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Abstract

We are interested here in small perturbations of electromagnetic waves in a satu-
rated ferromagnetic media. By means of an asymptotic expansion we prove that
the solution remains close on long times of the one of the Khokhlov-Zabolotskaya
equation.
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1 Introduction

In this article, we show that small perturbations of equilibrium states in fer-
romagnetic media give rise to standing and travelling waves that are stable
for long times. The evolution of their profiles is governed by the Khokhlov-
Zabolotskaya equation which can be considered as a semilinear heat equation
which has been perturbed in the transversal direction.
These results are obtained in the framework of micromagnetics. The basic vari-
able is the magnetization vector M whose dynamic equation was first given
by Landau and Lifschitz [8] and later in an equivalent form by Gilbert [7]:

∂tM = −M ∧ H −
γ

|M |
M ∧ (M ∧ H) in R

3. (1)
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The equation is completed by the Maxwell equations for the electromagnetic
field: 




∂t (H + M) −∇ ∧ E = 0 in R
3,

∂tE + ∇∧ H = 0 in R
3.

(2)

The Landau-Lifschitz-Maxwell equations admit stable equilibrium solutions
where the magnetization is uniform and everywhere parallel to the effective
magnetic field:

(M, H, E)α = (M0, α
−1M0, 0), α > 0. (3)

We are interested in small perturbations of the equilibrium states whose size
is measured by a small parameter ε. A formal derivation has been given by
H. Leblond and M. Manna [10]. T. Colin, C. Galusinski and H. Kaper have
studied the case of 1D-perturbations ([5]) and proved that the evolution of
1D-wave profile is governed on a slow time scale by semilinear heat equations.
We study here the case of 2D-perturbations: we add a dependence on a slow
transversal space direction y and we seek their behaviour. The perturbation
is taken in the form:

M(t, x, y) = M0 + ε2M̃(t̃, τ, x̃, ỹ),

H(t, x, y) = α−1M0 + ε2H̃(t̃, τ, x̃, ỹ),

E(t, x, y) = ε2Ẽ(t̃, τ, x̃, ỹ),

where t̃, τ, x̃, ỹ are new rescaled variables:

t̃ = ε2t, τ = ε4t, x̃ = ε2x, ỹ = ε3y.

We introduce then the vector

U
(
t̃, τ, x̃, ỹ

)
=
(
α−1/2M̃, H̃, Ẽ

)t (
t̃, τ, x̃, ỹ

)
,

and the perturbation U satisfy an equation in the form (we “forget” the ˜ on
t, x, y):





∂tU + ε2∂τU + A1∂xU + εA2∂yU + ε−2LU = B(U, U) + ε2T (U, U, U),

U(0, 0) = U0
0 ,

(4)

where the terms A1, A2, L, B and T are precised in Section 2.
Using a WKB method on U , we obtain that the leading term U0 breaks down
in five travelling and standing terms, U0 =

∑5
j=1 uj, which satisfy:





(∂t + vj∂x) uj = 0,

∂x

(
∂τuj − Dj∂

2
xuj + Bj(uj, ∂xuj) + Fj(uj, uj, uj)

)
= Cj∂

2
yuj,

(5)
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where the last equation is the Khokhlov-Zabolotskaya equation and

vj ∈



0, ±

(
1

1 + α

)1/2

, ±

(
1 + (1 − |k · M0|

2)α

1 + α

)1/2




is the speed of the wave in the direction k (the x-direction).
Through the study of the leading term of the expansion, we prove the following
result, not yet stated to our knowledge:

Theorem 1.1 Let D > 0, C 6= 0. Let B : (Rk)2 → R
k a bilinear application

and
F : (Rk)3 → R

k a trilinear application. Let u0 ∈ (Hs(R2))k, s > 1. Then

there exists a time T > 0 and an unique function u ∈ C0
(
[0, T ]; (Hs(R2))k

)

solution of the Khokhlov-Zabolotskaya equation:




∂x

(
∂τu − D∂2

xu + B(u, ∂xu) + F (u, u, u)
)

= C∂2
yu in R

2,

u(τ = 0, x, y) = u0(x, y) in R
2.

We then prove that the general solution of Eq. (4) remains close to the leading
term U0 of the asymptotic expansion on a slow time scale (i.e. with the change
τ = ε2t):

Theorem 1.2 Let us assume we are in the ferromagnetic case (assumption
on the structure of the equations) with an initial data U 0

0 ∈ H
s(R2) (s > 6). Let

T0 > 0 such that U0 =
∑5

j=1 uj, solution of Eqs. (5), lies in C ([0, T0/ε
2]; Hs−1(R2)).

There exists ε0 > 0 such that for all 0 < ε < ε0, there is an unique solution
U ε ∈ C0 ([0, T0/ε

2]; Hs−5(R2)) of

∂tU
ε + A1∂xU

ε + A2∂yU
ε +

1

ε2
LU ε = B(U ε,U ε) + ε2T (U ε,U ε,U ε),

with U ε(0, x, y) = U0
0 (x, εy). Moreover

‖U ε − U ε
0‖L∞([0,T0/ε2]×R2) = o(1) as ε → 0,

where U ε
0 (t, x, y) = U0(t, ε

2t, x, εy).

Remark 1.1 To obtain the equation fulfilled by the leading term U0, we as-
sume that the profiles U1 and U2 satisfy a sublinear growth condition (cf Lemma
3.2). But the leading profile U0 does not allow to build U1 and U2 with such
properties. We use then low-frequency cut-offs methods ([2], [3], [11]) to get an
approximation of the leading profile with which we build the remaining terms
of the expansion and prove Theorem 1.2.

In Section 2 we give the complete mathematical model. The system of partial
differential equations which governs the spatio-temporal evolution of the per-
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turbations belongs to a general class of hyperbolic equation for vector-valued
functions that we examine in Section 3. Performing an asymptotic expansion,
we show that the equation admits an asymptotic solution that exhibits stand-
ing and travelling waves. The wave profiles move around on a slow time scale
(measured in units of ε2) according to the Khokhlov-Zabolotskaya equation.
By means of nonlinear optics techniques, we show that the asymptotic solu-
tion remains close to the exact solution of the hyperbolic equation on the long
time scale as ε goes to zero. The main result for the general case is stated
in Theorem 3.9 (Section 3.2.3), the local existence of regular solution for the
Khokhlov-Zabolotskaya equation is stated in Theorem 3.4 (Section 3.2.1).

The derivation of the asymptotic solution and the proof of the convergence
theorem require several hypotheses, which are satisfied in the case of the
Landau-Lifschitz-Maxwell equations (Section 4). We find that the magnetiza-
tion as well as the electromagnetic field variables breaks into standing waves
and up to four travelling waves, whose speed of propagation varies with the
equilibrium state.

2 Mathematical model

The state of a ferromagnet is described by the magnetization vector M whose
evolution is governed by the Landau-Lifschitz equation:

∂M

∂t
= −M ∧ H −

γ

|M |
M ∧ (M ∧ H) in R

3, (6)

where γ is a dimensionless damping coefficient and H the magnetic field. We
can note that the magnitude |M | of M is an invariant of this equation. The
electromagnetic field fulfills the Maxwell’s equations:





∂(H + M)

∂t
−∇ ∧ E = 0 in R

3,

∂E

∂t
+ ∇∧ H = 0 in R

3,
(7)

where the equations are in dimensionless form and the coefficients have been
set equal to one.

2.1 Basic solution

The system of equations (6)-(7) admits a family of constant solutions,

(M, H, E)α = (M0, α
−1M0, 0), α > 0,

4



where M0 is an arbitrary vector in R
3 and α > 0 assures that the solution is

stable. We may assume without restriction that |M0| = 1. We are interested
in the spatio-temporal evolution of long-waves and transverse perturbations
of such solutions. The perturbations are measured in terms of an arbitrarily
small positive parameter ε and have the form:

M(t, x, y) = M0 + ε2M̃(t̃, τ, x̃, ỹ),

H(t, x, y) = α−1M0 + ε2H̃(t̃, τ, x̃, ỹ),

E(t, x, y) = ε2Ẽ(t̃, τ, x̃, ỹ),

where M̃ , H̃ and Ẽ are O(1) as ε goes to 0, and:

x̃ = ε2x, ỹ = ε3y, t̃ = ε2t, τ = ε4t.

Remark 2.1 We look for solutions propagating in the x-direction (still un-
known) for which the dispersion and the non-linear effects occur at the same
long time scale. This assumption sets the size of the non-linearity and the
scales of t̃, x̃ and τ . We want to study here transversal deformations of a
quasi-plane wave. This case corresponds to the scaling ỹ = εpy with p > 2.
There is a dominant diffraction effect that occurs for the smallest value of p for
which we can “solve” the equation, which is here p = 3. If we take 2 < p < 3,
the diffraction effect prevails over the dispersion and prevents us to observe
the non-linear effects. On the contrary, if p > 3 the diffraction is negligible.

If (M, H, E) is a solution of equations (6)-(7) then M̃ , H̃ and Ẽ have to fulfill:

ε2∂t̃M̃ + ε4∂τM̃ = −M0 ∧ H̃ + α−1M0 ∧ M̃ − ε2M̃ ∧ H̃

−
γ

|M |

[
M0 ∧ (M0 ∧ H̃) − α−1M0 ∧ (M0 ∧ M̃)

+ε2M0 ∧ (M̃ ∧ H̃) + ε2M̃ ∧ (M0 ∧ H̃)

−ε2α−1M̃ ∧ (M0 ∧ M̃) + ε4M̃ ∧ (M̃ ∧ H̃)
]
,

(8)





ε2∂t̃H̃ + ε4∂τ H̃ − ε2∇̃x̃ ∧ Ẽ − ε3∇̃ỹ ∧ Ẽ = −ε2∂t̃M̃ − ε4∂τM̃,

ε2∂t̃Ẽ + ε4∂τ Ẽ + ε2∇̃x̃ ∧ H̃ + ε3∇̃ỹ ∧ H̃ = 0,
(9)

In Eq. (8) we have left the denominator’s term |M | unchanged. It induces
technical complications that are non-essential for the arguments to be pre-
sented. Then we will change slightly the equation to completely avoid these
complications: we replace the term |M | by |M0| = 1 since this quantity is
conserved.
We are interested in solutions of Eqs. (6)-(7) that describe a travelling wave
propagating in the direction k̃ with transversal perturbations in the direction
l̃ where k̃ and l̃ are fixed unit vectors, k̃ is not parallel or antiparallel to M0
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and l̃ is not parallel or antiparallel to k̃. By assuming that x̃ is the coordinate
in the k̃-direction and ỹ in the l̃-direction we may perform the substitutions:

∇̃x̃ = k̃∂x̃ and ∇̃ỹ = l̃∂ỹ.

Henceforth we omit the tilde, so the equations to be considered are:

ε2∂tM + ε4∂τM = −M0 ∧ H + α−1M0 ∧ M − ε2M ∧ H

−γ
[
M0 ∧ (M0 ∧ H) − α−1M0 ∧ (M0 ∧ M)

+ε2M0 ∧ (M ∧ H) + ε2M ∧ (M0 ∧ H)

−ε2α−1M ∧ (M0 ∧ M) + ε4M ∧ (M ∧ H)
]
,

(10)

ε2∂tH + ε4∂τH − ε2k ∧ ∂xE − ε3l ∧ ∂yE = −ε2∂tM − ε4∂τM, (11)

ε2∂tE + ε4∂τE + ε2k ∧ ∂xH + ε3l ∧ ∂yH = 0. (12)

2.2 Vector Formulation

The following formulation and properties are obtained following the work of
T. Colin, C. Galusinski and H. Kaper ([5]).
The system of equations (10)-(12) can be written as a single equation for a
function:
U : R

+∗
t × [0, T ] × Rx × Ry → R

9 = R
3 × R

3 × R
3,

U(t, τ, x, y) =




α−1/2M(t, τ, x, y)

H(t, τ, x, y)

E(t, τ, x, y)




, t ≥ 0, τ ∈ [0, T ], x ∈ R, y ∈ R.

The factor α−1/2 is introduced so that the problem have certain symmetry
properties (cf Section 3). After having divided once more by ε2, U has to
fulfill for all t ∈ R

+∗, τ ∈ [0, T ], x ∈ R and y ∈ R :

∂tU+ε2∂τU+A1∂xU+εA2∂yU+ε−2(L0+L1)U = B(U, U)+ε2T (U, U, U), (13)
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where A1, A2, L0 and L1 are linear operators in R
9,

A1u =




0 0 0

0 0 −k ∧ ·

0 k ∧ · 0







u1

u2

u3




, A2u =




0 0 0

0 0 −l ∧ ·

0 l ∧ · 0







u1

u2

u3




,

L0u =




−α−1M0 ∧ · α−1/2M0 ∧ · 0

α−1/2M0 ∧ · −M0 ∧ · 0

0 0 0







u1

u2

u3




,

L1u = γ




−α−1M0 ∧ (M0 ∧ ·) α−1/2M0 ∧ (M0 ∧ ·) 0

α−1/2M0 ∧ (M0 ∧ ·) −M0 ∧ (M0 ∧ ·) 0

0 0 0







u1

u2

u3




,

B is a bilinear map on R
9 × R

9,

B(u, v) =




B1(u, v)

−α1/2B1(u, v)

0




,

with

B1(u, v) = −
1

2
(u1 ∧ v2 + v1 ∧ u2) −

1

2
γM0 ∧ (u1 ∧ v2 + v1 ∧ u2)

−
1

2
γ
[
u1 ∧

(
M0 ∧ (v2 − α−1/2v1)

)
+ v1 ∧

(
M0 ∧ (u2 − α−1/2u1)

)]
,

and T is a trilinear map on R
9 × R

9 × R
9,

T (u, v, w) = α1/2γ




T1(u, v, w)

−α1/2T1(u, v, w)

0




,

with

T1(u, v, w) =
1

6
[u1 ∧ (v2 ∧ w1) + u1 ∧ (w2 ∧ v1) + w1 ∧ (v2 ∧ u1)

+w1 ∧ (u2 ∧ v1) + v1 ∧ (u2 ∧ w1) + v1 ∧ (w2 ∧ u1)] .
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Here u, v and w are arbitrary vectors in R
9, u = (u1, u2, u3)

t, v = (v1, v2, v3)
t,

w = (w1, w2, w3)
t with ui, vi, wi ∈ R

3, i = 1, 2, 3.

2.3 Auxiliary properties

Since the vector product is antisymmetric, the operators A1 and A2 are sym-
metric with respect to the usual scalar product in R

9: Aiu·v = u·Aiv , u, v ∈
R

9, i = 1, 2.

The operators L0 and L1 are respectively antisymmetric and symmetric with
respect to the scalar product in R

9: L0u·v = −u·L0v, L1u·v = u·L1v, u, v ∈
R

9.

The bilinear map B and the trilinear map T are symmetric, i.e. B(u, v) =
B(v, u) and T (u, v, w) = T (π(u, v, w)) for all u, v, w ∈ R

9 and any permuta-
tion π.

Lemma 2.1 The operator L = L0 +L1 induces an orthogonal decomposition,

R
9 = Ker L ⊕ Im L.

We have:

Ker L =
{
v = (v1, v2, v3)

t ∈ R
9, (α−1/2v1 − v2) ∧ M0 = 0

}
,

Im L =
{
v = (v1, v2, v3)

t ∈ R
9, v1 · M0 = 0, v2 = −α1/2v1, v3 = 0

}
.

Let P and Q be respectively the orthogonal projectors on Ker L and Im L,
and let R be the inverse of L on Im L, trivially extended to R

9. Then RL =
LR = I − P = Q. Furthermore, if Lu = v for (u, v) ∈ R

9 then Pv = 0 and
Qu = Rv. We also have the following lemma:

Lemma 2.2 The operator L1 is coercive on Im L,

(L1Qv) · (Qv) = γ(1 + α−1)(Qv) · (Qv), v ∈ R
9.

The maps B and T are transparent on Ker L,

PB(Pu, Pv) = 0, PT (Pu, Pv, Pw) = 0, u, v, w ∈ R
9.

8



3 A general equation

Equation (13) is a special case of the general partial diferential equation:

∂tU + ε2∂τU + A1∂xU + εA2∂yU + ε−2LU = B(U, U) + ε2T (U, U, U) (14)

in R
n where A1 and A2 are symmetric linear operators, L is a linear operator ,

B a symmetric bilinear map and T a symmetric trilinear map. In this section
we consider Equation (14), the application to the special case of Equation (13)
follows in Section 4. We first build an asymptotic expansion of Equation (14)
using formal power series expansion in the small parameter ε (Section 3.1).
Then we give precise asymptotic estimates of the various terms of the asymp-
totic solution (Section 3.2.1). Finally we show that the asymptotic solution
actually converges to the solution of Equation (14) on the slow time scale as
ε goes to 0 (Section 3.2.3).

3.1 Formal Asymptotic Expansion

We will now search an asymptotic formal expansion of U ≡ U(t, τ, x, y) in the
form

U ≡
(
U0 + εU1 + ε2U2 + . . .

)
.

This construction requires three hypotheses:

Hypothesis 1. R
n = Ker L ⊕ Im L.

Hypothesis 2. There exists C > 0 such that for all u ∈ R
n, (Lu) · u ≥

C‖Qu‖2, i.e. L is coercive on its image.

Hypothesis 3. PB(Pu, Pv) = 0 and PT (Pu, Pv, Pw) = 0 for all u, v, w ∈
R

n.

Here P and Q are respectively the orthogonal projections on Ker L and Im L.
Let R the partial inverse of L on ImL, trivially extended to all of R

n. Then
RL = LR = Q and we have:

Lemma 3.1 If Lu = v for some u, v ∈ R
n then Pv = 0 (solvability condition)

and Qu = Rv.

We substitute the asymptotic expansion of U in (14) and we assume that
U0 = O(1), εUi = o(1), i = 1, . . . , 4, as ε goes to 0. We then get:

At the order ε−2: LU0 = 0, i.e. QU0 = 0 and therefore U0 = PU0.

9



At the order ε−1: LU1 = 0, i.e. QU1 = 0 and therefore U1 = PU1.

At the order ε0: LU2 = V2(U0) = B(U0, U0) − (∂t + A1∂x)U0.
Since U0 = PU0 and B is transparent on Ker L, the solvability condition
PV2 = 0 reduces to

(∂t + PA1P∂x)U0 = 0

The operator PA1P is symmetric. Then there exists k projections Pj and k
numbers vj (j = 1, . . . , k, k ≤ n) such that:

P =
k∑

j=1

Pj, PA1PPj = vjPj, j = 1, . . . , k.

Hence the solvability condition is met if

(∂t + vj∂x)PjU0 = 0, j = 1, . . . , k. (15)

As U0 = PU0 and R = 0 on Ker L the equation QU2 = RV2 reduces to:

QU2 = RB(U0, U0) − RA1∂xU0. (16)

At the order ε: LU3 = V3(U0, U1) = 2B(U0, U1)− (∂t + A1∂x) U1 −A2∂yU0.
By the same way, the solvability condition PV3 = 0 becomes:

(∂t + PA1P∂x) U1 + PA2P∂yU0 = 0,

and then,

(∂t + vj∂x) PjU1 + PjA2

k∑

i=1

∂yPiU0 = 0, j = 1, . . . , k. (17)

Remark 3.1 These equations allow us to determine U1.

The equation QU3 = RV3 also reads:

QU3 = 2RB(U0, U1) − RA1∂xU1 − RA2∂yU0.

At the order ε2:

LU4 = V4(U0, U1, U2) = 2B(U0, U2) + B(U1, U1) + T (U0, U0, U0)

−∂τU0 − A2∂yU1 − (∂t + A1∂x)U2.

Since B and T are transparent on Ker L the solvability condition PV4 = 0
reduces to:

∂τU0 + PA2∂yU1 + (∂tPU2 + PA1∂xU2) = 2PB(U0, U2)

10



We rewrite this equation using Eq. (16) and the transparency condition on
Ker L,

∂τU0 + (∂t + PA1P∂x) PU2 + PA2P∂yU1 − PA1RA1P∂2
xU0

= 2PB(U0, RB(U0, U0)) − 2PB(U0, RA1∂xU0) − PA1R∂xB(U0, U0).

This equation represents a system of k equations,

∂τPjU0 + (∂t + vj∂x)PjU2 + PjA2

k∑

i=1

∂yPiU1 − PjA1RA1

k∑

i=1

∂2
xPiU0

= 2PjB(U0, RB(U0, U0)) − 2PjB(U0, RA1∂xU0)

−PjA1R∂xB(U0, U0), j = 1, . . . k.

(18)

The j-th equation involves the rate of change of PjU0 on the slow (τ) time scale
as well as the rate of change of PiU1, i = 1, . . . , k in the transversal direction
(y) and the rate of change of PjU2 along the characteristic determined by vj

on the regular (t) time scale. We can separate the first two effects from the
last one if U2 fulfills a sublinear growth condition,

lim
t→∞

1

t
‖U2(t, τ, ·, ·)‖Hs = 0, (19)

uniformly on [0, T ] for some sufficiently large s. (Hs is the usual Sobolev space
of order s.) The condition (19) also implies that ε‖U2‖Hs = o(1) as ε goes to
0. The separation is accomplished by averaging over t along characteristics.
Formally,

Gvu(t, x) = lim
T→+∞

∫ T

0
u(x + vs, t + s) ds, v ∈ R, (20)

whenever the limit exists. The following lemma is taken from [9].

Lemma 3.2

(i) If (∂t + v∂x)u = 0 then Gv′u exists for all v′. Moreover Gv′u = u if v′ = v
and Gv′u = 0 otherwise.

(ii) If (∂t + v∂x)u = 0 and (∂t + v′∂x)u
′ = 0 then Gv′′(uu′) = uu′ if v′′ = v′ = v

and Gv′′(uu′) = 0 otherwise.

(iii) If u satisfies a sublinear growth condition, lim
t→+∞

1

t
‖u(t, .)‖L∞(Rn) = 0 then

Gv(∂t + v∂x)u exists and Gv(∂t + v∂x)u = 0.

11



The application of Gvj
to both sides of Equation (18) eliminates the transport

term and reduces the equation to:





∂τPjU0 +PjA2

k∑

i=1

∂yGvj
PiU1 − PjA1RA1Pj∂

2
xPjU0

= 2PjB(PjU0, RB(PjU0, PjU0)) − 2PjB(PjU0, RA1∂xPjU0)

−PjA1R∂xB(PjU0, PjU0), j = 1, . . . k.

(21)

We have now to determine the term Gvj
PiU1. We then use Equation (17) and

we assume that U1 satisfies the same sublinear growth condition as U2. We
get:

Gvj

[
(∂t + vi∂x)PiU1 + PiA2

k∑

l=1

∂yPlU0

]

= (vi − vj)∂xGvj
PiU1 + PiA2Pj∂yPjU0 = 0,

(22)

for all i, j = 1, . . . , k. We then get a compatibility condition which is PiA2Pi =
0 for all i = 1, . . . , k.

Remark 3.2 This compatibility condition gives information on the direction
of the transversal perturbation as we can see it in Section 4. We obtain: l ·k =
l · M0 = 0.

We also remark that the operator PjA1RA1Pj is nonnegative because of Hy-
pothesis 2 and proportional to Pj, PjA1RA1Pj = DjPj where Dj is a scalar,
Dj ≥ 0.
After taking the derivative of Eq. (21) with respect to x we get that the
solvability condition PV4 = 0 thus yields a system of k nonlinear Khokhlov-
Zabolotskaya type equations on the slow (τ) time scale, for j = 1, . . . , k,

∂x

(
∂τPjU0 − Dj∂

2
xPjU0 + Bj(PjU0, ∂xPjU0) + Fj(PjU0, PjU0, PjU0)

)

= Cj∂
2
yPjU0,

(23)

where Bj is a bilinear map, Bj(u, v) = 2PjB(u, RA1v) + 2PjA1RB(u, v)
(thanks to the symmetry of B), Fj a trilinear map, Fj(u, v, w) = 2PjB(u, RB(v, w)),

and Cj the operator Cj =
∑

i6=j

1

vi − vj

PjA2PiA2Pj.

Remark 3.3 The Khokhlov-Zabolotskaya equation arises for the first time in
gas theory [13] and describes nonlinear diffractive waves [4,6,10].

Furthermore if we use Equation (21) to eliminate the τ derivative in Eq.
(18) we find that the solvability condition PV4 = 0 also yields a system of k

12



transport equations for PjU2 on the regular (t) time scale,

(∂t + vj∂x) PjU2 = Sj(U0, U1), j = 1, . . . , k, (24)

where:

Sj(U0, U1) = PjA1RA1

∑

i6=j

∂2
xPiU0 − PjA2

∑

i6=j

(
∂yPiU1 − ∂yGvj

PiU1

)

+2Pj

(
B(U0, RB(U0, U0)) − B(PjU0, RB(PjU0, PjU0))

)

−2Pj

(
B(U0, RA1∂xU0) − B(PjU0, RA1∂xPjU0)

)

−PjA1R∂x

(
B(U0, U0) − B(PjU0, PjU0)

)
.

If Equations (23)-(24) are fulfilled, then QU4 = RV4. The equation reduces to:

QU4 = 2RB(U0, U2)+RB(U1, U1)+RT (U0, U0, U0)−RA2∂yU1−R∂tU2−RA1∂xU2.

Lemma 3.3 If U1 and U2 fulfill the sublinear growth condition (19), then

U0 =
k∑

j=1

PjU0 where each PjU0 satisfies a homogeneous transport equation on

the regular (t) time scale (Eq. (15)) and a nonlinear Khoklov-Zabolotskaya
equation on the slow (τ) time scale (Eq. (23)).

3.2 Asymptotic Estimates

For the convergence proof in the next section we need asymptotic estimates
of the coefficients U0, U1, U2, U3 and U4. The estimates require an additional
hypothesis:

Hypothesis 4. For all j ∈ {1, . . . , k}, either Dj > 0 or, if Dj = 0, the term
involving x derivative in Eq. (23), i.e. Bj, is zero.

Hypothesis 5. U(t = 0, τ = 0, x, y) = U 0
0 (x, y).

Our first concern is the existence and uniqueness of U0.

3.2.1 Existence of the profiles

Theorem 3.4 Under the hypothesis 4 and if U 0
0 = PU0

0 ∈ H
s(R2), s > 1,

there exists a time T > 0 and an unique function

U0 ∈ C0


[0, T ];

⋂

1≤l≤s

W
l,∞

(
Rt; H

s−l(R2)
)

 ,

13



such that U0 =
∑k

j=1 PjU0 =
∑k

j=1 uj, where the functions uj, j = 1, . . . , k
satisfy Eqs. (15) and (23):





(∂t + vj∂x) uj = 0 (Transport equation),

∂x

(
∂τuj − Dj∂

2
xuj + Bj(uj, ∂xuj) + Fj(uj, uj, uj)

)
= Cj∂

2
yuj,

where the second equation is the Khokhov-Zabolotskaya equation when Dj > 0
and Cj 6= 0.
Furthermore U0(0, 0, ·) = U0

0 .

Proof. Let uj = PjU0 and u0
j = PjU

0
0 .

We have to solve Eqs. (15) and (23). We will at first only consider Eq. (23)
since Eq. (15) is an equation of transport. We denote ũj the solution of Eq.
(23).
The (formal) operator ∂−1

x ∂2
y raises some problems. We define a unitary group

on H
s(R2) to get rid of this term. Let Sj(τ) the operator defined by:

Fx,y

(
Sj(τ)u

)
(ξ, η) = eiτCj

η2

ξ

(
Fx,y(u)

)
(ξ, η), τ ∈ R, (ξ, η) ∈ R

∗ × R,

where Fx,y is the 2D-Fourier transform. We consider now the function
wj(τ, x, y) = Sj(−τ)ũj(τ, x, y) which satisfies:

∂τwj − Dj∂
2
xwj + Ãj(τ, wj)∂xwj + F̃j(τ, wj) = 0, (25)

where

Ãj(τ, u)v = Sj(−τ)Bj(Sj(τ)u, Sj(τ)v),

F̃j(τ, v) = Sj(−τ)Fj(S(τ)v, S(τ)v, S(τ)v).

We denote by Λ the pseudodifferential operator with the symbol:

σ(ζ) = (1 + |ζ|2)1/2, ζ = (ζ1, ζ2). (26)

If we denote by ( , ) the scalar product in L
2(R2), the scalar product in H

s(R2)
is defined by (u, v)s = (Λsu, Λsv).
Because of Hypothesis 4, if Dj = 0, Eq. (25) reduces to: ∂τwj + F̃j(τ, wj) = 0.
Thanks to the Cauchy-Lipschitz theorem we get the existence of a time Tj > 0
and of
wj ∈ C0([0, Tj[; H

s(R2)).
Now if Dj > 0, we can approximate the solution of Eq. (25) thanks to the
Galerkin method on [−L, L]2 with the Dirichlet boundary condition. We then
have to perform some energy estimates on vj in H

s(R2) before taking the limit
(we perform the estimates on vj rather than on its approximate solution to
lighten the proof). We already have:

‖Ãj(τ, u)v‖Hs ≤ C‖u‖Hs‖v‖Hs, ‖F̃j(τ, v)‖Hs ≤ C‖v‖3
Hs,
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where C does not depend on τ nor on L. By applying Λs to Eq. (25) and
performing the estimates we obtain:

d

dτ
‖wj‖

2
Hs(R2) + Dj‖∂xwj‖

2
Hs(R2) ≤ C

(
‖wj‖

2
Hs(R2) + ‖wj‖

4
Hs(R2)

)
.

So there exists Tj > 0 and vj ∈ C0([0, Tj[; H
s(R2)) solution of Eq. (25). Back

to ũj, we have ũj ∈ C0(0, Tj; H
s(R2)) and the transport equation gives:

uj(t, τ, x, y) = ũj(τ, x − vjt, y).

So we get uj thanks to a translation in time of ũj. Finally,

uj ∈ C0


[0, Tj[;

⋂

0≤l≤s

W
l,∞(Rt; H

s−l(R2))


 .

2

Remark 3.4 This also proves the theorem 1.1 on the Khokhlov-Zabolotskaya
equation given in the introduction.
Following the work of Ukai [12] on the KP equation we can also prove the
existence of solutions to the Khokhlov-Zabolotskaya (KZ) equation but we have
then to impose too many conditions on the initial data particularly non physical
ones.

The equations on the other profiles pose some problems: we want to obtain
their existence in spaces derived from H

s(R2) but it comes the operator ∂−1
x

which imposes the existence in H
s
loc(R

2) only and prevents to get profiles (U1

and U2) which satisfy the sublinear growth condition. To get rid of this problem
we use a technique of low-frequency cut-offs (see [2], [3], [11]) to work with an
approximated “well-prepared” leading profile. We then modify the equations
fulfilled by U1, U2,. . . so that they depend on the truncation of the main
profile rather than the main profile itself. We next use these modified profiles
to obtain an approximate solution of Eq. (14) and then prove the stability of
the approximation.

Definition 3.1 (Low-frequency truncation) Let χ be a smooth function
in Rx, such that |χ| ≤ 1, χ(x) = 0 for |x| < 1 and χ(x) = 1 for |x| ≥ 2.
Define the Fourier multiplier χδ(Dx) as the operator acting on H

s(R2) by:

χδ(Dx) : f 7→ F−1
ξ,η→x,y

(
χ

(
ξ

δ

)
f̂(ξ, η)

)
.

The dominate convergence theorem shows that:

χδf − f → 0 in H
s.

15



Moreover we have the following lemma:

Lemma 3.5 If f ∈ L
∞
(
0, T ; Hs(R2)

)
then

lim
δ→0

sup
t∈[0,T ]

‖χδf(t, ·) − f(t, ·)‖Hs(R2) = 0.

Proof. let Iδ(t) = ‖χδf(t, ·) − f(t, ·)‖Hs(R2). The sequence (Iδ)δ is a non in-
creasing sequence of nonnegative continuous functions which simply goes to
zero as δ goes to zero. The Dini’s theorem gives us the result. 2

Let us introduce Xs,t the space of functions defined on [0, T ] × Rt × R
2
x,y:

Xs,T =
{
u, sup

{
‖∂α

t ∂β
x∂γ

y u(t, τ, ·, ·)‖L2(R2) : t ∈ [0,∞), τ ∈ [0, T ]
}

< ∞
}

,

for all α, β, γ ≥ 0 sucht that 0 ≤ α + β + γ ≤ s.

Lemma 3.6 If U0
0 ∈ H

s(R2), s > 1, there exists an unique U δ
1 ∈ Xs−1,T such

that: 



U δ
1 = PU δ

1 =
k∑

j=1

PjU
δ
1 ,

(∂t + vj∂x) PjU
δ
1 + PjA2

∑

i6=j

∂yPiU
δ
0 = 0, ∀j = 1, . . . , k.

Moreover ‖U δ
1‖Xs−1,T

≤
C

δ
‖U0‖Xs,T

, where C does not depend on δ nor on

‖U0‖Xs,T
.

Proof. As we have truncated U0, we have that

PjU
δ
0 (t, τ, x, y) = (∂xϕ

δ
j)(t, τ, x, y) = (∂xϕ̃

δ
j)(τ, x − vjt, y),

with ‖ϕδ(t, τ, ·, ·)‖Hs(R2) ≤
1

δ
‖U δ

0 (t, τ, ·, ·)‖Hs(R2).

As we assume that U1(t = 0) = 0 we have for all j = 1, . . . , k,

PjU
δ
1 = −

∑

i6=j

PjA2Pi

∫ t

0
∂yPiU

δ
0 (s, τ, x − vj(t − s), y) ds

= −
∑

i6=j

PjA2Pi

∫ t

0
∂y∂xϕ̃

δ
i (τ, x − vjt + (vj − vi)s, y) ds

= −
∑

i6=j

1

vj − vi

PjA2Pi

(
∂yϕ̃

δ
i (τ, x − vit, y) − ∂yϕ̃

δ
i (τ, x − vjt, y)

)
.

We then deduce that PjU
δ
1 ∈ Xs−1,T and ‖U δ

1‖Xs−1,T
≤

C

δ
‖U0‖Xs,T

. 2
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By the same way we prove:

Lemma 3.7 If we furthermore assume that U 0
0 ∈ H

s(R2), s > 3 and δ < 1,
we have

‖QU δ
2‖Xs−1,T

≤ C, ‖PU δ
2‖Xs−2,T

≤
C

δ2
,

‖QU δ
3‖Xs−2,T

≤
C

δ
, ‖QU δ

4‖Xs−3,T
≤

C

δ2
,

where the constant C only depends on ‖U0‖Xs,T
.

3.2.2 Estimate for the residual

We will now consider the truncated asymptotic expansion:

uε,δ(t, τ, x, y) = U δ
0 (t, τ, x, y) + εU δ

1 (t, τ, x, y) + ε2U δ
2 (t, τ, x, y)

+ε3QU δ
3 (t, τ, x, y) + ε4QU δ

4 (t, τ, x, y),

and we will inject it in Equation (14) and prove the smallness of the residuals

Rε,δ(t, τ, x, y) =
14∑

i=−2

εiRδ
i (t, τ, x, y).

Rδ
−2 = LU δ

0 = 0,

Rδ
−1 = LU δ

1 = 0,

Rδ
0 = ∂tU

δ
0 + A1∂xU

δ
0 − B(U δ

0 , U δ
0 ) + LQU δ

2 = 0,

Rδ
1 = ∂tU

δ
1 + A1∂xU

δ
1 + A2∂yU

δ
0 + LQU δ

3 − 2B(U δ
0 , U δ

1 ) = 0,

Rδ
2 = ∂tU

δ
2 + A1∂xU

δ
2 + A2∂yU

δ
1 + LQU δ

4 − B(U δ
1 , U δ

1 ) − 2B(U δ
0 , U δ

2 )

+∂τU
δ
0 − T (U δ

0 , U δ
0 , U δ

0 )

=
∑

j

(
Bj(PjU

δ
0 , ∂xPjU

δ
0 ) + Fj(PjU

δ
0 , PjU

δ
0 , PjU

δ
0 )
)

−χδ
(∑

j (Bj(PjU0, ∂xPjU0) + Fj(PjU0, PjU0, PjU0))
)

,

We do not have Rδ
2 = 0 since U δ

0 does not solve Equation (23) but:

∂x

(
∂τPjU

δ
0 − Dj∂

2
xPjU

δ
0 + χδ (Bj(PjU0, PjU0) + Fj(PjU0, PjU0, PjU0))

)

= Cj∂
2
yPjU

δ
0

The next residuals (Rδ
i )i=3,...,14 depend polynomially on U δ

0 , U δ
1 , U δ

2 , QU δ
3 , QU δ

4

and on their derivatives with respect to the slow time variable τ .
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Proposition 3.8 Assume s > 5. Then the residual fulfills the following esti-
mates:

sup
t∈[0,T/ε2]

‖Rε,δ(t, ε2τ, ·, ·)‖Hs−5(R2) =
(
f(δ) +

ε

δ6

)
O(ε2) + ε2g(ε),

and if s > 6,

‖Rε,δ‖L∞([0,T/ε2]×R2) =
(
f(δ) +

ε

δ6

)
O(ε2) + ε2g(ε)

where Rε,δ(t, x, y) = Rε,δ(t, ε2t, x, εy), f is a positive nonincreasing function
such that f(δ) → 0 as δ → 0, and g is a positive function such that g(ε) → 0
as ε → 0.

Proof. As said above, Rδ
−2 = Rδ

−1 = Rδ
0 = Rδ

1 = 0. The lemma 3.5 gives
supt∈[0,T/ε2]‖R

δ
2(t, ε

2τ, ·, ·)‖Hs(R2) = f(δ) where f is as stated in the proposition
3.8.
In order to estimate the following terms we need some bounds on ∂τU0, ∂τU1,...

If we consider Eq. (23) we get ‖∂τU0‖Xs−2,T
≤

C

δ
. Following Lemmas 3.6 and

3.7 we get:

‖∂τU
δ
1‖Xs−3,T

≤
C

δ2
, ‖∂τQU δ

2‖Xs−3,T
≤

C

δ
, ‖∂τPU δ

2‖Xs−4,T
≤

C

δ3
,

‖∂τQU δ
3‖Xs−4,T

≤
C

δ2
, ‖∂τQU δ

4‖Xs−5,T
≤

C

δ3
.

We can now estimate each term in the residual. We finally obtain the an-
nounced result. As s > 6 the classical Sobolev embedding yields the L

∞-
estimate. 2

3.2.3 Stability for the KZ approximation

We have shown so far that there exits a truncated approximate solution uε,δ to
Eq. (14) for times of order O

(
1
ε2

)
and whose residual is small. We now prove

that the untruncated leading term U0 remains close to the exact solution for
times of order O

(
1
ε2

)
. More precisely, following [3], we show that for any

T > 0 such that the leading term exists, the exact solution of Eq. (14) exists
on [0, T/ε2] and remains close to the leading term.

Theorem 3.9 Let Hypotheses 1-5 be satisfied. Let U 0
0 = PU0

0 ∈ H
s(R2),

s > 6. Let T0 > 0 such that U0 =
∑k

i=1 PjU0 lies in C ([0, T0/ε
2]; Hs−1(R2)),

where (PjU0)j=1,...,k fulfill Eqs. (15) and (23). There exists ε0 > 0 such that
for all 0 < ε < ε0, there is an unique solution U ε ∈ C0 ([0, T0/ε

2]; Hs−5(R2)) of

∂tU
ε + A1∂xU

ε + A2∂yU
ε +

1

ε2
LU ε = B(U ε,U ε) + ε2T (U ε,U ε,U ε),
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with U ε(0, x, y) = U0
0 (x, εy). Moreover

‖U ε − U ε
0‖L∞([0,T0/ε2]×R2) = o(1) as ε → 0,

where U ε
0 (t, x, y) = U0(t, ε

2t, x, εy).

Proof. We will look for the exact solution U ε as a perturbation of the trun-
cated asymptotic expansion U ε,δ:

U ε(t, x, y) = U ε,δ(t, x, εy) + Ũ δ(t, x, εy),

where U ε,δ(t, x, y) = uε,δ(t, ε2t, x, y). The error term fulfills:

∂tŨ
δ + A1∂xŨ

δ + εA2∂yŨ
δ +

1

ε2
LŨ δ = 2B(U ε,δ, Ũ δ) + B(Ũ δ, Ũ δ)

+3ε2T (U ε,δ,U ε,δ, Ũ δ)

+3ε2T (U ε,δ, Ũ δ, Ũ δ)

+ε2T (Ũ δ, Ũ δ, Ũ δ) + Rε,δ,

(27)

with the initial data Ũ δ(t = 0, x, y) = (U 0
0 − χδU0

0 )(x, y).
Local existence of Ũ δ in C ([0, T ]; Hs−5(R2)) ∩ C1 ([0, T ]; Hs−6(R2)) can be
proved using classical techniques (see [1] for example).
To obtain the H

s−5 estimates we apply the previously defined operator Λs−5

(see (26)) to (27) and we take the scalar product in L
2 with Λs−5Ũ δ. As H

l(R2)
is an algebra as soon as l > 1, there exists some constants C > 0 such that:

(B(V, V ′), V ′′)s−5 ≤ C‖V ‖Hs−5‖V ′‖Hs−5‖QV ′′‖Hs−5

+C‖V ‖Hs−5‖V ′′‖Hs−5‖QV ′‖Hs−5

+C‖V ′‖Hs−5‖V ′′‖Hs−5‖QV ‖Hs−5,

‖T (V, V ′, V ′′)‖Hs−5 ≤ C‖V ‖Hs−5‖V ′‖Hs−5‖V ′′‖Hs−5 ,

(LV, V )s−5 ≥ C‖QV ‖2
Hs−5 (Hypothesis 2).

We obtain:

1

2

d

dt
‖Ũ δ‖2

Hs−5 +
C

ε2
‖QŨ δ‖2

Hs−5 ≤ C‖U ε,δ‖Hs−5‖Ũ δ‖Hs−5‖QŨ δ‖Hs−5

+C‖QU ε,δ‖Hs−5‖Ũ δ‖2
Hs−5 + C‖Ũ δ‖2

Hs−5‖QŨ δ‖Hs−5

+Cε2‖U ε,δ‖2
Hs−5‖Ũ δ‖2

Hs−5 + Cε2‖U ε,δ‖Hs−5‖Ũ δ‖3
Hs−5

+Cε2‖Ũ δ‖4
Hs−5 + ‖Rε,δ(t, ε2t, ·, ·)‖Hs−5‖Ũ δ‖Hs−5

19



Following [3] we introduce t0(ε, δ) defined as:

t0(ε, δ) = sup
{
t ∈

[
0, T0/ε

2
]
, ‖Ũδ(t)‖Hs−5 ≤ 1

}
.

We also remark that:

‖U ε,δ‖Hs−5 ≤ C

(
1 +

ε4

δ4

)
, ‖QU ε,δ‖Hs−5 ≤ Cε2

(
1 +

ε2

δ2

)
.

By means of Young’s inequality, absorbing every term involving QŨ δ, we ob-
tain:

1

2

d

dt
‖Ũ δ‖2

Hs−5+
C

ε2
‖QŨ δ‖2

Hs−5 ≤ Cε2

(
1 +

ε8

δ8

)
‖Ũ δ‖2

Hs−5+Cε2
(
f(δ) +

ε

δ6
+ g(ε)

)
,

where f and g are as stated in Prop. 3.8. By Gronwall’s lemma,

‖Ũ δ‖2
Hs−5 ≤

(
‖Ũ δ(t = 0)‖2

Hs−5 + C
(
f(δ) +

ε

δ6
+ g(ε)

))

exp

(
Cε2

(
1 +

ε8

δ8

)
t

)
.

(28)

Since ‖Ũ δ(t = 0)‖Hs−5 → 0 when δ → 0, we can take for example δ = ε1/7 and

for ε small enough, we deduce from Eq. (28) that t0(ε, δ) =
T0

ε2
.

Now we have to prove that the main profile U ε
0 remains close from the approx-

imate solution U ε,δ on the interval [0, T0/ε
2]:

sup
t∈[0,T0/ε2]

‖U ε,δ − U0(t, ε
2t, ·, ·)‖Hs−5 ≤ sup

t∈[0,T0/ε2]

‖U ε,δ − U δ
0 (t, ε2t, ·, ·)‖Hs−5

+ sup
t∈[0,T0/ε2]

‖U δ
0 (t, ε2t, ·, ·) − U0(t, ε

2t, ·, ·)‖Hs−5

≤ Cε6/7 + sup
t∈R,τ∈[0,T0]

‖U δ
0 (t, τ, ·, ·) − U0(t, τ, ·, ·)‖Hs−5,

To estimate the last term, we go back to the definition of U0:

U0(t, τ, x, y) =
∑

j=1,...,k

ũj(τ, x − vjt, y)

and we let Iδ
j (τ) = ‖ũj − χδũj‖Hs−5 for j = 1, . . . , k. Following the proof of

lemma 3.5 we obtain that for all j = 1, . . . , k, supτ∈[0,T0] I
δ
j (τ) → 0 as δ → 0.

By the same way we obtained the regularity in the variable t before, we get
that, when δ → 0,

sup
t∈R,τ∈[0,T0]

‖U δ
0 (t, τ, ·, ·) − U0(t, τ, ·, ·)‖Hs−5 → 0.

Finally, as s > 6 we use the classical Sobolev’s imbedding to obtain the an-
nounced L

∞ estimates. 2
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4 The Landau-Lifschitz-Maxwell Equations

We now return to Eq. (13) and the system of partial differential equations of
micromagnetics (10)-(12).
As we observed in Section 2.2, Eq. (13) is a special case of the general equation
(14). Hypotheses 1-3 are satisfied (see Section 2.3). We will verify the remain-
ing hypothesis 4 once we have found the coefficients Dj and the applications
Bj. The asymptotic expansion is therefore unique and valid on the slow time
scale. The way the asymptotic approximation has been built is irrelevant.
This observation is important because it allows us to use the Landau-Lifschitz
equation in the form given by Gilbert:

∂tM = −M ∧ H +
γ

|M |
(M ∧ ∂tM) . (29)

This equation, known as Landau-Lifschitz-Gilbert equation is equivalent with
the Landau-Lifschitz (6) equation, except for a rescaling of time by a factor
(1 + γ2). As it turns out, Eq. (29) is more convenient for constructing the
asymptotic expansions.

We perform one more change in the equation: as we did in Section 2 we
simplify the equation (29) by replacing the term |M | in the denominator of
the damping term by |M0| = 1 so that the factor of the damping term is γ.
Thus we consider the following system:

ε2∂tM + ε4∂τM = −M0 ∧ H + α−1M0 ∧ M − ε2M ∧ H + γ [ε2M0 ∧ ∂tM

+ε4M0 ∧ ∂τM + ε4M ∧ ∂tM + ε6M ∧ ∂τM ] ,

(30)
ε2∂tH + ε4∂τH − ε2k ∧ ∂xE − ε3l ∧ ∂yE = −ε2∂tM − ε4∂τM, (31)

ε2∂tE + ε4∂τE + ε2k ∧ ∂xH + ε3l ∧ ∂yH = 0. (32)

We perform now an asymptotic expansion of Eqs. (30)-(31) along the lines of
Section 3.1:

M = M1 + εM2 + ε3M3 + . . .

H = H1 + εH2 + ε3H3 + . . .

M = E1 + εE2 + ε3E3 + . . .

(33)

4.1 The equations of order O(ε0)

To leading order, Eqs. (30)-(32) reduce to a single equation,

−M0 ∧ (H1 − α−1M1) = 0, (34)
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which gives an expression for M1 in terms of M1 · M0 and H1,

M1 = (M1 · M0)M0 − αM0 ∧ (M0 ∧ H1). (35)

4.2 The equations of Order O(ε)

To first order we get,

−M0 ∧ (H2 − α−1M2) = 0, (36)

and then an expression for M2,

M2 = (M2 · M0)M0 − αM0 ∧ (M0 ∧ H2). (37)

4.3 The equations of Order O(ε2)





∂tM1 = −M0 ∧ (H3 − α−1M3) − M1 ∧ H1 + γM0 ∧ ∂tM1,

∂tH1 − k ∧ ∂xE1 = −∂tM1

∂tE1 + k ∧ ∂xH1 = 0.

(38)

Taking the scalar product of (38) with M0 and adding to it the scalar product
of (34) with M1 we find that ∂t (M1 · M0) = 0, so:

M1 · M0 = f0, f0 ≡ f0(x, y, τ). (39)

(Note that M1 · M0 is the O(ε2) term in the expansion of |M |2, which is
constant) If we take the vector product instead of the scalar product we obtain
an expression for M3 in terms of M3 · M0 and H2.

M3 = (M3 · M0)M0 − αM0 ∧ (M0 ∧ H3) + αM0 ∧ q1, (40)

where the vector q1 is given by:

q1 = −∂tM1 + γM0 ∧ ∂tM1 − M1 ∧ H1.

We substitute the expression (35) in the second equation of (38), use the fact
that ∂t(M1 · M0) = 0 and solve the resulting equation for ∂tH1 to obtain a
system of equations for H1 and E1,





∂tH1 +
α

α + 1
(k · (M0 ∧ ∂xE1)) M0 −

1

1 + α
k ∧ ∂xE1 = 0,

∂tE1 + k ∧ ∂xH1 = 0.
(41)
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4.3.1 Choice of coordinates

The system of equations (41) is most easily solved if we adopt a coordinate
system in R

3 that is spanned by k, k∧M0 and M0 (we rely on the assumption
that k and M0 are not parallel or antiparallel.) Given any vector v ∈ R

3 we
define:

va = v · M0, vb = v · (k ∧ M0), vc = v · k. (42)

Then

v =
1

1 − k2
a

[(va − kavc)M0 + vb(k ∧ M0) + (vc − kava)k] , v ∈ R
3,

where ka = M0 · k. An easy computation shows that:

u · v =
1

1 − k2
a

[uava + ubvb + ucvc − ka(uavc + ucva)] , u, v ∈ R
3,

u ∧ v =
1

1 − k2
a

∣∣∣∣∣∣∣∣∣∣∣

M0 k ∧ M0 k

ua ub uc

va vb vc

∣∣∣∣∣∣∣∣∣∣∣

, u, v ∈ R
3.

The system of equations (41) becomes:

∂tu1 + K∂xu1 = 0, (43)

where u1 = (H1a, H1b, H1c, E1a, E1b, E1c)
t and

K =




0 0 0 0 1 0

0 0 0 −(1 + α)−1 0 ka(1 + α)−1

0 0 0 0 kaα(1 + α)−1 0

0 −1 0 0 0 0

1 0 −ka 0 0 0

0 0 0 0 0 0




.

4.3.2 Solution of Equation (43)

The characteristic polynomial of K is det(λI −K) = (λ2−v2
0)(λ

2−v2
1)(λ

2−
v2
2), where

v0 = 0, v1 =
(

1

1 + α

)1/2

, v2 =

(
1 + (1 − k2

a)α

1 + α

)1/2

.
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Then the eigenvalues of K are v0 = 0 (algebraic multiplicity 2), ±v1 and
±v2. We also have v0 < v1 < v2 and 1 − v2

2 = k2
a(1 − v2

1). The matrix
K is diagonalized by the linear transformation F , K = F−1V F , V =
diag(v0, v0, v1,−v1, v2,−v2) and

F =




ka(1 − v−2
1 ) 0 v−2

1 0 0 0

0 0 0 0 0 1

0 1 0 −v1 0 kav1

0 1 0 v1 0 −kav1

v−1
2 0 −kav

−1
2 0 1 0

−v−1
2 0 kav

−1
2 0 1 0




.

Applying F to Eq. (43) we obtain a diagonal system,

(∂t + V ∂x)Fu1 = 0.

This system corresponds to Eq. (15). The equations are decoupled and each
equation can be integrated along its characteristics. We find u1 = F−1f where
f = (f1, f2, f3, f4, f5, f6)

t and

f1 ≡ f1(τ, x, y), f2 ≡ f2(τ, x, y),

f3 ≡ f3(τ, x − v1t, y), f4 ≡ f4(τ, x + v1t, y),

f5 ≡ f5(τ, x − v2t, y), f6 ≡ f6(τ, x + v2t, y),

The functions f1 and f2 represent standing waves, f3 and f4 are travelling
waves propagating respectively with the velocities v1 and −v1, and f5 and f6

are travelling waves propagating respectively with the velocities v2 and −v2.
The component of M1 are deduced from Equations (35)-(39) and the expres-
sion of u1,

M1a = f0, M1b =
1 − v2

1

2v2
1

(f3 +f4), M1c = kaf0 +
v2
2 − v2

1

v2
2

f1−ka
1 − v2

1

2v2
(f5−f6).

(44)
This completes the analysis of the second order approximation. We now know
that the coefficients of order 0 in the expansions (33) are linear combinations
of standing (v0 = 0) and travelling (±v1, ±v2) waves. In the next sections we
will see how the profile functions f0, . . . , f6 evolve on the slow time scale (τ)
and on the transverse direction (y).
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4.4 The equation of Order O(ε3)

To the third order Equations (30)-(32) yield the differential equations:





∂tM2 = −M0 ∧ (H4 − α−1M4) − M1 ∧ H2 − M2 ∧ H1 + γM0 ∧ ∂tM2,

∂tH2 − k ∧ ∂xE2 − l ∧ ∂yE1 = −∂tM2,

∂tE2 + k ∧ ∂xH2 + l ∧ ∂yH1 = 0.

(45)
We follow the same procedure as in the previous section. We take the scalar
product of the first equation of (45) with M0 and we use Eqs. (35) and (37)
to get:

∂t(M2 · M0) = 2αM0 · H1 ∧ H2. (46)

We now take the vector product with M0,

M4 = (M0 · M4)M0 − αM0 ∧ (M0 ∧ H4) + αM0 ∧ q2, (47)

where the vector q2 is given by:

q2 = −∂tM2 − M1 ∧ H2 − M2 ∧ H1 + γM0 ∧ ∂tM2.

We substitute the expression (37) in the second equation of (45) and we solve
the resulting equation for ∂tH2 to obtain a system of equations for H2 and E2,





∂tH2 +
α

1 + α
(k · M0 ∧ ∂xE2 + l · M0 ∧ ∂yE1) M0

−
1

1 + α
(k ∧ ∂xE2 + l ∧ ∂yE1) + 2α(M0 · H1 ∧ H2)M0 = 0,

∂tE2 +k ∧ ∂xH2 + l ∧ ∂yH1 = 0.

(48)

4.4.1 Coordinate representation

We use the coordinate system introduced in Section 4.3.1 with the abbrevi-
ations defined in Eq. (42). The equations (48) correspond to the following
system of equations:

∂tu2 + K∂xu2 + K ′∂yu1 + A(u1)u2 = 0, (49)
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where K is the matrix defined in Section 4.3.1, u2 = (H2a, H2b, H2c, E2a, E2b, E2c)
t,

K ′ =
1

1 − k2
a




0 0 0 kalb lc − kala −lb

0 0 0 −
lc

1 + α
0

la
1 + α

0 0 0
(1 + αk2

a)lb
1 + α

kalc −
(1 + αk2

a)la
1 + α

−kalb

−kalb kala − lc lb 0 0 0

lc 0 −la 0 0 0

−lb la − kalc kalb 0 0 0




,

and

A(u1) =
2α

1 − k2
a




−kaH1b kaH1a − H1c H1b 0 0 0

0 0 0 0 0 0

−k2
aH1b k2

aH1a − kaH1c kaH1b 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




By applying the linear transformation F we obtain:

∂tFu2 + V ∂xFu2 + FK ′F−1∂yf +
(
FA(F−1f)F−1

)
Fu2 = 0. (50)

Following the scheme given in Section 3.1 we assume that u2 fulfills the sub-
linear growth condition (19) and we take the average of Equation (50) along
the characteristics we used in Section 4.3.2. We let g = Fu2 = (g1, . . . , g6)

t

and V ′ = FK ′F−1 and we get:

(V − vId) ∂xGvg + V ′∂yGvf + FA(F−1Gvf)F−1Gvg = 0, (51)

with v ∈ {0,±v1,±v2}, where

V ′ =
1

1 − k2
a




0 0 −a1 a1 a2 a2

0 0 −a2 −a2 −a3 a3

−a4 a5 a6 −a7 −a8 a8

a4 a5 a7 −a6 a8 −a8

−a9 −a10 −a11 a11 a12 −a13

−a9 a10 a11 −a11 a13 −a12




26



with

a1 =
lb

2v1

, a2 =
kalc − la

2
, a3 =

lbv2

2
,

a4 = lb
v3
1

v2
2

(1 − k2
a), a5 = v2

1(la − kalc), a6 =
lcv1

2
(2 − k2

a),

a7 =
lcv1

2
k2

a, a8 =
kalb
2

v1

v2

(v2
2 − v2

1), a9 = (la − kalc)
v2
1

v2
2

,

a10 = lbv2(1 − k2
a), a11 =

lbka

2

v2
2 − v2

1

v1v2
,

a12 =
1

2

2 − k2
a

v2

(
lc − laka(1 − v2

1)
)
, a13 =

k2
a

2v2

(
lc − laka(1 − v2

1)
)
.

Two of the 29 equations (the third equation when we apply Gv1
and the fourth

when we apply G−v1
) we can deduce from Eqs. (51) give the same compatibility

condition: 



lcv1

2
(2 − k2

a)∂yf3 = 0,

−
lcv1

2
(2 − k2

a)∂yf4 = 0,

which is:

lc = l · k = 0,

which means that the direction of the transversal perturbations is orthogonal
to the direction of propagation. This compatibility condition is one of the two
that Leblond and Manna found in [10].

4.5 The equation of Order O(ε4)

To the fourth order Eqs. (30)-(32) yield the differential equations





∂tM3 + ∂τM1 = −M0 ∧ (H5 − α−1M5) − M1 ∧ H3 − M2 ∧ H2 − M3 ∧ H1

+γ [M0 ∧ ∂tM3 + M0 ∧ ∂τM1 + M1 ∧ ∂tM1] ,

∂tH3 + ∂τH1 − k ∧ ∂xE3 − l ∧ ∂yE2 = −∂tM3 − ∂τM1,

∂tE3 + ∂τE1 + k ∧ ∂xH3 + l ∧ ∂yH2 = 0.

(52)
We follow the same procedure as in the previous section. We take the scalar
product of the first equation of (52) with M0 and we use Eqs. (34), (36) and
(40) to get

∂t

(
M3 · M0 +

1

2
|M1|

2
)

+ ∂τ (M1 · M0) = 0. (53)

Now we have M0 · M1 = f0 where f0 does not depend on t. Hence Eq. (53)

implies that M3 · M0 +
1

2
|M1|

2 grows linearly with t as t → +∞, unless f0 is
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independent not only of t but also of τ . We avoid this type of secular behaviour
by imposing the condition f0 ≡ f0(x, y). If M1 · M0 = 0 at t = 0 then this
condition gives f0 ≡ 0, and the expressions (44) simplify,

M1a = 0, M1b =
1 − v2

1

2v2
1

(f3 + f4), M1c =
v2
2 − v2

1

v2
2

f1 − ka
1 − v2

1

2v2

(f5 − f6).

If M1 and M0 are not orthogonal at t = 0, a constant nonzero component
must be added to M1a, M1c and the quantities derived from them.
The scalar product of Eq. (52) with M0 thus yields the relation:

2M3 · M0 + |M1|
2 = g0, g0 ≡ g0(τ, x, y). (54)

We now take the vector product with M0,

M5 = (M0 · M5)M0 − αM0 ∧ (M0 ∧ H5) + αM0 ∧ q3, (55)

where the vector q3 is given by:

q3 = −∂tM3 − ∂τM1 − M1 ∧ H3 − M2 ∧ H2 − M3 ∧ H1 + γM0 ∧ ∂tM3

+γM1 ∧ ∂tM1 + γM0 ∧ ∂τM1.

We substitute the expression (35) in the second equation of (52) and we solve
the resulting equation for ∂tH3 to obtain a system of equations for H3 and E3,





∂tH3 +
α

1 + α
(k · (M0 ∧ ∂xE3) + l · (M0 ∧ ∂yE2))M0

−
1

1 + α
(k ∧ ∂xE3 + l ∧ ∂yE2)

=
α

1 + α
(M0 · vH)M0 +

1

1 + α
vH ,

∂tE2 +k ∧ ∂xH2 + l ∧ ∂yH1 = vE,

(56)

where the vectors vH and vE are:

vH = −∂τ (H1 + M1) + ∂t

(
1

2
|M1|

2M0 − αMo ∧ q1

)
,

vE = −∂τE1.

4.5.1 Coordinate representation

We use the coordinate system introduced in Section 4.3.1 with the abbrevi-
ations defined in Eq. (42). Eqs. (56) correspond to the following system of
equations:

∂tu3 + K∂xu3 + K ′∂yu2 = −∂τu1 + ∂tr, (57)
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where K and K ′ are the matrix defined in sections 4.3.1 and 4.4.1 ,
u3 = (H3a, H3b, H3c, E3a, E3b, E3c)

t and

r =
(

1

2
|M1|

2 ,
α

1 + α
q1c ,

1

2
ka|M1|

2 −
α

1 + α
q1b , 0 , 0 , 0

)t

.

The elements of r are known (in terms of f1 and f3 through f6; f2 does not
enter). Notice, however that f1 does not depend on t and that the derivatives
of f3 through f6 with respect to t can be expressed in terms of their derivatives
with respect to x.

4.5.2 Solution of Equation (57)

We apply the transformation F defined in Section 4.3.2 to both sides of Eq.
(57) and absorb the t-derivative term in the left member, compensating with
an x-derivative term in the right member,

(∂t + V ∂x)F (u3 − r) = −∂τ f − ∂x(V Fr) − V ′∂yg. (58)

Since V is diagonal, Eq. (58) decouples into six first-order hyperbolic equations
with constant coefficients, which can be integrated along their characteristics.
If the solution is to remain bounded, the right member must be such that it
does not lead to secular behaviour. This condition imposes constraints, which
we can find by following the averaging strategy of Section 3.1, Lemma 3.2.
We decompose V Fr, separating the terms that are constant along the char-
acteristics from those that are not,

V Fr = −D1∂xf + D2f
2 + w.

The first two terms are constant along the characteristics; D1 and D2 are diag-
onal matrices with nonnegative entries that are readily found from equations
(44) and (4.5.1),

D1 =
1

2
g
(
1 − v2

1

)
diag(0, 0, 1 − v2

1, 1 − v2
1, 1 − v2

2 , 1 − v2
2),

D2 =
3(1 − v1)

2(1 − v2
2)

8v2
2

diag(0, 0, 0, 0, 1, 1),

where f 2 = (f 2
1 , f 2

2 , f 2
3 , f 2

4 , f 2
5 , f 2

6 )t and the remainder term w consists exclu-
sively of terms that vary along the characteristics: its first and second compo-
nent involve at least one of f3 through f6, its third component at least one of
f1 and f4 through f6, and so on. Thus Eq. (58) becomes

(∂t + V ∂x) F (u2 − r) = −
[
∂τf − D1∂

2
xf + D2∂xf

2 − V ′∂yg
]
+ w. (59)

Application of the averaging operator to each component yields the equation

∂τf − D1∂
2
xf + D2∂xf

2 = ∂yṼ ′g, (60)
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where h̃ = (G0h1, G0h2, Gv1
h3, G−v1

h4, Gv2
h5, G−v2

h6)
t.

We use the equations we get in Section 4.4.1. After some small computations
we get:

∂xṼ ′g = −




L1 (W0 C1 ∂yf1 + W0 C2 ∂yf2)

L2 (W0 C1 ∂yf1 + W0 C2 ∂yf2)

L3 W1 C3 ∂yf3

L4 W−1 C4 ∂yf4

L5 W2 (C5 − a12u1) ∂yf5 + a12 ∂xGv2
g5

L6 W−2 (C6 + a12u2) ∂yf6 − a12 ∂xG−v2
g6




, (61)

where Ci and Li are the columns and the lines of the matrix V ′, Wi is
the inverse of the diagonal matrix V − viId restrained to Im (V − viId)
and trivially extended by 0 on Ker (V − viId) for i ∈ {0,±v1,±v2} and
u1 = (β, 0, 0, 0, 0,−1)t, u2 = (−β, 0, 0, 0,−1, 0)t where β is a coefficient we
can determine thanks to the equation of Section 4.4.1 and wich allow us to
get rid of the second member in the equation on G±v2

g.
In the equation (61) we see that ∂xṼ ′g still depends on ∂xGv2

g5 and G−v2
g6,

but we have no control over these two terms. We impose then a new condition,
a12 = 0 which gives

la = l · M0 = 0.

Remark 4.1 We have then la = lc = 0, i.e. the direction of the transverse
perturbation is orthogonal to the direction of propagation k and to the magnetic
moment M0. These two conditions are the compatibility conditions Leblond and
Manna found in [10].

By taking the derivative of Equation (60) with respect to x we obtain the
Khokhlov-Zabolotskaya equation,

∂x

(
∂τf − D1∂

2
xf + D2∂xf

2
)

= −B∂2
yf, (62)

where

B = diag

(
0, 0,−

l2bv1

2(1 − k2
a)

,
l2bv1

2(1 − k2
a)

,−
l2b

2v2(1 − k2
a)

,
l2b

2v2(1 − k2
a)

)
.

Thus a necessary condition for the solution of Eq. (58) to remain bounded for
long times as ε goes to zero is that the first order profile functions f1 through
f6 fulfill the Khokhlov-Zabolotskaya equation on the (slow) time scale of τ .
The equations for f1 and f2 are simple: ∂τf1 = 0, ∂τf2 = 0, so f1 and f2 must

30



be constant on the slow time scale and fi ≡ fi(x), i = 1, 2. The equations for f3

and f4 are linear, those for f5 and f6 nonlinear with a quadratic nonlinearity.

Remark 4.2 Equation (62) corresponds to Eq. (23). The nonzero entries of
D1 are positive, and the equations for f1 and f2 which involves the zero entries
of D1 are trivial. This observation validates Hypothesis 4.
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