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Abstract. In this paper we study the behaviour of Landau-Lifschitz equation in a thin layer.
As the thickness of the domain and the exchange coefficient of the equation simultaneously
tend to zero we perform an asymptotic expansion to precise the solution for well prepared
initial condition.

1 Introduction

In this paper we consider a periodic thin layer Q. = (0,1)? x (—¢,¢) of ferromagnetic material
and we study the behaviour of magnetic moment v when ¢ goes to zero. The magnetic moment
u, defined on the domain Q. C R?® in which the material is confined, satisfies |u| = 1 and links
the magnetic field H and the magnetic induction B by the relation B = H + @, where @ is the
extension of u by zero outside (..

The magnetic field H satisfies curl H = 0 by static Maxwell’s equations, and by the law of
Faraday we have div B = div (H + uw) = 0. Hence the magnetic moment u induces a magnetic
field H(u) given by:

H(u) € L2(R?),

curl H(u) = 0 in D'(R?), (1.1)

div (H(u) + @) = 0 in D'(R?).
We will consider a quasi-stationary model in which the behaviour of u is governed by the following
Landau-Lifschitz type equation:

(
g_?: =uA (eQAu + H(u)) —uA (u A (62Au + H(u))) in Q,,
1 g—u =0 on 09,, (1.2)
n
\ 'U’(Oa ) = ug on {2,

where n denotes the outward unitary normal on 0. The coefficient €2 is an exchange coefficient.
As it is smaller than all other characteristic sizes of the problem, it is intended to tend to zero.

When the exchange coefficient is fixed and the domain €2, does not depend on ¢, Carbou and
Fabrie prove in [5] the local existence of a regular solution u of (1.2):

Theorem 1.1 (Carbou, Fabrie). If ug € H?(), %

time T* > 0 and there ezists an unique u € C ([0,T];H*(Q)) NL*(0,T;H*(Q)) for all T < T*
such that u satisfies (1.2).

=0 on IQ and |ug| = 1, there exists a



But when the exchange coefficient €2 goes to zero (and the domain still does not depend on ¢),
the time interval given by the previous theorem also tends to zero. In [7], Carbou, Fabrie and
Gues prove that the time of existence goes in fact to infinity when e goes to zero for the initial
data in HP (Q) by showing that a boundary layer appears. Moreover they get that the solution
u tends to the solution of the hyperbolic system formally obtained by taking ¢ = 0 in (1.2).

We are interested here in the case of thin layers. In [4], Carbou has studied the limit of the
magnetic moment u when the thickness € of the domain goes to 0 and the exchange coefficient
is fixed. We want to precise here the behaviour of u when the exchange coefficient is £? and
in an e-thick sheet Q. = (0,1) x (—¢,¢) which is periodic on R? by making an asymptotic
expansion of u. We will have to take into account an interaction between the boundary layer,
whose characteristic thickness is €, and the thin layer. We note I, = (—¢,¢) and w = (0,1)2,
the periodic domain. Hi, (w) is then the subspace of H' (w) whose functions are periodic on R?
and 12 (w) is the closure of H (w) in L?(w). The index p denotes each time the periodicity on
w. The equations we will consider are:

r g_’ltt = uA (2Au+ H(u)) —uA (uA (2Au+ H(u))) in Q,
) Z—ZZOmwx{ie}, (1.3)
u(0,.) = up on Q,
| u periodic on w
and
H(u) €L} (wxR),
curl H(u) = 0 in w x R, (1.4)

div(H(u) +7) =0in w x R

As we will study independently H inside and outside ). we need some transmission conditions
that we can deduce from (1.4):

[H(u) ANe3] =0 on w x {£e},
(1.5)
[(H(u) +u)-e3] =0onw x {xe},

where e3 denotes the unitary normal to {z = 0} i.e. e3 = (0,0,1) and [v] = v (27) — v (27)
denotes the jump of v at an interface w x {*e}. We also note I; = (—1,1).

In order to perform the asymptotic expansion and get the profiles we work on the rescaled
equation.

&
Ouy

on

Assumptions 1. The initial data uy satisfies =0 on 09 and can be written in the form:

ug(z, 2) = UL () + €U} (w, g) + e2Ug (J:, g) +e%rg (z,2), V(z,2) € Q,

where



o Uy € Wo™ (w) such that U] = 1,
o U EHp w) @ HP(—1,1),

OU(?E]H]; ) @ HP(—1,1),

Ty € H%(QE) is the initial data for the remainder term r¢ and fulfills the additional condi-
tion:
Ir§11Z2 0,y + 1V761E2 0, + €2l ATE|IE2 o,y < C,

where C is an e-independent constant.
We get the following result:

Theorem 1.2. Under the assumptions 1, if T¢ is the mazimum time of existence of the regular
solution u® of the equation (1.3) then lin% T® = +o0 and for all T < T¢ we have:
e

u (t,z,2) = U(t, x) + eU? (t,m, E) + 2U? (t,m, E) +e2rf(t,z,2), (z,2) € Qe, t < TF,
€ €

where

e Ulecc™ (R;L;Wg’oo (w)) is solution of the equation (1.3) with € =0, i.e.

ou°

= =UAH-U°A (U ANHY) inw,
U%0,.) = ug in w,

where HY = —U??e3 s a local operator,

o Ul € (2] [w’%w (o,T;H;’;(w) ®H5—2k(11)) N HE (o,T;Hg (w)®]}]16_2k(11))] for all 0 <
k=0
T < T,

e U? ¢ ﬁ [Wk’oo (O,T;]H]% (w) ®H5*2k(11)> N H (O,T;IH]% (w) ®IHI672’“(11)>] for all 0 <
k=0
T <T¢,

o for all T < T° the function r® is bounded in L™ (O,T;Hl(ﬂs)) and the function er® is
bounded in L (0,T;H?(Q.)) NL? (0, T, H3(£2)).

Remark 1.1. The space 1.2(S.) is supplied with the classical norm ullLz (. = / |u|? d.
Qe

This paper is organized in the following way. The first part consists in the reminder and proof
of some technical lemmas and in the study of the operator H outside €2.. In the second part
we formally build the asymptotic expansion of u® and we prove its existence for all time and
the regularity of its terms. The equations satisfied by the remainder term of u®* and H® are
explained in the third part and the fourth part contains the energy estimates which conclude
the proof of theorem 1.2.



2 Preliminary results

2.1 Some results of regularity

Lemma 2.1. Let Q. = (0,1)? x (—¢,€). There exists a constant ¢y independent of € such that

1
2

lullze o,y < co (Il + I1Aula,))

0
2 — 0 on (0,1)2 x {£e} and u is periodic in z € (0,1)%2. Moreover

for all u € H2(€2,) such that 5

if u € H3 (),
1
IVulie o, < co (IVula,) + 1Al o) + IV AUE ) -

Proof: we take the Fourier coefficient of u and the proof follows for the first estimate. For the
second one, we want to apply the inequality (see [8])

l|ullgm @) < c(S2) [||U||1L2(n) + [|div w|gm-1 () + [[curl w|lgm-1 () + [|u - n||Hm—1/2(aQ)]

Since we need the dependence of ¢(£2) in € we make the proof for the open set we consider:

[curlu-(u/\n)—(u-n) divu+u-g—u] dry

\v} 2 = ||di 2 1 2 /
IVUllL2q,) = Idiv ullfs g ) Flleurl wf[fs o )+ -

wx{te}

First step: We assume that u-n = u - e3 = 0. The boundary term then satisfies:

0
Iso, = / [curl u-(uAn)+u- _u] dy = / (w105 + u20y) uz dv.
0. on 00,
Since ug = 0 on w x {xe}, Iy, = 0 and
lulli o) < llngay + Idiv ullpag,y + leurl allyaa,y (2.1

Second step: We assume that u-n = g € H'/2 (09¢) on 09.. We then take a lifting ¢ = Rg €

H?(9.) of g such that g—i =g e H/?(89,). Sov =u— Ve fulfills v-n = 0. We apply (2.1)
and we get:

ullg (o, < lullpeouy + 1div ullpz g,y + lleurl ullp2 g,
Vel + 1A¢llz @ + Vel g
Since ¢l a) < C(2) lgllza ag,) we have:
lullgm () < llullLeo.y + Idiv ullpz ) + leurl ullp g,y + C(Qe) v - nllm/2 50,)
Third step: We now apply this inequality to all partial derivatives of u to get the inequality
in H2. Since (G;u) -n = (G;u) - e3 = 0;(u - e3) we finally get:
lullie 0.y < e0 (Iullzqa) + 1div ulliz(o,) + lleurl ullgaqa,) ) + () - nllzsa on,),

where ¢y is independent of Q.. We get the result by applying this inequality to Vu (such that

ou
7= =0. O



.0 . _ .
In the following —— denotes the derivative in z; in the anisotropic inequalities where the three

Oz;

coordinates are (x1,x2,x3). In the thin domains — is the derivative in z; where (1, z2) belongs
Z;

0
o (0,1)2 and p is the derivative in the thickness z of the thin layer.
z

Theorem 2.2 (Anisotropic Agmon’s inequality). (cf [17])
Let Qg = (0,1)3 then there exists an absolute constant cg such that

1 3
||Iu’||]L°°(QO) S €0 ||U||ﬁ2(90 H (

=1

ou

I
Ers + ”uHL?(QO)) ;

"

927 2 0y 12(00)

for all u € H2(£y).

Corollary 2.3 (Agmon’s inequality in thin domains). (¢f [17])
Let Q. = (0,1)2 x (—¢,¢€). There exists a positive constant cy independent of € such that for all
u € H2(£2),

ullyoe o < co ull? 'y“ gl L)
00 >~ €0 ~ o — || = ey 2
R0 HOI\N102 20,y € 1102lliz0,) 7
ou 1
X +||l=— + ||ul| )
H ( ]L2(QE) H@mZ L2(Q) 12(62)

Corollary 2.4. Let Q. = (0,1)? x (—¢,¢€). There exists a positive constant cy independent of €
such that for all u € H2(Q.) and for all 2 < p < +o0,

L1 1,3 3
el g,y < coe 77> IIUII“ oy Il IIHz

Theorem 2.5 (Anisotropic Ladyzhenskaya’s lnequahty). (cf [17])
Let Q9 = (0,1)3. There exists an absolute constant ¢y such that

ou
0x;

3 3
lullisgogy < e ] T (IIUIIU(QO) + ‘ ) ,  VueH (Q).
12 (90)

i=1
Corollary 2.6. Let Q. = (0,1)? x (—¢,€). There exists a positive constant ¢y independent of ¢
such that for all u € H'(Q) and for all 2 < p < 6,

(L é*% 3_3
lullor oy < coe™ 377 llullZady lullZe -

Theorem 2.7. Let Q. = (0,1)? x (—¢,€). There exists a positive constant co independent of €,
such that Yu € H2 (Q,),
53 :
[ullLizo.) < coe™ 22 ||ullg (QE)“UHﬁ‘z(QE)-

Proof: This theorem is an anisotropic version in thin layers of the classical embeddings from
H4 (Q) into L'2(Q2). We prove in the appendix A the anisotropic embedding. The proof follows
the scheme of that of theorem 2.2 given in [17], the proof of the thin layers version is the same
as that of corollary 2.3 also given in [17]. O

We also need a 1D estimate:



Proposition 2.8. There ezists a constant cg independent of € such that for all u € H! (—¢,¢)
we have:

L 1 1
||u||]L°°(fs,s) <co HUH]LZ(_E’E) ||a$u||IL2(fs,s) + g”quLQ(fs,s) < coe™ 2 HUHHI (—e,e)"

2.2 Behaviour of H outside (2,

We denote now by HT (resp. H ) the restriction of the function H on w X (g,+00) (resp.
w X (—o0,—¢)) and by J; (resp. J. ) the domain (e, +00) (resp.(—oo, —¢)). We are interested
in the behaviour of H outside w x (—¢,¢). H fulfills:

(H* e L (wx JF),

curl H* =0 in w x JZ,

div HX = 0 in w x JZ,

| HE -e3 = f*¥ or HE Ae3 = g* on w x {£e},

+cplte T AR 3) %
where f* € Hj 2 (w x {£e};R), gt € H, 2 (w x {£e};R®), g% is orthogonal to e3 and [ € N.

We want to get an expression of H* A ez (resp. HT - e3) thanks to HT - e3 (resp. HT Ae3) on
w x {xe}.

Lemma 2.9. For f € H;ﬁ (w;R) we consider H € LIQ, (w X R+;R3), solution of
curl H =0 in w x RT,
div H=01inwx RT, (2.3)
H-e3=f onwx {0},

1 1
and we define the operator ¢ : Hy (w;R) — Hy (w;R3) which maps (H - e3),—o to (H Ae3)|,—o.
@ 1s continuous and given by (in Fourier):

— ko

0
ki | YEeZ’\{0}, cole(f)= |0
0 0

i

cr (p(f)) = Ck(f)m

1
In the same way for g € HZ (w;R?), g orthogonal to e3 we consider H solution of

curl H =0 in w x RT,
div H =0 1inw x RT, (2.4)

H Ae3 =g onwx {0},



L L
and we define the operator U : H (w;R?) — Hy (w; R) which maps (H Ae3)|,—g to (H - e3)|,=o-
U is continuous and given by (in Fourier):

g1 . g1
ck | T go |k\ (kock(g1) — kick(g2)) VEk € 72 \ {0}, co | T (g =0.
0 0

Proof: As the problem is linear and the boundary conditions are periodic, we consider the
Fourier series of H, f and g:

V= Z e kT) in Lﬁ (w),

keZ?
1 27rz(lc x) 2
where =3 dz, Yk € Z°.
w
We then get for all k € 22 a linear differential equation:

ick(H) + Acy(H) =0 in w x RT,

dz
0 0 -k oanlkl 0 0
where A=2im | 0 0 —ky|. Let us diagonalize A: A = 0 —27lk| O
ki ka2 0 0 0 0

for all k£ # (0,0) with the eigenvectors

ki ko k1 ko —ko Ky
I: e —.1 ,: d I: EYAIRETAL 0 .
° (’|k| ’|k|’>’€2 (zlkl k[ )a“ “ (|k|’|k|’)

As we search solutions in IL% (w x R™) only the component of €] does not vanish. Finally we
get:

o if (H-e3)|,=0 = f, for all k € Z*\ {0}

o if (HAe3),—0=9=(91,92,0), for all k € 72\ {0} (as kick(Ha) = kacg(H1), cf (2.3))
—ck(92)

cx(H) = e 2m=lk] ) Ck(gl) , c(H)=0. O
iy (kack(g1) — kick(g2))

So we have the

Lemma 2.10. There exists some applications
+3 +% )
o p* 3H§9 > (w;R) — Hé 2 (w;R*) which maps (H - €3)|,—1c/2 to (H A€3)— e /2,

o U ]HllP+2 (w; R3) r—>]H]f,, (w; R) which maps (H A e3)|,—+c/2 to (H - €3),=4c/2,



where H is solution of (2.2). Moreover for all k € Z2\ {0},

. —k)z 91 .
7 1
cx (p=(f)) = :tck(f)m ki, o | TF | g = im (kack(g1) — k1ck(92)) -
0 0
0 g1
and o (¢*(f))=(0]), co| T |9 =0
0 0

Proof: We deduce these relationships from the previous lemma. [

3 Formal asymptotic expansion

We will now search an asymptotic expansion of u¢ and H¢ in the form:

e in €,

uf(t,z,2) = U° (t,:c, E) + eU? (t,:c, E) +...
€ €

(3.1)
€ _ 770 E 1 E
Hé(t,z,z) = H (t,x, 6) +eH (t,m, E) +...
e in (wxR)\Q,,
Hé(t,z,2) = H(t,z,2) + eH (t,2,2) + ... (3.2)
where z = (21,%2) € w.
3.1 Equations of the profiles
As it is proved in [5], the equation (1.3) is equivalent for regular enough solutions to:
% —&?Au = 2| Vul>u+ ®u A Au+u A Hu) —uA (uA H(u)). (3.3)

Since this equation isolates the dissipative term we will use it in the following.
We substitute to v and H their asymptotic expansion in (1.3)-(1.4) in order to get the expression
satisfied by the term of the expansion for (z,z) € w x I or (z,2) € (w X R) \ ..
As the equations (1.4) are linear, each H® fulfills (1.4) outside Q.. By lemma 2.10 we have
then a relationship between the normal and the tangential component of H* outside §2,. The
transmission conditions allow then us to fully determine H* since the conditions become for all
1 €N )

[HZ/\63:| =0onw x {£e},

_ (3.4)
[(HZ +Ui) -63] =0onw x {£e}.

The Neumann condition on u also becomes (%U’) =0 forallz e N
|z==%1

Preliminary calculus:



In €., we have the following formal expansion of curl V and div V' (with V = (V3, V5, V3)):

curl V(t,7,2) = (;9 (esA V) + Z (curlx Vit 9 (es A V”l)) ,

>0 0z
. . 7 8 1+1
div V(t,z,2) = ——V3 D et (dive VI -V,
0z
>0
t
where div, V = % + % and curl, V = i, i, 0) AV. In the following 3_V is denoted
Or1 Ozxo ox1’ Ozo 0z

by V,. Back in (1.3)-(1.4) the terms of the equations of the different order in ¢ vanish:

1,

Terms in £ : in w X Iy,

0
2 (my+v9) -0,
HO
(92! (63 A ) 0.
So H® + UY e3 does not depend on z. By applying lemma 2.10 we get
. [ —ko
0 0 0y 0
ck(H” Nes) = e (H3+U3)m k1 for k#0 and co(H" Aeg) =0,
0
So H Aeg =0 and HY + U =0,
H = U ey (3.5)

Remark 3.1. Although H fulfills a global equation in R® \ Q, it becomes a local operator at
the 0-order.

0

Terms in €°: in w X Iy,

ou°

el 2 =0+ U AU, + U AH? —U° A (U° A HY), (3.6)

As we assume that UJ does not depend on z, we ca n prove formally that U? does not depend
on z and is solution of

ou° 0 0 0 0 0
W:U ANH" —U /\(U /\H) on w,

Ul(t=0)=U) onuw,
as a solution of the previous equation.

% (H; +U3) +div, (H°+U°) =0,

% (63 /\Hl) + curl, HY = 0.



Terms in €: in w X I,

1
_ag; —U,, = [UPU" +2(U7 - UNUY + U AU, + U AU,
+UAH + U AH —U° A (U° A HY) (3.8)
~U'A(U'ANH®) -U'A(U° A H?).
0 2 2 . 1 1
%(H:; +U3) +div, (H'+U") =0,
) (3.9)
9 (63 /\HQ) + curl, H' = 0.
Terms in £2: in w x Iy,
6U2 2 012772 0 2\770 0 2 2 0
=~ Uz = U0 207 - UDUP + UP ANUZ + U AU,

+U?ANH + U ANH? —U° A (U° A H?)

~UA (U ANH®) —U? A (U° A H?) (3.10)
+A,U° + U PU° 4+ 2000 - UHU + |V, U U°
FUAA U + U AUL + U AH —U A (U AHY)
~U'ANUAHY -U'A (U AHY),

3.2 Existence of the asymptotic expansion

3.2.1 Existence of U’

Theorem 3.1. Given U such that |U| =1 and UJ € W’g"x’ (w), there exists an unique solution
to (3.11):

( oU"
T =U'ANH-U°A (U°AH) inw,
\ U%0) =10 inw (3.11)
0 _ 0 :
| H”=—(U"e3)es in w,

such that [U°| =1 and U® € C™® (R+;Wg’°° (w)).

Remark 3.2. If we choose an initial data U which depends on z and if we want to get the

ezistence of the solution on R?' we need the z-dependent part of UJ i.e.

— _ 1 _

U =05 -0y =U§ —/ US (z,2) dz to be smaller than UY. In order to perform the estimates
-1

on the remainder term of u we will need that Eg) = O(e) which gives us a term of the same order
as Ul and which fulfills the same equation. We take then a z-independent initial data for U(()).

Proof: As WS’OO (w;R3) is an algebra we have the existence and uniqueness of U, solution of
the previous ordinary differential equation, in C* (O,T;V\Vg’OO (w)) As |U(t)| =1 for all ¢ we
get the result. [

10



3.2.2 Existence of U!

As UY and H? are known, we are now able to determine H'. We also remark that
L* (w) C I (w).
We have the

Lemma 3.2. If Uo satisfies the assumptions of theorem 8.1, (i.e. U§ € W0 (w), |UJ] =1) and
Ul € ]H[lp ) @ H (I,) there ewists then H' € H;,’f (w) ® HY (1) with k = min(5,1), solution of
(3.7), and:

H'= —U31 es +q,

where g € C*° (RY; H (w) ® C°(I1)).

Proof: The equations (3.7) give:
(H3 +U3) + (2 + 1) (divy U°) (2') = a(2),
es NH' + (z+ 1) (curl, H°) (') = b(z),

where a and b are two periodic functions that we determine thanks to lemma 2.10. For all
k € 22\ {0},
ck(a) = 2im [k - cx(U°) —ilklex (H?) - es]

& —k1
cx(b) = 2im k/\ck(HO)—z’|k| U | k2 ],
0

co(a) =0, co(b)=0. O

Theorem 3.3. Under the assumptions of theorem 3.1 and with the additional assumptions that
Up € WP (w) @ H° (1) and U(},z =0 on w x {£1}, there ezists an unique solution to

( oU!

o U = U'AUL+UNH AU ANH U A (U° AHY)

—UA(U'AHY) -U'A(U°AH®) inwxIi,
X (3.12)
Ul =0 onwx {£1},

Ul0,.) =U;(.) inw x I,

\

such that for all T > 0,

2

U'e N [w’w’o (o,T;Hg (w) @ HP—2* (11)) N HE (o,T;Hg (w) @ HE~2* (11))].

k=0
Proof: According to lemma 3.2 let H! = p(U') + q(z, z), where p(V) = —V5 e3 and
qgec™ (]R*’;H—HfO (w)). We have then:

ou!

S UL = UAUL+TU AR+ T Ap(U) = U° A (U° A p(U7) (3.13)

~UA(U'ANHY) U A (U°AH®) + f(t,7,2) inw x T4,

11



where f(t,2,2) =U° A q(t,z,2) —U° A (U° A g(t,z,2)) € C*® (]R+;H75] (w) ® C*(-1,1)).

The variable z € w is only a parameter here. We use Galerkin’s method on I;: let (w;); be a
2

0
basis of eigenfunctions of the operator A = I — — with domain D(A) = H? (I;) and Neumann

conditions on the boundary. Let Wy = Vect(ws, ... w,). We have then the existence of solutions
N jn C*® (OTHP ®WN) for all T' > 0.
Let us make a priori estimates on the approximated solution:

L? estimate: we get

1d
2dt||v ||IL2 wXIl + ||U ||]L2 wx[l) < CHUNH]L2 wXIl + ||f||]L2 w><11 ||U ||]].42 wal)

SO

d
IOV ey + 0N By < C (1 10V By

By applying Gronwall’s lemma we get
NerL® (0,712 (wx 1), v) €L?(0,T;L(w x I)).

H' estimate: we take the product by v2

zz

1d

502 I3 + loz2llz < Cllo™ flallozllz + o2z lallf [l

By the same way we get
N el (O,T;L?,(wal)), vl € 1.2 (O,T;Lz(wal)).
and finally v" € L (0,731 (w) @ H' (I1)) NL? (0, T; 1L (w) ® HP (11)) -

The variable x was as far as here only a parameter. We will now get some regularity for z € w.
We can derivate in z the equation (3.13) and perform the same a priori estimates for z since
the equation is linear in the term with the higher derivative in . We get:

Ner® (0,71 (w) @ H' (1)) N12 (0, T; S (w) @ HE (1)) -

We will now derivate in time the equation (3.13). We get in w x I;:

2, N N N N N N
v 0 _ o, OV OV /\H0+U0/\p(%>—UO/\(UO/\p(6U ))

ot? ot ot NBt N ot
ov Ov af
—_yo° - 0) _ 0 0 N 9]
U /\( 5 /\H) 5 AU NH?) + A(v )+at(t,w,z),
where
oU? OH® oU° oU°
N _ N N Ny 0
AWwY) = 50 ANvy, +v A—at 50 p(v™) 5 /\(U A p(v ))
—UA 6—UO/\ (v™) —a—UO/\(N/\HO)—UO/\ N/\aﬂ0
ot P ot ot
0
—uN/\<aU /\HO) N/\(UO/\ai>.
ot ot



N
. . . . v
By using the previous estimates on v and the same method we can deduce estimates on W:

o € Wh (0, T3 HS (w) @ HY (I1)) NH' (0,75 HS (w) ® HZ (I1)) -
By the same way we get for 0 < k < 2 (we are limited by the regularity of Uj}):
o™ € Woe (0,75 D (w) @ H' (1)) NHF (0, T3S (w) @ HP (1)),

By using the weak-x compactness of L and the weak compactness of L2 we can take the limit
in N. We have for 0 <k < 2:

Ule Wh (0,T;H) (w) @ H' (I)) NHF (0, T; D (w) @ HP (I1)) .
If we rewrite now the equation (3.13) we get

ou!

U, +UAUL, = —U'ANH =U Ap(UY) + U’ A (U° Ap(UY))

+UA(U'ANH?) + U A (U° AH) - f(t,2,2) inw x I
1 1
As (I+UPA) is invertible and its inverse is I — §(U0 A+ §U0 A (U°A.), we get for k= 0,1

UL, € Wo (0,7 H (w) @ H' (I1)) NHF (0,75 D (w) @ HP (1)) .
We finally get for all 7' > 0 that

Ul e (2] [Wk"’o (O,T;Hf, () ®H5_2k(11)) N HE (O,T;Hg (w) @ HO-2¢ (Il))] .

k=0
O

3.2.3 Existence of U2

Theorem 3.4. Under the assumptions of theorems 8.1 and 3.3 and with the extra assumptions
U¢ € B (w) @ H° (I1) and Ug,z =0 on w x {x1}, there exists an unique solution to

( B_UQ_U2

o 2 UANUZ, +U* NH + U ANH? —U° A (U° A H?)

—~UA(UANHY) —U?AN(UAH) + F inwx I,

$ (3.14)
U? =0 onwx {£1},

| U?(0,.) =U§(.) inwx I,

where 5
5 (H? + U2) +div, (H'+U') =0,
0 2 1
5 (63/\H )+cur1zH =0,

and

F =AU+ |ULPUC + |V,UC P U + U A AU + U AUL + U A HY
—UAU'ANHY —U' AU AHY) - U A (U AHY),

13



such that for all T > 0,

U2 e (2] [w’“m (O,T;]Hﬁ (W) ® IHIS_Q’“(Il)) nH (O,T;H;% (w) ® HE 2 (Il))] .

k=0

Proof: As we did in lemma 3.2 we get that
H2 = _U??e?) + qla

where ¢' € H? (0,T; H (w) ® H?(I})).
According to theorems 3.1, 3.3 and lemma 3.2 we get that

F el (0,T;H, (w) ® L*(I1)) .

The proof of theorem 3.3 gives that for all T' > 0,

U? ¢ (2] [wk’oo (o,T; HE (w) ® 1&115—%(11)) N HF (O,T; H: (w) @ HO~2F (11))] .

k=0

O

4 Equations satisfied by the remainder term

e In Q. let
z z
u(t,z,z) = U(t,z) + U’ (t,:c, g) + U2 (t,:c, E) + &%ré(t, x, 2),
H(t,z,z) = H(t,z) + eH' (t,m, g) + > H? (t,x, g) + 2Q5(t, x, 2),
e In (wxR)\Q
H(t,z,z) = H(t,z) + eH(t,z,2) + 2 H%(t,z, z) + €2Q°(t, z, 2),

where ¢ and )¢ are the remainder terms of u and H.

4.1 Remainder term of H

Back in the equations (1.4)-(1.5) we simplify by using the equations satisfied by the profiles and
we get:

Lemma 4.1. Under the assumptions of theorems 3.1, 3.8 and 3.4 and lemma 8.2, if r* € HP
then there exists an unique QF, remainder term of H which fulfills

Q° €l? (wxR),
curl Q° + curl, H2 =0 in w x R, (4.1)
div (Q° +7°) + div, (H24+U?) =0 inw x R

14



[Q° Ne3] =0 on w x {£e},
(4.2)
[(QF +7%)-e3] =0 on w x {*e},

Moreover Qf can be written under the form R® + S¢ where R® is linear in v and S® does not
depend on r¢ and there exists some e-independent constant cy such that for all i € N*,

1B Iz 0.) < collr Il (0.

[15°1 118 () @ (—e.6) < €0 (||H2||H;1,(w)®Hi—1(—s,s) + ||U2||Hg(w)®151i—1(—s,s)) :

Proof: outside €2, we can solve (4.2) by using lemma 2.10. In €2, we take the Fourier coefficients
of the equations (4.2) and we get:

diick(V) 4 Acp(V) = — (Buew(r) + Acy (') + Bocn(U)) | (4.3)
where

0 0 0 —k 0 0 Kk
V_QE+(0>,A—2i7T<O 0 kz),Bl—2i7T 0 0 ko
T‘g kl kQ 0 kl k2 0

0 0 0

and Bo=2ir | 0 0 O

ki ko O

According to theorem 3.3 the second member of (4.3) has the regularity of 7¢ in z. Let us assume
that r¢ € HP (©2.). We consider now the basis of eigenvectors of A which was determined in 2.2.
The index ¢ will here denote the component of e,. We get:

- e (V2) e (r5) — cx(H?) + 3 (ex(U3) — ex(U2))
5019 I‘;z + 27T|k| _CkO(Vé) = —27T|k'| _ Ck(Ti) + Ck(H22) + %(ck(UQQ) . Ck:(U12)) . (44)
0

Thanks to lemma 2.10 we know that ¢, (V') is colinear to €}, in — ¢ and to €] in e. So ¢o(V) = 0.
Let 27|k|L = (27|k|L1, 27|k| Lo, 0) be the second member of (4.4). For all k € Z2\ {0},

e—?n\k|za1 ; e—27r|k:\(z—z’)L1(zl)
cx(V) = | e2mlklzgy | + 27r|k\/ eIkl (=2 Lo (2") | d2,
as - 0
€ 7
then a; = ag =0, ay = —27|k| e 2mkIZ Lo(2') d2' (since ¢, (V) is colinear to €} in €) and

—&

[ e #HE N ) — i) + 5 @) - avD) &

V) = 2R 7 Dy (r9) + enlHD) + 5 (en(0F) — e @D)
’ 0

15



We are now interested in the regularity in z of the Fourier’s coefficient:

£ £ 2z 2
/ (VD)2 dz = 4n2[k|? / ( / 2 lklG=2) L, (1) dz') dz

—& —E& —£

IA

£ z
S 47_{_2“{;'2/ 1 (/ 6—271'|k|(z—2’)|L1(z/)‘2 dzl> dZ

< 47T|]§|/ |L1(Z’)|2 (/ 6—27T“C|(Z—z’) dz> ds
—e

Z’

g
< 4/ Ly ()2 do.

€

The same result stands for cx(V2).
We derivate ¢ (V) in z and we use the estimates made on ¢, (V) to get the regularity. O

4.2 Remainder term of u

According to lemma 4.1 we let
€ 0 1 z 2512 Z\ .
a®(t,z,z) =U"(t,z) + U (t,ac, —) +¢e°U (t,ac, —) in Q,
€ €
e 1 z 2 zZ\ .
b(t,z,2) =U (t,a:, E) +eU (t,m, E) in Q,,
Q° = R* + S° where R is linear in r°,
K&(t,z,2) = H'(t,z) + eH" (t,:c, g) +e2H? (t,a:, g) +€25¢ in Q..

Back in the equation (3.3) we simplify by using the equations of the profiles. We get:

( 6,’.6
E—€2AT€:T1+---+T8+FE in Q.,
6 £
) aL:Oonwx(—e,s),
n
[ 7°(0,z,2) = rg(.) in €,

16
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where
( Tl — 86|VT6|2’/‘6,

T

et (IVre2af + 2(Vr® - Va)re),

T3

e? (|Va[*rf + 2(Vr® - Va©)a®),

T,

2 (rE/\Aa5+a5/\Ar€+€2rE/\Ar€),
Ts = a° NR° +71° AN K® +¢*° A R®,
Ts = —[a° AN(a® ANR*) +a®* A(r* AK®) +7° A (a® AN KF)],

Ty = —e2[r® A (r° AK®) +7° A (a® A R®) 4 af A (r° A R?)],

Ts = —€*r° A (r° A R®),

\

F = e [Ab° + | VH 20 — e|UZ|Pa® — 26(U?2 - aS)U? + 2|UZ 6 + | V50726 — €| Vb7 |a’
+(U2 - ag)bf + 2(Vga® - Vibf)a® — 2e(Vga® - Vb)) + 2e2(b5 - U2)U? — 42 (b5 - U2)b°
+2(U2 - 1E)as + 2(as - b)U? — 2e[bE[2U2 — b A Agh® — eU2 AU, + af A AgbF
+0E ANUZ + U2 AbS, + b5 ADAgaf + U2 AH + b AH? +a° NS —e2U% A (U2 AHY)
—3U2AN (U2 ANH?) —a* A (U2 ANHY) —U? A (af AHY) +eU? A (U2 AKF)
+2eb° A (U? A HY) +€26° A (U? A H?) — b° A (a° A H?) — b5 A (U? A K°)
+2eU2 A (65 AHY) + U2 A (b5 A H?) — af A (b5 AH?) —U? A (b AK?)

—b° A (05 AHY) +eb° A (b5 AH?) —af A(af ASF)].
According to the regularity results we get on the profiles we have the following proposition:

Proposition 4.2. Let us assume that U° € W6 (w).
For all p, 1 < p < 400 and for all T > 0 there erists some e-independent constants C, such
that for all e > 0 and t € [0,T],

_1
e ?lla®(t, ) llwir ) < Cp,

1
e'7v[|D%a(t,) | (a.) < Cp.

For all p, 2 < p < +o0 and for all T > 0 there exists an e-independent constant C), such that
for alle >0 and t € [0,T],

21
e ?[[VAa* (¢, .)[|lLr (o) < Cp.
For all p, 1 < p < 400 and for all T > 0 there erists some e-independent constants C, such

17



that for alle > 0 and t € [0,T],
1K= (2, )llwnr @) < Cp,

1E= ()l (0. < Co-

Proof: as we assume that ug € W®* (w) the regularity results on the profiles (Theorems 3.1,
3.3 and the classical Sobolev’s embeddings give that

10" llwrco @xr) < € s0

1
e rlla®(t, )”Wlp (52:) <Cp, ViI<p< +oo
1D%af||1s () < 6”||D a®||Le (wxny) < e 1C, V1< p< too,

1 1_
1D%a%|| () < €71 D%0%| o (wxery) < €7 0, V2 <p < +oo.

The estimates on K¢ are easily deduced from the previous estimates except for €2S° where we
use the lemma 4.1 and 2.8:

1S5 Loy < Ce 2||S (2 ()91 (—e.e)
< €™ (|02l wpenn o) + I ligors(—e)

< C IVl werr -1 + 1H2 g ysrz-1n)
<C,

_1 i,
VS Lo (o) < Ce2[|VS ||z (w)0mn (—c,e)
1
<Ce 2 [||U2||Hg(w)®Hl(—s,s) + ||H2||Iﬂg(w)®Hl(—s,s)]

1
O 10l pom (1) + 1 Iy ey 1.0
<ce .

The estimates on F* are easily deduced from the previous results. [

5 Proof of theorem 1.2 — Estimate on the remainder term

We will now give an estimate on the remainder term r°. We will so get another proof of
the existence of u for an initial data with regularity W% (w) instead of H®. This loss of
regularity is typical of the asymptotic expansion methods (see [9], [3], [7]). These estimates are
made on an approximation of Galerkin which will allow us to justify all integrations by parts.
The approximation space we consider is built on the basis of eigenfunctions of the Laplace’s

ou
on
the magnetic field we only introduce R,, the projection of R(r,) on the approximation space,
but we will not detail this step.

In the following we let

Q(t) = (It Es + 1Vt Es + ledrs (4, )2 )

As we consider the Galerkin’s approximation of ¢ we get the existence of Q on a maximum
interval [0, T}; 5[ where 0 < T} . < +00. We want to prove here the existence of er small enough

operator with domain {u € H(9.), =0onwx {ie}} for Landau-Lifschitz’ equation. For

18



such that we have the existence of Q on [0,7] independently of n if ¢ < e7. We also show the
estimates of the main result. We will proceed as it follows:

We let T > 0 and thanks to the energy estimates we get by integrations by parts, we show that
Q fulfills on [0,7] N[0, T}, .[ a differential inequality:

Ql(t) < CT(1 + Q(t)) + EPT(Q(t))a te [OaT] N [O’T:,e[’ (5'1)

where Cr is a constant and Pr a polynomial, both independent from n and e (but not from T').
This inequality implies that 7,; . > T as soon as € €]0, er| where er is a constant small enough.
Q(¢) fulfills then (5.1) on the interval [0, 7] and we get the main theorem.

Remark 5.1. The remainder term r° satisfies the same equation as the remainder that Carbou,
Fabrie and Gués get in [7]. Although the thin layer induces some changes in the proof we will
follow the same scheme.

In the following estimates we will use some of the inequalities reminded in the lemma 2.1, 2.4
and 2.6.

[2-estimate: we multiply (4.5) by 7¢ and we integrate on .. The integrations by parts are
licit since we are considering Galerkin’s approximation. We get:

1d

33 () + IV < [ (T 4 Tas F) 0
2 di o

€

We estimate each / T;r® thanks to Holder’s inequalities then by anisotropic Sobolev’s injec-

€

tions:
/ Tyre| < &8 |2 IV
< CPE I el < CePQ
/ Torf| < e )|a||pee Irlls 9751125 + 26 [Ir°]12 1V oo V711
€ 1/2 3/2
< CE2 e |2 1 132 Nler e

+C &3 ||re|lpa (P27 [ler| 3 < C(5/2 + €3) QP2

2 2
e r¥lL2 1Vas |l + 26 [[a%llpoo I [lp2 1V7° Iz Va0

CeQ

S~
o3
3

o™
IA

IA

e [Irll2 Vel V78l

Ce? Ir€]lpe [Vrell: < C 2 Q

S~
=
=3

(L}
IA

IN

S~
&3
3

(LY
IA

1@ lleo € [lez |1 R® (|2

2
Clirtllz.

IA
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2 2
la®[[geo 1%/l (1B ][z + la®[|peo [1K*]|geo (17l

2 2
Clirllpz 1B lez + Clirllzz < ClirliLe

S~
&3
3

o
IA

IA

2
Ce? [la|peo I7®[ILa 1R [I2

S~
=
3

o
IA

IN

Ce32 re |12 [ |22 | Rl < € 32 QY2

VAN

/ Fore 1Pl [l
€ 2
C + [r<|2)

By using the proposition 4.2 we get that there exists a constant C such that

VAN

d
=¥ 12: + &2 [ Vr¥le < € (14 112 ) + ¥2P(Q), (5.2)
where P is a function which increases polynomially.

H!-estimate: By multiplying Galerkin’s approximation of the equation (4.5) by Ar® and by
integrating by parts we get:

1d
i (I91E) 41w < || (@eer s Tor P o
Qe

and we estimate each term of the second member:

/ T1 Ar®

2
< eb ||7"E||1L6 ||A7"E||1L2 ||V7"E||1L6

< CEr | ller
< O Q?
/ ToAre| < ety V7124 [ Ar< s

+26* |r°[lys [IVrellys IVl |A7°]),

1/2 5/2 3/2 3/2
< Cellré || llers |25 + Ce?|lre |22 |ers 2L
< C (e +¢€%) Q%2

IA

2
e?||rellL I Va®llLe [|A79]l L2

+26%|[a% | [ V7% lp2 [V [lgeo |AT]| 2
CeQ

/ T3 Ar®

IN
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J.

J.

),

).

),

Qe

T’4A’f’E

T5A’I"E

TGA’I"E

T, Ar®

TgA’I"E

FEAre

ININ A

IN

IA

IN

IA

AN

IA

AN

VAN IA

IA

VAN

VAN

IA

e [[r¥llus VAG®lps [Vl

2
C [I7*]|m

¢Q

IVa®] oo 1Bl 1Vr¥liLe + lla®llpee VR I [Vl
7ol VKoo V7€ llgz + €2 1r%lles IVERZ]|L 1Vre]|ps

5/2 1/2
C (Ir¥112 +ellre I Ner )

CQ + CeQ¥?

21Va oo N0l e 1B g2 197l

2
e VR g (Vo + 119 e 17 (1Ko 9771
[0 [ [1V7° 2 1K e + 2 0%l goe 172 1K e 97 o
+ 17 2 V0 oo 1K goe (1975
CllreI2
cQ
&2 r<lls [ 9rllgs 97 iz 1K | oe
€ I VKo |V
26 [Vallygo [l s [ R s (19
48 [y (97 1B 51
+2¢ |0l N1 gs 1V Rl 97 o

5/2 1/2 3

Ce (IIrIIG42 llerelg” + /2 <[ )

C (e +¢€%?) Q32

2
et HTEHI[ﬁ HVTEH]Iﬁ HREHI[ﬁ

2
+et [|rlILs VRS (ls V7]l
Ce?|Ire iz ller® e
C 62 Q2

IVl [ V7€l < C(1+ [IV7]22)
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By summing the previous inequalities we get:

d
= (I9r¥Ii22) + €21ArI22 < €0+ Q) + eP(Q), (5.3)

where P is a polynomial.

H2-estimate: We will now estimate [eArf|2, by multiplying 4.5 by €2A%r¢. On each term
we use at first Holder’s inequalities then anisotropic Sobolev’s injections and finally Young’s
inequality in order to isolate the term &2 ||eVA7|[?,.

Finally we get:

/ 2Ty A?r®

/ €2T2 AZTg

/ 62T3A2T6

IN

VAN

AN

IA

IN

IA

IA

3
S (197120 IV AT + 1 se AT s V7 e [V AR )

Ce? |2V AL, ller | + Ce2 11124 [ler 1347 |2V v |14

is |e?var|?, + et @ + Ce'Q°

2% | Va | [ Vr7IIEa [V AZ |2

+62 la®lleo 10?75 lis V7 [l IV AT]|1
e Irllus |D%a%]| 6 1V [l [| VAT [lp2
+€° |l [V a®[loo [ D*rF[| s 1V AFEl2

Ce? ||re |32 Nlere |37 |2V Are |, + Ce2 |lers||Z || €2V Are],,
+Ce ||<€7‘5||§’31/22 HeQVArE”EéQ + Ce¥2 7% || ller® || ge |e2VAare|| .
+CE2 rlla ller* e |2V A7 o + CE [ s ller®l| 302 |2V Are 22

C (24 +6%2) Qe2var| . + C (e +e2) Q¥4 |le2var|?)

1
Engvmﬁn;ﬁz + C(E+e*+6°) Q% + C (' +£°) Q3

26" | Vrel|ge [IVa| o VATl

+et [[1%]l 16 IV [0 | D% |5 |V AT |12
et 0l V0 e [ D2 IV AT s
+et [|a%|lpo IV74 |15 | D% |16 |V AT |12
<C(1+e)||r|m ||€2VA’I“€||IL2

+Ce V2 |lre|| 2 (lert |3 || €2V Are | .
+Ce||er5||HHH62VAT

C (1+¢e/24+¢) Q/2 ||62VA7‘5||1L2
iS HE2VA1"EH;2 +C (1+e+¢€%) Q
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< Vol 1 Aa®lys [IVA© s

+et Ir¥llps [IVAG [z [ VA
+e |Ar® 2 ||V [ |V AT|p2
+e ([ Vrel|ps | ArFls VAT

/ 627—'4A2’l"E

< Cller®||ge ||62VAT5||]L2 + C ||7¢| g ||5§V2A7"5||]LZ o
+Ce ||| [|€2V AT, + Ce ller |2 |2V are||2,
< C (1+4)QY? ||2VAre||,, + CeQ¥4 |2V ars|?)
1 2
< llEVArL + ¢ (1+6%) Q + 0t @
| 15877 < @19 1Kl VA
+e2[|rl|a [ VEE | [ VATelp,
+e2[|Va[lyeo 1RSIz VAT
+e? [la%llpee VRSl [IVATE]
+et V7ol 1B [[1s [[VATe||p»
+et [[rllps [ VEE|lps [V ATe|
< COlrflle [|2VAre|| L, + Cellr |32 ler 1 |2V Are |,
< 0Q [@var|, + 0cqfevar],
1 2
< 18 ||62VA’I‘E||]L2 +CQ + CeQ?
/ eTsA%r?| < 267Vl 0%l oe [|RE [l IV AT |2
+e? |6 Lo VRS Iy VA< |y
+€z IVaflzeo Ir€llez [ KE[lpeo [V ATE]|L2
+e | lleo 1Vl 1Ko [V ATl
+e? [[alyoo 1€l [IVEE |0 [[VAT]l1,
< C{||r5||H1 ||€2VA’I‘€H]L2
2 2
< plevar]s + cQ
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/62T7A2r5 < et Irfllps 1Vrellps [ K2 |peo IVATE]|Ls
€ 2
+€i e[l ia IVEE] oo VAT
+f~:4 7]l a IVa® |0 |1R || IVATE |1
+64 0% |le0 IVTEllps 1R ||pe I VATE |1,
+e* [|a%]| oo 117 Ilps [[VR®[| s ||V Ar®| 2
3/2 1/2
< Celre |32 lers |18 €2V Are ||, + Ce32||r< |2 |2V A< |
< C(6+€3/2)Q”62VA7'5”]L2
1
< E”EQVA’I‘E”HQ} + C (24 Q?
/62T8A2r5 < 265 (|7 Ips IVre s IR (Ipe [IVAT| L
¢ 2
+e5 |I7€|ILe IVRE]| s VAT |2
< CErf|2y llert |l ||E2 VAT ||
< i|| VAl + Ot QP
S 13 € |2 €
/ E2FA%E| < ||VF| [[E2VArt,,

< ClleVAr|y,

1
< 18 ||€2VAT6||E2 +C
By adding the previous inequalities we get:
d
7 (||6A7«6||§L2) +e” |eVAre|, < C(1+ Q) +£°P(Q), (5.4)

where P is an e-independent polynomial.
By summing (5.2), (5.3) and (5.4) we finally have:

d
=Q+e? (V1| + 1 Ar°|22 + VA2 ) < C(1+ Q) + eP(Q),

which implies the inequality (5.1). Classically we have the existence of a time T, such that
lim T, = +o0 and 7°¢ is bounded independently from ¢ in LL*° (O, T; H! (QE)) and er® is bounded

e—0

independently from ¢ in L*° (O,T; HQ(QE)) forall0 < T <T,. O

Remark 5.2. By applying Poincaré’s lemma we also get that for all T > 0,

||TE||L°°(0,T;L2(QE)) = O(e),

i.e. we get a real asymptotic expansion at the second order in 1.2(Q) for finite times.
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Remark 5.3. We have studied here the behaviour of Landau-Lifschitz equations with an ex-
change coefficient €2 in a thin layer of thickness €. That is the case where the thickness of the

boundary layer (if there were any, cf [7]) and the domain’s thickness are of the same size. If

we instead consider a thin layer with a thickness e® (>0, a = P € Q ), we perform now an
q

asymptotic expansion at the scale 5% and we see two different behaviour. If a > 1 we get the
same type of behaviour than that of the case o = 1, i.e. the behaviour of a thin layer and the
localization of H at the low orders. If a < 1, the layer’s thickness is bigger than the characteris-
tic thickness of the boundary layer. We then obtain a boundary layer in the thin layer but with
a smaller thickness (e17%) and we also get at the low orders the localization of H.

A Proof of theorem 2.7

Theorem 2.7. Let Qy = (0,1)3. Then there exists an absolute constant c such that for all
u € HP (Q()),

1 1
1 12

&y
o ]

%

&y
o ]

%

>

Proof: We have the classical Sobolev’s injection: H/*(Qg) C L%(9g). We will prove this
theorem in three steps.

3 [ 1
lullziz o) < e [ Z

i=1 =

L2(Q0) L2(Qo)

Step 1. We replace €y by R® and assume that u € C3(R®). We write, using the Sobolev’s
inclusion H Qo) C L2(Q),

1
§ N 5
lullnesy < colll g oy = o [ 1+ lefE)ial ae) (A1)

where 4 is the Fourier transform of u. Let A = (A1, A2, A3) € R3, \; > 0 and set y; = \;z; for all
i =1,2,3. We define the function vy € C3(R?) as follows:

uA(Y1,Y2,Y3) = u Nt Us
b b A17)\27A3 .

We have immediately

1

loalleqes) = (T ) ™ llullue e,
9x(61,62,83) = (H?:l Ai) (A&, Aada, A3E3).

Let & = (M&1, A2é2, A3€3). We have

loalys oy = (ﬁx) [t d+ [ 1efraere d&]
@A) {HUHURSJFC > / (5) |2d£]
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Cauchy-Schwarz’ lemma, gives

3

1
2 2
[ @Hae)pa < (/ &Pl dfi) (/ &4 laf? d;-z-)
R3 R3 R3
‘ ou 3 0%u 2
0% {12 (rs) 0z ILQ(R3).

Inequality (A.1) applied to vy yields

N[

5

3 12 3 3 1
1 || 0ull? 0%u|?
[ullLizgs) < Ai lullf2mey +C Y =5 ||5— = ; (A.2)
(R3) E ? L2(R3) z:Z]_ )\Zg B.Tz L2(R3) 8.’1:12 L2(R3)
and since (A.2) is valid for all choices of A1, A2, A3, we can take
3 1 3
‘ aa_u 1 3_2% 4
T; z;
A = c3 LR L7 (&%) fori=1,2,3,
||u||L2(R3)
Hence,
ull ﬁ Ou ||4 0u i3
u||pzrs) < €1 — — .
= 10z s sy 11022 s

Step 2. We will show that there exists an absolute constant co > 0, such that if u € C3(y),

— 1 4\°
then there exists @ € C3(€)1), where ; = (—5, §> such that
o o'a
o= <ol = L j=0,1,2 i=1,2,3.
Bxf L2 83;] 5
(1) @ 1112 (20)

We use the classical Babitch extension operators (see [1], [13]); we first extend u to the domain

14
( ) x (0,1)? using

33
[ u(z) for 1 € [0,1],
’ 1
Z(_])la] U(—jxl,.’EQ,...,lEd) for HATNS |:_§70) )
Eju(z) ={ =1

. . 4
(_J)laj U(]. _.7('7"1 - 1)1'T27"' awd) for T1 € (17 §:| )

M-

<
Il
—

\

where (aq, ag, a3) is the unique solution to the system

(=) e =1, k=0,1,2. (A.3)

3
=1

J
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We have immediately

O'Elu 10
=F—, 1=0,1,2,1=1,2,3
8.’Ei ! Gacé’ sy 4y 1 )&y 9y
and (A.3) implies that Eju € C? ([-1/3,4/3] x [0,1]?) if u € C*(Qy).
Moreover
kol |2 ko,
/ O Boul g, / ol "
(1/34/3)x01)2 | 073 (134902 | 0k ,
oku|? ’ Oku
= — dx—l—/ —i) ko, Jx1, T2, ...,2q)| dx
/Qo O (~1/3,0)x(0,1)? ;( N eig, ’“( v )
2
3 2
oFu oFu
-I-/ — o, ——(1 —j(z1 — 1), z9,...,24 dxﬁC/ —| dz.
(1,4/3)x (0,1)? j;( figertl — 3t~ 1) ) "oy |0

The extension is complete in the direction z;. The same argument can be applied successively
in the directions x9, 3 so that we reach the domain 2; and the extended function satisfies

Step 3. We will show that we can localize without mixing the directions. Let ¢ € Co (R) be

2 2
o'u

]
ox;

3
= V1

o

l 1=0,1,2 i=1,2,3.
i
7 ]Lz(Qo)

L2()

such that supp ¢ C (—1/3,4/3), 0 < ¢ <1 and ¢ =1 on [0,1]. Set ®(z1,z2,x3) H<p (24)-

We have immediately that ®7 € C2(R?) and lullr o) < 19Uy rsy < eslullrr( QO) for all
1 <7 < 400, where @ is defined in step 2 and c3 is an absolute constant. Moreover,

o’ou 22: 20 D

2 l i 2—14

Let Ky = supy (E?:o C§|¢(i)|), we have

5] = 5%

=0
which concludes the proof. [

92du
8:1012

81_ 8“

JeniL..)

L2(R3) IL2((21) L2 (Qg)]

Remark A.1. This proof can be generalized straightforward to the case of an embedding from

2d
HS (Q) Z’/LtO Lq (Q) where Q — (0’ 1)d C Rd and q = d — 25.

Acknowledgments: The author wishes to warmly thank Gilles Carbou and Pierre Fabrie for
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