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Congestion is a major issue in the modeling of both animal aggregation and
supply chains. Indeed, both systems face obvious physical limits : capacities of
machine in supply chains [1] and non-overlapping constraints between individ-
uals in social groups. As a paradigm of crowding and social group movement,
we are interested in sheep herds. The behaviour of this gregarious animal is
experimentally studied [5]. Let us focus on the displacement period of a sheep
herd, where all animals move with the same speed.

A macroscopic model for herds including speed and congestion constraints
is derived from an individual based model. In order to enlight the congestion
part in the dynamics, a singular limit of this macroscopic model is taken and
leads to two phases in our herd : a congested and a non-congested one. We
finally analyse the spatial transition between these two phases. Such a study of
the congestion in self organized systems could be translated to supply chains
context.
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1 Derivation of a macroscopic model with speed and

congestion constraints

1.1 Microscopic model

The following microscopic model aims to describe the interactions of N par-
ticles labeled by k ∈ {1, .., N} and with position Xk ∈ R

2 with two main
contraints.

The first constraint consists in supposing that all the particles have
the same magnitude of velocity, here equal to 1. In first approximation,
this assumption is satisfied by the sheeps in a moving herd [5] (or schools
of fish [4]). Thus the velocity of the k-th particle is given by ωk, where
ωk ∈ S

1 =
{
ω ∈ R

2, |ω| = 1
}

is an unitary vector. Therefore the time deriva-
tive of ωk is orthogonal to ωk. The second constraint is the congestion one.
The particles are supposed to have a finite volume (equal to πd2) and can
not overlap, hence the existence of a maximal density ̺∗. So the repulsive
interaction has to be singular so as to prevent the density from exceeding ̺∗.

We propose here a simple continuous model for the evolution of positions
and velocities via attractive-repulsive binary interactions :

dXk

dt
= ωk, (1)

dωk

dt
= νa

k (Id − ωk ⊗ ωk)ξa
k − νr

k(Id − ωk ⊗ ωk)ξr
k , (2)

where ξ
a,r
k are the attractive-repulsive forces, νa,r their respective interaction

frequencies. The matrix (Id − ωk ⊗ ωk) is the orthogonal projector on the
orthogonal direction to ωk and enables to satisfy the speed constraint. The
attractive force is chosen to drive the particles to the centre of mass inside
an interaction disc of radius Ra, while the repulsive force is chosen to drive
them to the opposite direction of the centre of mass inside an interaction disc
of radius Rr (lower than Ra):

ξa
k =

∑

j,|Xj−Xk|≤Ra

Xj − Xk

∑

j,|Xj−Xk|≤Ra

1
, ξr

k =

∑

j,|Xj−Xk|≤Rr

Xj − Xk

∑

j,|Xj−Xk|≤Rr

1
. (3)

The attractive interaction is a constant νa
k = νa and νr is taken so as to satisfy

the congestion constraint :

νr
k = νr

(
πd2

∑
j,|Xj−Xk|≤Rr

1

πR2
r

)
, νr(̺) = ̺p′(̺) , p(̺) =

(
1

̺∗
−

1

̺

)−k

.

(4)
Note that p(̺) tends to +∞ when ̺ goes to ̺∗. The form of the function νr

is explicitly given only for the convenience of the following study.
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1.2 Kinetic model, hydrodynamic rescaling and macroscopic model

Mean-field limit : N → +∞

To describe the dynamics of a large number of particles, it is usual in math-
ematical physics to introduce a distribution function f(x,v, t) defined on
the phase space : f(x,v, t)dxdv is the number of particles in the volume
[x,x + dx]× [v,v + dv]. From the equations satisfied by the empirical distri-

bution fN (x, ω, t) = 1

N

∑N
k=1

δ(x−Xk(t))δ(ω, ωk(t)), we can formally derive
the limit equation satified by f = lim fN as the number of particles tends to
+∞ :

∂tf + ω · ∇xf + ∇ω · ((Fa − Fr) f) = 0 ,

Fa,r(x, ω, t) = νa,r(Id − ω ⊗ ω)ξa,r,

ξa,r(x, ω, t) =

∫
Ka,r(y − x)(y − x)̺(y, t)dy∫

Ka,r(y − x)̺(y, t)dy
, (5)

νr = νr

(∫
Kr(y − x)̺N (y, t)dy

α
∫

Kr(y − x)dy

)
,

where ̺(x,v, t) =
∫

f(x,v, t)dv is the density and Ka,r are the characteristic
functions of the discs of radius Ra and Rr.

Hydrodynamic scaling

To determine now the large time and space dynamics, we perform an hydro-
dynamic scaling. Let us introduce the new time and space variables : x̃ = ηx,
t̃ = ηt, with η << 1. With this rescaling, the repulsive terms become local

: νη
r (x) = νr(̺(x)) + o(η), ξη

r (x, ω, t) =
R2

r

4
∇x̺η(x, t)/̺η(x, t) + o(η). As re-

gards the attractive terms, we suppose that it remains non local as η tends
to 0 and weaker than the repulsive force : the scaled attractive kernel Kη

a and
the scaled interaction frequency νη

a satisfy Kη
a (z) = Ka(ηz), νη

a = η2νa. Under
all these model assumptions, the limit distribution function f we obtain as η
tends to 0 in the new variables satisfies the system

∂tf + ω · ∇xf + ∇ω · ((Fa − Fr) f) = 0 ,

Fa(x, ω, t) = νa(Id − ω ⊗ ω)ξa, ξa(x, t) =

(∫
Ka (|y − x|) (y − x)̺(y, t)dy∫

Ka (|y − x|) ̺(y, t)dy

)
,

Fr(x, ω, t) =
R2

r

4
(Id − ω ⊗ ω)∇xp(̺(x, t)) .

Macroscopic model

The last step of our derivation of models is to find the equation satisfied by
the two first moments of the distribution function f : the density ̺ =

∫
fdω

and the momentum ̺Ω =
∫

fωdω. Supposing that f is regular enough and
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tends quickly enough to zero at infinity, then it can be checked that ̺ and ̺Ω
satisfy

∂t̺ + ∇x · ̺Ω = 0, (6)

∂t̺Ω + ∇x ·

(∫
fω ⊗ ωdω

)
=

∫
(Id − ω ⊗ ω)fdω

(
νaξa −

R2
r

4
∇xp(̺)

)
.(7)

where ξa is always given by (5). Unfortunately this system is not closed. We
have to make new assumptions to express in term of the two first moments
the quantities where f still appears. Here we assume that f is a monokinetic
distribution : f(x, ω, t) = ̺(x, t)δ(ω,Ω(x, t)), with |Ω(x, t)| = 1. Finally, we
obtain the following macroscopic system

∂t̺ + ∇x · ̺Ω = 0 , (8)

∂t (̺Ω) + ∇x · (̺Ω⊗ Ω) = ̺(Id − Ω ⊗ Ω)(νaξa −
R2

r

4
∇xp(̺)) . (9)

2 Study of the dilute-congested transition

These macroscopic equations (8)-(9) combine the congestion contraint em-
bodied by p and the speed constraint embodied by the projection operator
(Id−Ω⊗Ω). It leads to two difficulties : the singularity of the pressure p and
the non-conservativity of the equation (9). The first point has already been
tackled in a one dimensional traffic jam model [2]. The goal of the following
study is the treatment of the conjunction of the two in a 2 dimensional case.
Since attractive and repulsive forces operate at different scales, we consider
thereafter the attraction term as a source term and focus on the case νa = 0
and Rr << 1.

2.1 Asymptotic model

So as to study the singularity of the pressure, the principle is to enhance it
by changing p into εp, ε << 1 (Rε2

r = εR2
r). By this way, the pressure term

becomes negligible unless the density is near the maximal one. Let us denote
by (̺ε,Ωε) the solution of the ε-system

∂t̺
ε + ∇x · ̺εΩε = 0 , (10)

∂tΩ
ε + Ωε · ∇xΩ

ε +
R2

r

4
(Id − Ω ⊗ Ω)ε∇xp(̺ε) = 0 , (11)

If (̺ε,Ωε) is a sequence of solutions converging to a solution (̺,Ω) when ε
tends to zero, then the limit p̄(x) = limε→0 εp(̺ε(x, t)) is equal to zero unless
̺ε tends to ̺∗. We assume that p̄ is always finite. Thus, two interacting phases
with different dynamics appears at the limit : the phase of maximal density
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̺ = ̺∗, called congested phase, and the phase of density lower than ̺∗, called
the dilute phase. The limit (̺,Ω) fulfills the system

∂t̺ + ∇x · ̺Ω = 0 , (12)

∂tΩ + Ω · ∇xΩ +
R2

r

4
(Id − Ω⊗ Ω)∇xp̄ = 0 , (13)

(̺∗ − ̺)p̄ = 0 , (14)

where the last equality expresses the dichotomy ̺ = ̺∗ or p̄ = 0.
In the dilute phase, where the density is lower than ̺∗, we get a pressureless

gaz dynamic model. Let us now investigate the system in the congested phase.

2.2 In the congested phase

In the congested phase ̺ = ̺∗, the limit of (10)-(11) leads to an incompressible
Euler system with speed constraint

̺ = ̺∗, ∇x ·Ω = 0 , (15)

∂tΩ + Ω · ∇xΩ +
R2

r

4
(Id − Ω⊗ Ω)∇xp̄ = 0 , (16)

where the pressure p̄ is the Lagrange multiplier of the incompressibility con-
straint.

The only incompressibility constraint (15) coupled with the speed con-
straint provide us enlightening ideas of the structure of clusters. Indeed, we
can prove that if the vector field Ω on the sphere (|Ω| = 1) satisfy the incom-
pressibility constraint (15), then Ω is constant on straight lines and orthogonal
to these lines. Concerning the pressure p̄, it satisfies an elliptic equation on the
congested domain (easily obtained by taking the divergence of the momentum
equation (16)).

As a result of these two last remarks, the only knowledge of the velocity Ω

and the pressure p̄ on the border of the congested domain would enable us to
find out the whole solution inside the congested zone. So given the interface
dynamics, the whole problem could be solved.

2.3 The interface dynamics

So as to study the interface dynamics, we consider that our problem at the
interface reduces to a one dimensional problem in the normal direction to this
interface. Let us focus on the Riemann problem : the initial condition is a
discontinuity between two constant states on both sides of the interface. The
strategy is here to come back to the finite ε-system (10)-(11) and to extract
the limit solutions of the Riemann problem as ε tends to zero with a left or a
right state converging to ̺∗.
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By introducing θ with respect to the x1 axis and assuming that the problem
is uniform with respect to the x2 axis, the non-conservative system (10)-(11)
can be put for θ ∈ ]0, π[ in the form of the following conservative one

∂t̺ + ∂x1
(̺ cos(θ)) = 0 , (17)

∂tΨ(cos(θ)) + ∂x1

(
φ(cos(θ)) +

R2
r

4
εp(̺)

)
= 0 , (18)

where Ψ(u) = 1

2
log
(

1+u
1−u

)
and φ(u) = log

(
1√

1−u2

)
. The new conserved vari-

ables are ̺ and Ψ(cos(θ)).
This system is strictly hyperbolic and its associated fields are in the limit

ε = 0 genuinely nonlinear. Therefore, classical results [3] provide us the en-
tropic solution of the Riemann problem. For a non-congested left state (̺ℓ, θℓ)
and a congested right state (̺∗, θr, p̄r), the two main possibilities are given by

• in case of seperating velocities cos(θℓ) < cos(θr), vacuum appears between
two contact discontinuities and there is an instantaneous declustering (the
pressure becomes zero inside the congested domain);

• in case of incoming velocities cos(θℓ) < cos(θr), the limit solution con-
sists of one shock and a pressure jump in the congested domain. The new
pressure is computable since it is the solution of an explicit non-linear
equation.

The detailed study provides us also the interface dynamics in the other cases
(cos(θℓ) = cos(θr), ̺ℓ = ̺r = ̺∗, etc.). It will be displayed in future papers.

3 Conclusion

In this paper, new tools for congestion modeling have been presented in the
context of sheep herds modeling. We hope that it could be usefully adapted to
supply chains modeling. The study of the congested/non-congested transition
will be the ground of further challenging simulations taking into account both
constraints (constant speed and maximal density).
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