωε and t < T ,

uε(t, x) = U0(t, P (x)) + εU1

(
t, P (x),

φ(x)

ε

)
+ε2U2

(
t, P (x),

φ(x)

ε

)
+ε3U3

(
t, P (x),

φ(x)

ε

)
+ ε3rε(t, x),

where for all T > 0,

• U0 ∈ C∞ (
R+

t ;W7,∞ (Γ)
)
is solution of the equation (5) with ε = 0, i.e.

∂U0

∂t
= U0 ∧H0 − U0 ∧

(
U0 ∧H0

)
in Γ,

U0(0, .) = U0
0 in Γ,

where H0 = −U0
3 e

3 becomes a local operator,
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• U1 ∈
2∩

k=0

[
Wk,∞ (

0, T ;H6 (Γ)⊗H5−2k(0, 1)
)
∩Hk

(
0, T ;H6 (Γ)⊗H6−2k(0, 1)

)]
,

• U2 ∈
2∩

k=0

[
Wk,∞ (

0, T ;H5 (Γ)⊗H5−2k(0, 1)
)
∩Hk

(
0, T ;H5 (Γ)⊗H6−2k(0, 1)

)]
,

• U3 ∈
2∩

k=0

[
Wk,∞ (

0, T ;H4 (Γ)⊗H5−2k(0, 1)
)
∩Hk

(
0, T ;H4 (Γ)⊗H6−2k(0, 1)

)]
,item

for all T < T ε the function rε is bounded in L∞ (0, T ;H1(ωε)) and the function

εrε is bounded in L∞ (0, T ;H2(ωε)).

We have then obtained a first order asymptotic expansion valid on the time in-

terval (0, T ε) with T ε → +∞ as ε → 0 and whose first order term is solution of

the previous equations taken with ε = 0, i.e. solution of the 2D Landau-Lifschitz

equation with a null exchange coefficient. Also the magnetic field in the 2D Landau-

Lifschitz equation is no longer a solution of equation (6), it is now a local operator

orthogonal to the surface Γ (in accordance with the physics). Morevover the second

order perturbation lies in the whole domain contrary to the boundary layer case.

Sketch of the proof.

- Since we can prove that the norm of u is conserved, the Landau-Lifschitz equation

is equivalent to the following equation (see [6]):

(7)



∂uε

∂t
− ε2∆uε = ε2|∇uε|2uε + ε2uε ∧∆uε + uε ∧H(uε)

−uε ∧ (uε ∧H(uε)) in R+
t × ωε,

∂uε

∂n
= 0 on R+

t × (Γ ∪ Γε) ,

uε(0, ·) = uε
0 in ωε,

since u ·∆u = −|∇u|2 when |u| ≡ 1.

- We look for solutions in the form of an asymptotic expansion in ε where the profiles

are defined on R+
t and on the new coordinates Γ× (0, 1),

uε(t, x) = U0

(
t, PΓ(x),

φ(x)

ε

)
+ εU1

(
t, PΓ(x),

φ(x)

ε

)
+ . . .

Hε(t, x) = H0

(
t, PΓ(x),

φ(x)

ε

)
+ εH1

(
t, PΓ(x),

φ(x)

ε

)
+ . . .

where PΓ(x) is the orthogonal projection of x onto Γ and φ(x) = dist(x,Γ).

In the vacuum outside ω we can prove that there is no boundary layer, so for all

x ∈ R3 \ ω,
Hε(t, x) = H0(t, x) + εH1(t, x) + . . .

We substitute to u and H their asymptotic expansion in (6)-(7) and we obtain

- transmission conditions for the profiles H i deduced from the transmission condition

written in equation (6),
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- the Neumann conditions written in the new coordinates for the profiles,

- the equations fulfilled by the magnetic field outside ωε and which can be solved by

Lax-Milgram theorem,

- the equations fulfilled by the profiles of u and H in the thin layer. Thanks to the

introduction of the new coordinates, the classical differential operators split into two

parts, a tangential operator and a normal operator (see [5] and [18]) which allows us

to perform the calculus in a simpler way. For example:

If u : ωε −→ R or R3, we have, setting ũ(σ, z) = u(x) with σ = PΓ(x), z = φ(x):

∇u(x) =
∂ũ

∂z
(σ, z)n(σ) + (∇Γz ũ) (σ, z),

where Γz = {x ∈ Ω, dist(x,Γ) = z}, ∇Γz is the tangential gradient on Γz when Γz is

parameterized by Γ.

With this formalism we obtain the equations fulfilled by H0:
∂

∂z

[(
H0 + U0

)
· n

]
= 0,

n ∧ ∂

∂z
H0 = 0.

We can solve them thanks to the transmission conditions and the solution we obtained

outside ωε. We obtain H0 = −(U0 · n)n, i.e. H behaves itsef as a local operator at

order ε0.

Next U0 fulfilled the following equation:

∂U0

∂t
− U0

zz = |U0
z |2U0 + U0 ∧ U0

zz + U0 ∧H0 − U0 ∧
(
U0 ∧H0

)
in Γ× (0, 1).

According to the assumption (H3) we can prove that U0 does not depend on z, so U0

fulfills

∂U0

∂t
= U0 ∧H0 − U0 ∧

(
U0 ∧H0

)
in Γ× (0, 1).

By the same way we get the equations fulfilled by H i, U i. We obtain for i = 1, 2, 3,

H i = −(U i · n)n+ a(U1, . . . , U i−1),

where a is a linear operator, and U i fulfills

∂U i

∂t
− U i

zz = U0 ∧ U1
zz + Fi(U

0, . . . , U i−1, U i) +Gi(U
0, . . . , U i−1),

where Fi is a linear operator in its last variable U i. We can then obtain the existence

of the profiles and the properties we announced above.

- the main difficulty lies in the estimates on the remainder term. Except the technical

part of these estimates, there are two important points: we first need to estimate the
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remainder term Qε of Hε with the one of uε (rε) in the same spaces: Qε solves
Qε ∈ L2 (ωε) ,

curl Qε + A(H0, U
0
, H1, U

1
, H2, U

2
, H3, U

3
) = 0 in ωε,

div (Qε + rε) + B(H0, U
0
, H1, U

1
, H2, U2, H3, U

3
) = 0 in ωε,

where A and B are linear functions of their arguments, with the following transmission

conditions 
[Qε ∧ n] = 0 on Γ,

[(Qε + rε) · n] = 0 on Γ,

Qε ∧ n = 0 on Γε,

(Qε + rε) · n = 0 on Γε.

Lemma 2.3. If rε ∈ Hp, there exists an unique Qε = Rε+Sε and a constant c0 such

that Sε is regular, Rε is linear in rε and :

∥Rε∥Hp(ωε) ≤ c0∥rε∥Hp(ωε).

Secondly we need ε-independent estimates on the remainder term of u. As we use

Sobolev embeddings we need to precise the dependence on ε of the Sobolev constants.

Following the work of R. Temam and M. Ziane [19], we obtain some other estimates

(See [17], [18]). For example we have in the anisotropic spaces (see Remark 2.1):

Lemma 2.4. There exists c0 independent of ε such that ∀u ∈ H1(ωε) and ∀ 2 ≤ p ≤ 6,

∥u∥Lp(ωε)
≤ c0 ∥u∥

3
p
− 1

2

L2(ωε)
∥u∥

3
2
− 3

p

H1(ωε)

and ∀ u ∈ H2(ωε), ∀ 2 ≤ p ≤ +∞,

∥u∥Lp(ωε)
≤ c0 ∥u∥

1
4
+ 3

2p

L2(ωε)
∥u∥

3
4
− 3

2p

H2(ωε)
.

Remark 2.5. We have studied here the behaviour of Landau-Lifschitz equations with

an exchange coefficient ε2 in a thin layer of thickness ε. That is the case where the

thickness of the boundary layer (if there were any, cf [8]) and the domain’s thickness

are of the same size. If we instead consider a thin layer with a thickness εα (α > 0,

α =
p

q
∈ Q ), we perform now an asymptotic expansion at the scale ε

1
q and we see

two different behaviours. If α > 1 we get the same type of behaviour than that of

the case α = 1, i.e. the behaviour of a thin layer and the localization of H at the

low orders. If α < 1, the layer’s thickness is bigger than the characteristic thickness

of the boundary layer. We then obtain a boundary layer in the thin layer but with a

smaller thickness (ε1−α) and we also get at the low orders the localization of H.
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