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Behaviour of the Landau-Lifschitz equation in a ferromagnetic
wire

David Sanchez

Mathématiques Appliquées de Bordeaux, UMR 5466, Université Bordeaux 1,
351 Cours de la Libération, 33405 Talence cedex, France.

Abstract. Following a suggestion from A. Thiaville and J. Miltat whose work and experiments
are about ferromagnetic thin layers and nanowires we study in this paper the behaviour of the
Landau-Lifschitz equation in a straight ferromagnetic wire. As the diameter of the domain and
the exchange coefficient in the equation simultaneously tend to zero we perform an asymptotic
expansion to precise the solution for well-prepared initial conditions and are lead to consider 2D
exterior problems.

Résumé. Suite à une suggestion d’A. Thiaville et J. Miltat dont les travaux et expériences
portent sur les couches minces et les nanofils ferromagnétiques, nous étudions dans cet arti-
cle le comportement de l’équation de Landau-Lifschitz dans un fil ferromagnétique rectiligne.
Alors que le diamètre du domaine et le coefficient d’échange dans l’équation tendent simul-
tanément vers zéro, nous effectuons un développement asymptotique, précisons la solution pour
des données initiales bien préparées et sommes amenés à traiter des problèmes extérieurs en
dimension 2.

1 Introduction

Further to [22, 23] in which we study the behaviour of the solutions of the Landau-Lifschitz
equation in a thin layer, A. Thiaville and J. Miltat whose work and experiments are about
ferromagnetic material asked if models and asymptotic expansions could be proved in the case
they were interested, i.e. ferromagnetic nanowires and particularly circular-based ones [25, 26].

We then consider here a ferromagnetic wire ωε whose diameter is of order ε and placed in the
vacuum. The ferromagnetic material is characterized by a spontaneous magnetization that is
modelized by an unitary vector field uε called the magnetic moment and defined on the domain
ωε where the ferromagnetic material is confined. This magnetic moment links the magnetic field
H(uε) and the magnetic induction B by the relation B = H(uε) + uε where uε is the extension
of uε by 0 outside ωε (cf [4]). Its evolution is described by the Landau-Lifschitz equation (cf
[15]): 




∂uε

∂t
= uε ∧Heff − uε ∧ (uε ∧Heff ) in ωε,

∂uε

∂ν
= 0 on ∂ωε,

uε(t = 0, x) = u0(x) in ωε,

(1.1)

where ν denotes the outward unitary normal on ∂ωε and Heff = ε2∆uε + H(uε) + ϕ(uε) is the
effective field composed of the exchange term ε2∆uε modelling the spin-like interactions in the
ferromagnetic medium, ϕ(uε) is an anisotropic field that takes into account the geometry of the
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material and H(uε) is the magnetic field. In the following we neglect the anisotropy field since
it only induces more computations and has no mathematical influence on the results we obtain
(at least for classical anisotropy fields deriving from quadratic anistropy energy). We moreover
assume that we always are at the electromagnetic equilibrium:





div (H(uε) + uε) = 0 in R
3,

curl H(uε) = 0 in R
3,

(1.2)

Many works take an interest in the behaviour of this magnetic moment: when the exchange
coefficient is fixed and the domain ωε = Ω does not depend on ε, Carbou and Fabrie prove in [7]
the local existence of a strong H

2(Ω) solution of (1.1). When the exchange coefficient ε2 goes
to zero and ωε = Ω, Carbou, Fabrie and Guès prove in [9] that the time of existence goes to
infinity when ε goes to zero for an initial data in H

5(Ω) (instead of H
2(Ω)) by proving that a

boundary layer whose characteristic thickness is of order ε appears. Moreover they obtain that
the solution uε tends to the solution of the hyperbolic system formally obtained by taking ε = 0
in (1.1). Their theorem however does not give a first order asymptotic expansion of the solution.
These results are established in the case where the domain ωε does not depend on ε. Interesting
phenomena happen when the ferromagnetic material lies in small domains such as thin layers
and nanowires. In these cases we expect a much simpler behaviour and we need to justify the
models in use. In the case of thin layers, Carbou studies in [6] by means of energy estimates
the limit of the magnetic field H(uε) when the thickness ε of the domain goes to 0 and the
exchange coefficient is fixed. In a previous work [22] we consider the case of a flat periodic thin
layer in the vacuum when the exchange coefficient is ε2 and the thickness of the layer is ε. In
this critical case where the thickness of the thin layer and of the boundary layer are of the same
order we justify a first-order asymptotic expansion of the magnetic moment and of the magnetic
field for small values of ε and find again the classical physical description of such a case. In
[23] we extend these results to a non-flat geometry by considering a thin layer of ferromagnetic
material spread on a perfect conductor.

In this paper we consider the other kind of studied domain, i.e. the case of a periodic straight
ferromagnetic wire placed in the the case of a straight ferromagnetic wire placed in the vacuum.
We want to establish and justify the passage from the 3D case to the 1D case. As for the case
of thin layers, we expect to have an interaction between the boundary layers that arise from the
exchange coefficient and whose size is of order ε, and the small dimension of the domain, also of
order ε. A rescaling shows that there is no boundary layer in the rescaled domain and that the
Landau-Lifschitz equation becomes anisotropic. The small size of the domain also influences the
magnetostatic equations as we will see it later and leads us to work with ε-dependent domains
and to precise the dependence on ε of the Sobolev embeddings.

Remark 1.1. We consider in the following a periodic straight wire pointing at the direction e3.
The assumption of the periodic wire allows us to forget the formation of a boundary layer at the
ends of the wire. The domain we then consider writes ωε = εΩ× I1 where Ω is an open bounded
regular star-shaped set in R

2 and I1 = (0, 1) is the periodic domain. These results remain valid
in εΩ × R if we use the Fourier transform.

In the following we denote H
l
p(I1) the subspace of H

l(I1) whose functions are periodic on I1, and

by L
2
p(I1) the closure of H

1
p(I1) in L

2(I1). The spaces H
k(V ) ⊗ H

p(I1) are the classical tensor

spaces endowed with the norm ‖u‖ =
∥∥∥‖u(·, z)‖Hk(V )

∥∥∥
Hp(I1)

.
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We also use the following decompositions : for V ∈ R
3, we let Vl = (V, e3) the longitudinal

component of V and Vτ = V − Vle3 the transversal component. We let ∇τ the transversal
component of ∇, i.e. ∇τ = (∂x1

, ∂x2
, 0)t and

divτ = (∇τ , ·), curlτ = (∇τ ∧ ·), ∆τ = divτ ∇τ .

In order to perform the asymptotic expansion and obtain the profiles we work on a rescaled
form of the Landau-Lifschitz equation. We obtain the following result:

Theorem 1.1. Let uε
0 an initial data satisfying

∂uε
0

∂ν
= 0 on ∂ωε and which can be written in

the form:

uε
0(x) = U0

0

(σ
ε
, z
)
, ∀x = (εσ, z) ∈ ωε,

where U 0
0 ∈ H

6(Ω) ⊗ H
7
p(I1) and |U 0

0 | ≡ 1. There exists T0 > 0 independent from ε and there
exists two profiles U 0, U1 fulfilling

• U0 ∈

3⋂

k=0

W
k,∞

(
0, T0; H

6−2k(Ω) ⊗ H
7
p(I1)

)
∩H

k
(
0, T0; H

7−2k(Ω) ⊗ H
7
p(I1)

)
is solution of:





∂U0

∂t
− ∆τU

0 = |∇τU
0|2U0 + U0 ∧ ∆τU

0 + U0 ∧H0 − U0 ∧
(
U0 ∧H0

)
in Ω × I1,

∂U0

∂ν
= 0 on ∂Ω × I1,

U0(t = 0) = U 0
0 in Ω × I1,

H0 = H(U0) in Ω × I1,

where −H0 is the projection of U 0 on the transversal gradient field,

• U1 ∈
2⋂

k=0

(
W

k,∞
(
0, T0; H

5−2k(Ω) ⊗ H
6
p(Rz)

)
∩ H

k
(
0, T0; H

6−2k(Ω) ⊗ H
6
p(Rz)

))
,

such that the regular solution of Eq. (1.1)-(1.2) exists on [0, T0] and has an asymptotic expansion
in the form:

uε(t, x) = U 0
(
t,
σ

ε
, z
)

+ εU1
(
t,
σ

ε
, z
)

+ ε2rε(t, x), x = (εσ, z) ∈ ωε, t ∈ [0, T0],

where for all 2 ≤ p ≤ +∞, rε ∈ L
∞ (0, T0; L

p(ωε)) and :

sup
t∈[0,T0]

‖rε‖Lp(ωε) = O(ε2/p).

In the case where the section of the wire is a disk we enhance this result in the following way:

Theorem 1.2. Let Ω = D(0, 1) the unitary disk and ωε = εΩ× I1. Let uε
0 an initial data which

can be written in the form:

uε
0(x) = U0

0 (z) , ∀x = (εσ, z) ∈ ωε,

where U 0
0 ∈ H

7
p(I1) is invariant in the section of the wire and |U 0

0 | ≡ 1. If T ε is the maximum
time of existence of the regular solution of (1.1)-(1.2) then limε→0T

ε = +∞ and for all 0 <

T < T ε there exists two profiles U 0, U1 fulfilling
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• U0 ∈ C∞
(
R

+
t ; H7

p(Ω)
)

is solution of the following ordinary differential equation:




∂U0

∂t
= U0 ∧H0 − U0 ∧

(
U0 ∧H0

)
in I1,

U0(t = 0) = U 0
0 in I1,

where H0 = −
1

2
U0

τ is a local operator.

• U1 ∈
2⋂

k=0

(
W

k,∞
(
0, T ; H5−2k(Ω) ⊗ H

6
p(Rz)

)
∩ H

k
(
0, T ; H6−2k(Ω) ⊗ H

6
p(Rz)

))
, ∀T > 0

such that uε has an asymptotic expansion in the form:

uε(t, x) = U 0 (t, z) + εU 1
(
t,
σ

ε
, z
)

+ ε2rε(t, x), x = (εσ, z) ∈ ωε, t ∈ [0, T0],

where for all 2 ≤ p ≤ +∞, rε ∈ L
∞ (0, T ε; Lp(ωε)) and :

sup
t∈[0,T ε]

‖rε‖Lp(ωε) = O(ε2/p).

Remark 1.2.

• In the case where the section of the wire is a disk we prove that the magnetic field is a local
operator at the order ε0. We then obtain a monodimensional model for the wire which is
an ordinary differential equation with a 1D parameter.

• The limit model we obtain has the expected behaviour and matches the physical observa-
tions.

This paper is organized in the following way. In the first part we formally build the asymptotic
expansion of uε and we prove the local existence and the regularity of its terms. Consequently
we study the operator H and are lead to obtain regular solutions to 2D exterior problem for
which we introduce weighted Sobolev spaces. In the second part we introduce anisotropic and
ε-dependent norms adapted to the size of the domain and we give all the ε-dependent Sobolev
embeddings and energy estimates in the space ωε that we need in the last parts. The equation
satisfied by the remainder terms of uε and Hε are explained in the third part while the fourth
contains the energy estimates that conclude the proof of theorem 1.1.

2 Formal asymptotic expansion

As the diameter of the wire is of order ε we want to get rid of the ε parameter and explain the
behaviour in the small domain. If we only rescale the equations inside the ferromagnetic wire,
we are lead to solve the magnetostatic equations in a non simply connected exterior domain
which depends on ε. We instead perform a rescaling in the whole space, thus transforming the
magnetostatic equations in the exterior domain.
We will now search an asymptotic expansion of uε and Hε = H(uε) in the form:

• in ωε,

uε(t, x) = U 0
(
t,
σ

ε
, z
)

+ εU1
(
t,
σ

ε
, z
)

+ . . .

Hε(t, x) = H0
(
t,
σ

ε
, z
)

+ εH1
(
t,
σ

ε
, z
)

+ . . .

(2.1)
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• in (R2 × I1) \ ωε,

Hε(t, x) = H0
(
t,
σ

ε
, z
)

+ εH1
(
t,
σ

ε
, z
)

+ . . . (2.2)

where x = (σ, z) ∈ R
2 × I1.

Let us perform some preliminary calculus on the curl and divergence operator. If we have

V (x) =
∑

i≥0

V i
(σ
ε
, z
)
,

curl V =
1

ε
curlτ V

0 +
∑

i≥0

εi
(
∂

∂z

(
e3 ∧ V

i
)

+ curlτ V
i+1

)
,

div V =
1

ε
divτ V

0 +
∑

i≥0

εi
(
∂

∂z
V i

l + divτ V
i+1

)
,

(2.3)

where curlτ V = ∇τ ∧ V = (∇τV3)
⊥ +




0
0

curl2D VT


, and A⊥ = A ∧ e3.

2.1 Equations of the profiles

As it is proved in [7], the equation (1.1) is equivalent for regular enough solutions to:

∂uε

∂t
− ε2∆uε = ε2|∇uε|2uε + ε2uε ∧ ∆uε + uε ∧H(uε) − uε ∧ (uε ∧H(uε)) . (2.4)

Since this equation isolates the dissipative term we will use it in the following. We then substi-
tute to uε, H(uε) their asymptotic expansions (2.1) and (2.2) in the equations (1.2) and (2.4)
to obtain the expression fulfilled by the profiles for (σ, z) in and outside ωε.

As the equations (1.2) are linear, each H i fulfills outside ωε:





divτ H
i
τ + ∂zH

i−1
l = 0 in Ω′ × I1,

curl2D Hi
τ = 0 in Ω′ × I1,

∇τH
i
l = ∂zH

i−1
τ in Ω′ × I1,

where Ω′ = R
2 \ Ω. As we will also determine the equations fulfilled by H i in Ω × I1, we need

some transmission conditions on the boundary ∂Ω × I1 that we deduce from Eq. (1.2):





[
Hi ∧ ν

]
= 0 on ∂ωε,

[(
Hi + U

i
)
· ν
]

= 0 on ∂ωε,

(2.5)

where [f ] denotes the jump of f at the interface ∂ωε. Changing the notation it also writes:





[
Hi

l

]
= 0 on ∂Ω × I1,

[
Hi

τ ∧ ν
]

= 0 on ∂Ω × I1,

[(
Hi

τ + U
i
τ

)
· ν
]

= 0 on ∂Ω × I1.

(2.6)
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The Neumann condition on uε also becomes
∂U i

∂ν
= 0 for all x = (σ, z) ∈ ∂ωε = (ε∂Ω) × I1 and

i ∈ N.

Terms in ε−1: in Ω × I1, 



divτ

(
H0

τ + U0
τ

)
= 0,

curl2D H0
τ = 0,

∇τH
0
l = 0.

From the last equation and the first transmission condition in (2.6) we deduce that H 0
l ≡

H0
l (t, z). As we do not impose an external magnetic field and as we are looking for a solution

in L
2(R3), we set H0

l ≡ 0. The other components of H0, i.e. H0
τ , fulfills then





H0 ∈ L
2(R2 × I1),

divτ

(
H0

τ + U0
τ

)
= 0 on R

2 × I1,

curl2D H0
τ = 0 on R

2 × I1.

(2.7)

As we do not impose an external magnetic field, we obtain that −H 0 is the projection of U 0
τ -

and then of U 0 - on the vector field of transversal gradients.

Terms in ε0: in Ω × I1,

∂U0

∂t
− ∆τU

0 = |∇τU
0|2U0 + U0 ∧ ∆τU

0 + U0 ∧H0 − U0 ∧
(
U0 ∧H0

)
. (2.8)





divτ

(
H1

τ + U1
τ

)
+ ∂z

(
H0

l + U0
l

)
= 0,

curl2D H1
τ = 0,

∇τH
1
l = ∂zH

0
τ .

(2.9)

Terms in ε: in Ω × I1,

∂U1

∂t
− ∆τU

1 = |∇τU
0|2U1 + 2(∇τU

0 · ∇τU
1)U0 + U0 ∧ ∆τU

1 + U1 ∧ ∆τU
0

+U0 ∧H1 + U1 ∧H0 − U0 ∧
(
U0 ∧H1

)
− U0 ∧

(
U1 ∧H0

)

−U1 ∧
(
U0 ∧H0

)
.

(2.10)





divτ

(
H2

τ + U2
τ

)
+ ∂z

(
H1

l + U1
l

)
= 0,

curl2D H2
τ = 0,

∇τH
2
l = ∂zH

1
τ .

(2.11)

Terms in ε2: in Ω × I1,

∂U2

∂t
− ∆τU

2 = |∇τU
0|2U2 + 2(∇τU

0 · ∇τU
2)U0 + U0 ∧ ∆τU

2 + U2 ∧ ∆τU
0

+U0 ∧H2 + U2 ∧H0 − U0 ∧
(
U0 ∧H2

)
− U0 ∧

(
U2 ∧H0

)

−U2 ∧
(
U0 ∧H0

)

+U0
zz + |U0

z |
2U0 + U0 ∧ U0

zz + U1 ∧ ∆τU
1 + |∇τU

1|2U0

+2(∇τU
0 · ∇τU

1)U1 + U1 ∧H1 − U0 ∧
(
U1 ∧H1

)

−U1 ∧
(
U0 ∧H1

)
− U1 ∧

(
U1 ∧H0

)
.

(2.12)
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divτ

(
H3

τ + U3
τ

)
+ ∂z

(
H2

l + U2
l

)
= 0,

curl2D H3
τ = 0,

∇τH
3
l = ∂zH

2
τ .

(2.13)

Termes d’ordre ε3 : dans Ω × I1

∂U3

∂t
− ∆τU

3 = |∇τU
0|2U3 + 2(∇τU

0 · ∇τU
3)U0 + U0 ∧ ∆τU

3 + U3 ∧ ∆τU
0

+U0 ∧H3 + U3 ∧H0 − U0 ∧
(
U0 ∧H3

)
− U0 ∧

(
U3 ∧H0

)

−U3 ∧
(
U0 ∧H0

)

+∂2
zU

1 + |∇τU
1|2U0 + 2(∇τU

0 · ∇τU
1)U2 + 2(∇τU

0 · ∇τU
2)U1

+2(∇τU
1 · ∇τU

2)U0 + |∂zU
0|2U1 + 2(∂zU

0 · ∂zU
1)U0

+U1 ∧ ∂2
zU

0 + U0 ∧ ∂2
zU

1 + U1 ∧ ∆τU
2 + U2 ∧ ∆τU

1

+U1 ∧H2 + U2 ∧H1 − U0 ∧
(
U1 ∧H2

)
− U0 ∧

(
U2 ∧H1

)

−U1 ∧
(
U0 ∧H2

)
− U1 ∧

(
U2 ∧H0

)
− U2 ∧

(
U0 ∧H1

)

−U1 ∧
(
U2 ∧H0

)
− U1 ∧

(
U1 ∧H1

)
.

(2.14)

2.2 Existence of the asymptotic expansion

2.2.1 Behaviour of H

In the following we have to solve the exterior problem:
{

div (H + u) = f in R
2,

curl H = 0 in R
2,

where u is only defined in a regular open bounded subset Ω of R
2 and u is the extension of u

by 0 outside Ω.

Following the work of M.N. Le Roux [16] on the 2D exterior problem we introduce weighted
Sobolev spaces adapted to the solving of the problem:

Definition 2.1. Let ρ = (1 + |x|2)1/2. We define the weighted Sobolev spaces Wl
α(R2) by:

W1
1(R

2) =

{
u ∈ D′(R2),

1

ρ(1 + ln ρ)
u ∈ L

2(R2), ∇u ∈ L
2(R2)

}
,

W2
2(R

2) =

{
u ∈ D′(R2),

1

ρ2(1 + ln ρ)
u ∈ L

2(R2),
1

ρ(1 + ln ρ)
∇u ∈ L

2(R2), D2u ∈ L
2(R2)

}
,

Wl
α(R2) =

{
u ∈ D′(R2),

1

ρα−|β|(1 + ln ρ)
∂βu ∈ L

2(R2), |β| ≤ l

}
,

where l ∈ N and α > l.

To solve the exterior problem, we need equivalent norms on the previous spaces:

Proposition 2.1. There exists a constant C such that, for all u ∈ W1
1(R

2), we have:
∥∥∥∥

u

ρ(1 + ln ρ)

∥∥∥∥
L2(R2)

≤ C ‖∇u‖
L2(R2) .

By the same way, for all u ∈ W1
α(R2), α > 1 we have:

∥∥∥∥
u

ρα(1 + ln ρ)

∥∥∥∥
L2(R2)

≤ C

∥∥∥∥
1

ρα−1(1 + lnρ)
∇u

∥∥∥∥
L2(R2)

.
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Proof. we use a generalized Hardy inequality proved by Bolley and Camus in [2]. See also
Nédélec [20].

Proposition 2.2. The 2D magnetostatic equations




div (H(u) + u) = 0 in R
2,

curl2D H(u) = 0 in R
2,

[(H(u) + u) · ν] = 0 on ∂Ω,
(2.15)

where u ∈ H
n(Ω), n ∈ N

∗, has an unique solution H(u) ∈ H
s(R2). Moreover there exists

ϕ ∈ W
1
1(R

2) such that H(u) = −∇ϕ and

‖ϕ‖
W1

1
(R2) ≤ C‖u‖L2(Ω), ‖H(u)‖Hn(R2) ≤ C‖u‖Hn(R2).

Proof. We combine ideas taken from [7, 9, 14] for the existence and regularity of the solutions
with the space W1

1(R
2) [16]. We follow the same steps as in [7, 9]:

Step 1: As curl H(u) = 0 in R
2 there exists a regular function ϕ such that H(u) = −∇ϕ and

[ϕ]|∂Ω = 0 where [f ] denotes the jump of f at the interface ∂Ω. ϕ fulfills:





−∆ϕ = −div u in Ω,

−∆ϕ = 0 in Ω′ = R
3 \ Ω,

[ϕ]|∂Ω = 0, [∂νϕ]|∂Ω = u · ν.

Step 2: Let Ω1 an open bounded subset of R
2 containing Ω. By surjectivity of the trace

operator, there exists ψ1 ∈ H
n+1(Ω1 \ Ω) such that

‖ψ1‖Hn+1(Ω1\Ω) ≤ C‖u‖Hn(Ω),

and
ψ1|∂Ω = 0, ψ1|∂Ω′

1
= 0, ∂νψ1|∂Ω′

1
= 0, ∂νψ1|∂Ω = u · ν,

where Ω′
1 = R

2 \ Ω1. We let ϕ = ϕ1 + ψ1 and we have to solve:





−∆ϕ1 = −div u in Ω,
−∆ϕ1 = ∆ψ1 in Ω1 \ Ω,
−∆ϕ1 = 0 in Ω′

1,

[ϕ1]|∂Ωi
= 0, [∂νϕ1]|∂Ωi

= 0, i = 0, 1,

where Ω0 = Ω. We let:

f1 = −1Ωdiv u, f2 = 1Ω2\Ω∆ψ1, F = f1 + f2.

We are lead to solve −∆ϕ1 = F in R
2 where F is regular and with compact support. Thanks to

an integration by parts, Prop. 2.1 and the Lax-Milgram theorem we obtain the existence and
uniqueness of ϕ1 ∈ W1

1(R
2) hence the existence of ϕ ∈ W1

1(R
2) and of H ∈ L

2(R2). Moreover
we have:

‖ϕ‖W1
1
(R2) ≤ C‖u‖L2(R2).

Classical regularity results on the solution of the Laplace operator (cf [3]) improve the estimates:

‖∇ϕ‖H1(R2) = ‖H(u)‖H1(R2) ≤ C‖u‖L2(R2).

Step 3: By following [7, 14], Step 2 and with the linearity of Eq. (2.15), we get the regularity
result.
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Proposition 2.3. The 2D exterior problem





div H = 1Ωf in R
2,

curl2D H = 0 in R
2,

[H · ν] = 0, [H ∧ ν] = 0 on ∂Ω,
(2.16)

where f ∈ H
s(Ω), s ∈ N, has a unique solution H ∈ H

s(R2) with H = −∇ϕ with ϕ ∈ W1
1(R

2).
Moreover, we have:

‖H‖Hs+1(R2) ≤ C‖f‖Hs(Ω), ‖ϕ‖W1
1
(R2) ≤ C‖f‖L2(R2).

Proof. We combine ideas taken from [7, 9, 14] for the existence and regularity of the solutions
with the space W1

1(R
2) [16]. The proof follows the same steps as in Lemma 2.15 except the

integration by parts in Step 2.

In the following, we are also lead to solve:





div H = f in R
2,

curl2D H = 0 in R
2,

[H · ν] = 0, [H ∧ ν] = 0 on ∂Ω,

where f is such that −∇f is either solution of Eq. (2.15), either solution of Eq. (2.16). The
first problem also writes:





div (∆H + u) = 0 in R
2,

curl2D H = 0 in R
2,

[H · ν] = 0, [(∆H + u) · ν] = 0.

(2.17)

We have

Proposition 2.4. The 2D exterior problem (2.17) where u ∈ H
n(Ω), n ∈ N, has an unique

solution H = −∇ϕ such that ϕ ∈ W2
2(R

2) and ∇H ∈ H
n(R2). Moreover, we have

‖ϕ‖W2
2
(R2) ≤ C‖u‖L2(Ω), ‖∇H‖Hn(R2) ≤ C‖u‖Hn(Ω).

Proof. The proof follows the same scheme as Prop. 2.2. Prop 2.1 gives the equivalent norms to
gain the continuity and the coercivity in the Lax-Milgram theorem at Step 2.

The second problem writes:





div ∆H = 1Ωf in R
2,

curl2D H = 0 in R
2,

[H · ν] = 0, [(∆H) · ν] = 0 on ∂Ω.
(2.18)

We have :

Proposition 2.5. The 2D exterior problem (2.18) where f ∈ H
n(R2), n ∈ N, has an unique

solution H = −∇ϕ such that ϕ ∈ W2
2(R

2) and ∇H ∈ H
n(R2). Moreover, we have:

‖ϕ‖
W2

2
(R2) ≤ C‖f‖L2(Ω), ‖∇H‖Hn(R2) ≤ C‖f‖Hn(R2).

Proof. The proof follows the same scheme as the ones of the previous propositions.
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In the case where the magnetic domain is the unitary disk D(0, 1) and the magnetic moment u
is a constant 2D vector field on Ω = D(0, 1), the magnetostatic equations write:





div H(u) = 0 in Ω ∪ Ω′,

curl H(u) = 0 in R
2,

[H(u) · ν] = u · ν on ∂Ω,
(2.19)

where Ω′ = R
2 \ Ω and we have:

Proposition 2.6. The equations (2.19) have an unique solution H(u) in R
2, constant on Ω =

D(0, 1) and which is given by:

H(u)(x) = −
u

2
[1 − 1Ω′(x)] +

1

2
1Ω′(x)

[
x2

1 − x2
2

|x|4

(
u1

−u2

)
+

2x1x2

|x|4

(
u2

u1

)]
,

where x = (x1, x2) and u = (u1, u2)
t.

Proof. Since curl H(u) = 0 in R
2 there exists a regular function ϕ such that H(u) = −∇ϕ. ϕ

then fulfills: {
∆ϕ = 0 in Ω ∪ Ω′,
∂ϕ

∂ν
= −u · ν on ∂Ω.

This equation has an unique solution (see [10]):

ϕ(x) =

∫

∂Ω

1

2π
ln |x− y|(−u · ν)(y) dσ(y),

and then

H(u)(x) =

∫

∂Ω

1

2π
(u · ν)(y)

x− y

|x− y|2
dσ(y).

We assume now that the unitary magnetic moment u writes u = u1e1 + u2e2 and we write the
previous equation using the canonical bijection between R

2 and C.
Since ∂Ω = {y ∈ R

2, |y| = 1} = {eiτ , τ ∈ [0, 2π[} we have:

H(u) =
1

2π

∫ 2π

0
(u1 cos τ + u2 sin τ)

x− eiτ

|x− εiτ |2
dτ

=
1

2π

∫ 2π

0

(
u1
eiτ + e−iτ

2
+ u2

eiτ − e−iτ

2i

)
x− eiτ

(x− eiτ )(x− e−iτ )
dτ,

where x is the conjugate complex of x. We now let z = eiτ and remark that e−iτ = z−1 and
obtain:

H(u)(x) =
1

4π

∫

|z|=1

[
u1

(
z +

1

z

)
− iu2

(
z −

1

z

)]
1

x− 1
z

dz

iz

=
1

4iπ

∫

|z|=1

u1(z
2 + 1) − iu2(z

2 − 1)

z(xz − 1)
dz.

Applying the Residue theorem we have

H(u) = −
1

2
Ind∂Ω(0)[u1 + iu2] +

1

2

[
u1

(
1 +

1

x2

)
− iu2

(
1

x2 − 1

)]
Ind∂Ω

(
1

x

)
,

where Ind∂Ω(z) = 1 if z ∈ Ω and 0 otherwise. Back to the real coordinates we obtain the
announced result.
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2.2.2 Existence of U 0

Theorem 2.7. Given U 0
0 ∈ H

6(Ω)⊗H
7
p(I1), such that |U 0

0 | ≡ 1 and
∂U0

0

∂ν
= 0 on ∂Ω× I1, there

exists T0 > 0 and an unique solution to the equation (2.20):





∂U0

∂t
− ∆τU

0 = |∇τU
0|2U0 + U0 ∧ ∆τU

0 + U0 ∧H0 − U0 ∧
(
U0 ∧H0

)
in Ω × I1,

∂U0

∂ν
= 0 on ∂Ω × I1,

U0(t = 0) = U 0
0 in Ω × I1,

(2.20)

where 



divτ

(
H0 + U0

)
= 0,

curlτ H
0 = 0,

such that |U 0| = 1 and

U0 ∈

3⋂

k=0

[
W

k,∞
(
0, T0; H

6−2k(Ω) ⊗ H
7
p(I1)

)
∩ H

k
(
0, T0; H

7−2k(Ω) ⊗ H
7
p(I1)

)]
.

Proof. We apply Prop. 2.2 and obtain that −H0 is the projection of U 0 on the vector field
transversal gradients and fulfills:

‖H0‖Hs(R2) ≤ C‖U0‖Hs(Ω).

In the proof of Prop. 2.2 we only consider the behaviour in the transversal direction, the z-
coordinate being considered as a parameter. Applying the existence result to the z-derivatives
of H0 we obtain:

‖H0‖Hs(Ω)⊗Ht
p(I1) ≤ C‖U0‖Hs(Ω)⊗Ht

p(I1).

When we consider the z-coordinate as a parameter, the proof of existence follows the proof given
in [7], we obtain that U 0 ∈ C

(
[0, T0]; H

2(R2) ⊗ L
2
p(I1)

)
∩L

2
(
0, T0; H

3(R2) ⊗ L
2
p(I1)

)
. As we need

more regularity in time and space (along the transversal direction and the z-direction) we use
the arguments provided in [9, 21] for the existence of the boundary layer terms: we take the
derivative of U 0 with respect to t and apply the previous result. The regularity in time provides
regularity on ∆τU

0 and then enhances the result. We obtain the regularity in the parameter
z by taking the derivative in z and applying all the previous steps. We take now the scalar
product of the equation with U 0 and remark that

∆τ |U
0|2 = 2

(
U0 · ∆τU

0 + |∇τU
0|2
)
. (2.21)

We obtain:
∂t(|U

0|2 − 1) − ∆τ (|U
0|2 − 1) = 2|∇τU

0|2(|U0|2 − 1),

which implies |U 0| ≡ 1 thanks to Gronwall’s lemma as soon as it is fulfilled at t = 0.
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Theorem 2.8. If Ω is the unitary disk D(0, 1) and the initial data does not depend on σ ∈ Ω,
i.e. U0

0 ∈ H
7
p(I1) then U 0 fulfills the following ordinary differential equation with parameter

z ∈ I1: 



∂U0

∂t
= U0 ∧H0 − U0 ∧

(
U0 ∧H0

)
in I1,

H0 = −
1

2
U0

τ in I1,

U0(t = 0) = U 0
0 in I1,

(2.22)

which has an unique solution in C∞
(
R

+
t ; H7

p(I1)
)
.

Proof. Thanks to Prop. 2.6 we have H0 = −
1

2
U0

τ in Ω. We now apply Th. 2.7 and have that

U0 is regular and |U 0| ≡ 1 on Ω. We now prove that the solution does not depend on σ ∈ Ω
(see [7]). We take the scalar product of (2.20) with −∆τU

0 in L
2(Ω), integrate by parts and use

(2.21) and the conservation of the norm of U 0 to obtain:

1

2

d

dt
‖∇τU

0‖2
L2(Ω) + ‖∆τU

0‖2
L2(Ω) ≤

∫

Ω
|∇τU

0|4 dx+ C‖∇τU
0‖2

L2(Ω).

Since |∇τU
0| ∈ L

1 (0, T0; L
∞(Ω)) Gronwall’s lemma ensures that ∇τU

0 ≡ 0 since it is fulfilled
at t = 0. So U 0 does not depend on σ ∈ Ω and fulfills (2.22). Since H

7
p(I1) is an algebra the

Cauchy-Lipschitz theorem gives the local existence and uniqueness of U 0 ∈ C∞
(
0, T0; H

7
p(I1)

)
.

Thanks to successive estimates on the derivates ∇τU
0, ∇2

τU
0,. . . we prove the global existence

of U0.

Remark 2.1. The following results state the existence of the next profiles in the asymptotic
expansion and of the remainder term for the general case. They remain true in the case of Th.
2.8 for all T0 > 0 since we are limited in the proofs by the existence time of U 0.

2.2.3 Existence of U 1

Proposition 2.9. Under the assumptions of Th. 2.7 and with the additional assumptions that

U1
0 ∈ H

5(Ω) ⊗ H
6
p(I1) and

∂U1
0

∂ν
= 0 on ∂Ω × I1, there exists an unique solution to





∂U1

∂t
− ∆τU

1 = |∇τU
0|2U1 + 2(∇τU

0 · ∇τU
1)U0 + U0 ∧ ∆τU

1 + U1 ∧ ∆τU
0

+U0 ∧H1 + U1 ∧H0 − U0 ∧
(
U0 ∧H1

)
− U0 ∧

(
U1 ∧H0

)

−U1 ∧
(
U0 ∧H0

)
in Ω × I1,

∂U1

∂ν
= 0 on ∂Ω × I1,

U1(0, ·) = U 1
0 (·) in Ω × I1,

where H1 = H(U1) +Q1, solution of Eq. (2.9), fulfills





divτ

(
H(U1) + U1

)
= 0 in R

2 × I1,

curlτ H(U1) = 0 in R
2 × I1,[

(H(U1) + U1) · ν
]

= 0 on ∂Ω × I1,





divτ Q
1
τ + ∂zU

0
l = 0 in R

2 × I1,

curl2D Q1
τ = 0 in R

2 × I1,[
Q1

τ · ν
]

= 0 on ∂Ω × I1,

∇τQ
1
l = ∂zH

0
τ in R

2 × I1,

[Q1
l ] = 0 on ∂Ω × I1,
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such that

U1 ∈

2⋂

k=0

[
W

k,∞
(
0, T0; H

5−2k(Ω) ⊗ H
6
p(I1)

)
∩ H

k
(
0, T0; H

6−2k(Ω) ⊗ H
6
p(I1)

)]
.

Proof. We use the linearity of Eq. (2.9) to split the problem in the two exposed above. We apply
Prop. 2.2 to the first exterior problem and we track the dependence on the z-coordinate as in
the case of H0 = H(U0) to obtain the existence and regularity of H(U 1). Thanks to Prop. 2.3
we obtain the existence of Q1

τ and we track the dependence on the parameter z. Now we remark
that H0

τ = −∇τϕ
0 (according to Prop. 2.2 applied to the solving of H 0). With the dependence

on z, we have that ϕ0 ∈ W
N,∞

(
0, T0; W

1
1(R

2) ⊗ H
6
p(I1)

)
and H0 has the same regularity as U 0.

As we do not impose an external magnetic field we have that Q1
l = ∂zϕ

0 and

Q1
l ∈ W

N,∞
(
0, T0; W

1
1(R

2) ⊗ H
6
p(I1)

)
,

∇τQ
1
l ∈

3⋂

k=0

[
W

k,∞
(
0, T0; H

6−2k(Ω) ⊗ H
6
p(I1)

)
∩ H

k
(
0, T0; H

7−2k(Ω) ⊗ H
6
p(I1)

)]
,

The proof follows then the same scheme as in [22, 23] and Th. 2.7.

Remark 2.2. The terms U 1, U2, . . . in the asymptotic expansion take non null values even if
their initial data is zero.

2.2.4 Existence of U 2

Proposition 2.10. Under the assumptions of Th. 2.7 and 2.9 and with the extra assumptions

U2
0 ∈ H

5(Ω) ⊗ H
5
p(I1) and

∂U2
0

∂ν
= 0 on ∂Ω, there exists an unique solution to





∂U2

∂t
− ∆τU

2 = |∇τU
0|2U2 + 2(∇τU

0 · ∇τU
2)U0 + U0 ∧ ∆τU

2 + U2 ∧ ∆τU
0

+U0 ∧H2 + U2 ∧H0 − U0 ∧
(
U0 ∧H2

)
− U0 ∧

(
U2 ∧H0

)

−U2 ∧
(
U0 ∧H0

)
+ F in Ω × I1,

∂U2

∂ν
= 0 on ∂Ω × I1,

U2(0, ·) = U 2
0 (·) in Ω × I1,

where

F = U0
zz + |U0

z |
2U0 + U0 ∧ U0

zz + U1 ∧ ∆τU
1 + |∇τU

1|2U0 + 2(∇τU
0 · ∇τU

1)U1

+U1 ∧H1 − U0 ∧
(
U1 ∧H1

)
− U1 ∧

(
U0 ∧H1

)
− U1 ∧

(
U1 ∧H0

)
,

and H2 = H(U2) +Q2, solution of Eq. (2.11), fulfills





divτ

(
H(U2) + U2

)
= 0 in R

2 × I1,

curlτ H(U2) = 0 in R
2 × I1,[

(H(U2) + U2) · ν
]

= 0 on ∂Ω × I1,





divτ Q
2
τ + ∂z(H

1
l + U1

l ) = 0 in R
2 × I1,

curl2D Q2
τ = 0 in R

2 × I1,[
Q2

τ · ν
]

= 0 on ∂Ω × I1,

∇τQ
2
l = ∂zH

1
τ in Ω × I1,

[Q2
l ] = 0 on ∂Ω × I1,

such that

U2 ∈
2⋂

k=0

[
W

k,∞
(
0, T0; H

5−2k(Ω) ⊗ H
5
p(I1)

)
∩ H

k
(
0, T0; H

6−2k(Ω) ⊗ H
5
p(I1)

)]
.
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Proof. We use the linearity to split Eq. (2.11). The existence and regularity of H(U 2) is given
by Prop. 2.2 as in Th 2.9. The solving of Q2

l follows the same scheme as in Th. 2.9. We now
split the equation on Q2

τ in:




divτ Q
2,1
τ + ∂zU

1
l = 0 in R

2 × I1,

curl2D Q2,1
τ = 0 in R

2 × I1,[
Q2,1

τ · ν
]

= 0 on ∂Ω × I1.





divτ Q
2,2
τ + ∂zH

1
l = 0 in R

2 × I1,

curl2D Q2,2
τ = 0 in R

2 × I1,[
Q2,2

τ · ν
]

= 0 on ∂Ω × I1,

where Q2 = Q2,1 +Q2,2. Prop. 2.3 and Th. 2.9 give the existence and regularity of Q2,1 but we
can not apply this proposition to the case of Q2,2. As H1

l = Q1
l = ∂zϕ

0, Q2,2 is solution to Eq.
(2.17) with u = ∂2

zU
0. Thanks to Prop. 2.4 and with the study of the z-regularity, we obtain

that Q2,2
τ = −∇τϕ

2 with

ϕ2 ∈ W
3,∞

(
0, T0; W

2
2(R

2) ⊗ H
5
p(I1)

)
,

∇τQ
2,2 ∈

3⋂

k=0

[
W

k,∞
(
0, T0; H

6−2k(Ω) ⊗ H
5
p(I1)

)
∩ H

k
(
0, T0; H

7−2k(Ω) ⊗ H
5
p(I1)

)]
.

The proof follows then the same scheme as in [22, 23] and Th. 2.7.

2.2.5 Existence of U 3

Proposition 2.11. Under the assumptions of Th. 2.7, 2.9 and 2.10 and with the additional

assumptions U 3
0 ∈ H

5(Ω) ⊗ H
4
p(I1) and

∂U3
0

∂ν
= 0 on ∂Ω, there exists an unique solution to





∂U3

∂t
− ∆τU

3 = |∇τU
0|2U3 + 2(∇τU

0 · ∇τU
3)U0 + U0 ∧ ∆τU

3 + U3 ∧ ∆τU
0

+U0 ∧H3 + U3 ∧H0 − U0 ∧
(
U0 ∧H3

)
− U0 ∧

(
U3 ∧H0

)

−U3 ∧
(
U0 ∧H0

)
+ F in Ω × I1,

∂U3

∂ν
= 0 on ∂Ω × I1,

U3(0, ·) = U 3
0 (·) in Ω × I1,

where
F = ∂2

zU
1 + |∇τU

1|2U0 + 2(∇τU
0 · ∇τU

1)U2 + 2(∇τU
0 · ∇τU

2)U1

+2(∇τU
1 · ∇τU

2)U0 + |∂zU
0|2U1 + 2(∂zU

0 · ∂zU
1)U0

+U1 ∧ ∂2
zU

0 + U0 ∧ ∂2
zU

1 + U1 ∧ ∆τU
2 + U2 ∧ ∆τU

1

+U1 ∧H2 + U2 ∧H1 − U0 ∧
(
U1 ∧H2

)
− U0 ∧

(
U2 ∧H1

)

−U1 ∧
(
U0 ∧H2

)
− U1 ∧

(
U2 ∧H0

)
− U2 ∧

(
U0 ∧H1

)

−U1 ∧
(
U2 ∧H0

)
− U1 ∧

(
U1 ∧H1

)
,

and H3 = H(U3) +Q3, solution of Eq. (2.13), fulfills





divτ

(
H(U3) + U3

)
= 0 in R

2 × I1,

curlτ H(U3) = 0 in R
2 × I1,[

(H(U3) + U3) · ν
]

= 0 on ∂Ω × I1,





divτ Q
3
τ + ∂z(H

2
l + U2

l ) = 0 in R
2 × I1,

curl2D Q3
τ = 0 on R

2 × I1,[
Q3

τ · ν
]

= 0 on ∂Ω × I1,

∇τQ
3
l = ∂zH

2
τ in Ω × I1,

[Q3
l ] = 0 on ∂Ω × I1,

such that

U3 ∈
2⋂

k=0

[
W

k,∞
(
0, T0; H

5−2k(Ω) ⊗ H
4
p(I1)

)
∩ H

k
(
0, T0; H

6−2k(Ω) ⊗ H
4
p(I1)

)]
.
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Proof. We use the linearity to split the equations (2.13). The existence and regularity of H(U 3)
is given by Prop. 2.2 as in Th. 2.9. We follow the same scheme as in Th. 2.9 to obtain Q3

l , and
we split the equation on Q3

τ in:




divτ Q
3,1
τ + ∂zU

2
l = 0 in R

2 × I1,

curl2D Q3,1
τ = 0 in R

2 × I1,[
Q3,1

τ · ν
]

= 0 on ∂Σ × I1.





divτ Q
3,2
τ + ∂zH

2
l = 0 in R

2 × I1,

curl2D Q3,2
τ = 0 in R

2 × I1,[
Q3,2

τ · ν
]

= 0 on ∂Σ × I1,

where Q3 = Q3,1 +Q3,2. Prop. 2.3 and Th. 2.9 give the existence and regularity of Q3,1 but wa
can not apply this proposition to the case of Q3,2. As H2

l = Q2
l , Q

3,2 is the sum of the solutions

of the equation (2.17) with u = ∂2
zU

1 and of the equation (2.18) with f = ∂3
zU

0
l . Thanks to

Prop. 2.4 and 2.5 and with the study of the z-regularity, we obtain that Q3,2
τ = −∇τϕ

3 withavec

ϕ3 ∈ W
3,∞

(
0, T0;W

2
2(R

2) ⊗ H
4
p(I1)

)
,

∇τQ
3,2 ∈

3⋂

k=0

[
W

k,∞
(
0, T0; H

6−2k(R2) ⊗ H
4
p(I1)

)
∩ H

k
(
0, T0; H

7−2k(R2) ⊗ H
4
p(I1)

)]
.

The proof follows then the same scheme as in [22, 23] and Th. 2.7.

3 Sobolev embeddings and energy estimates in the space ωε

In the following we are lead to perform energy estimates on the remainder terms of uε and Hε.
These terms will be defined respectively in ωε and R

3 (i.e. there is no rescaling) and we need to
track the dependence on the domain and particularly on ε of the Sobolev embeddings and other
classical inequalities. The following results are taken from [22, 23, 24] where they were proved
in the case of a thin layer. Thanks to a rescaling (to get rid of the ε in the definition of the
domain), v(σ, z) = u(εσ, z) for u defined on ωε, we introduce anisotropic Sobolev spaces on the
domain ωε. In a first time we remind some anisotropic Sobolev inequalities, the first two being
proved in [24], the last one in [22] :

Theorem 3.1 (Anisotropic Agmon’s inequality). Let Ω0 =]0, 1[3. There exists an absolute
constant C such that

‖u‖
L∞(Ω0) ≤ C ‖u‖

1

4

L2(Ω0)

3∏

i=1

(∥∥∥∥
∂2u

∂x2
i

∥∥∥∥
L2(Ω0)

+

∥∥∥∥
∂u

∂xi

∥∥∥∥
L2(Ω0)

+ ‖u‖
L2(Ω0)

) 1

4

, (3.1)

for all u ∈ H
2(Ω0).

Theorem 3.2 (Anisotropic Ladyzhenskaya’s inequality). Let Ω0 =
∏3

i=1]0, λi[ with λi > 0
for i = 1, 2, 3. There exists an absolute constant C such that

‖u‖
L6(Ω) ≤ C

3∏

i=1

(∥∥∥∥
∂u

∂xi

∥∥∥∥
L2(Ω)

+
1

λi
‖u‖

L2(Ω0)

) 1

3

, (3.2)

for all u ∈ H
1(Ω0).

Theorem 3.3. Let Ω0 =]0, 1[3. There exists an absolute constant C such that

‖u‖L12(Ω0) ≤ C

3∏

i=1




1∑

j=0

∥∥∥∥∥
∂ju

∂x
j
i

∥∥∥∥∥
L2(Ω0)




1

4



2∑

j=0

∥∥∥∥∥
∂ju

∂x
j
i

∥∥∥∥∥
L2(Ω0)




1

12

. (3.3)
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We introduce now the anisotropic Sobolev spaces and the anisotropic inequalities.

Definition 3.1. For 1 ≤ p < +∞, we define the normalized Lebesgues spaces L
p
ε in the following

way:

L
p
ε =

{
u ∈ D′(ωε),

1

|ωε|

∫

ωε

|u(x)|p dx < +∞

}
,

|u|ε,p =

(
1

|ωε|

∫

ωε

|u(x)|p dx

)1/p

.

We let W
0,p
ε = L

p
ε and we define the anisotropic Sobolev spaces W

m,p
ε , m ∈ N, and their norms

as follows:
W

m+1,p
ε = {u ∈ L

p
ε, ∂zu ∈ W

m,p
ε and (ε∇τ )u ∈ W

m,p
ε } ,

‖u‖
W

m+1,p
ε

=
(
|u|pε,p + ‖∂zu‖

p
W

m,p
ε

+ ‖ε∇τu‖
p
W

m,p
ε

)1/p
.

When p = 2 we let H
m
ε = W

m,2
ε , and ‖u‖ε,m = ‖u‖

W
m,2
ε

.
When p = +∞, we let:

L
∞
ε =

{
u ∈ D′(ωε), sup

x∈ωε

|u(x)| < +∞

}
,

|u|ε,∞ = sup
x∈ωε

|u(x)|.

With W
0,∞
ε = L

∞
ε , we define the anisotropic Sobolev spaces W

m,∞
ε , m ∈ N, and their norms as

follows:
W

m+1,∞
ε = {u ∈ L

∞
ε , ∂zu ∈ W

m,∞
ε and (ε∇τ )u ∈ W

m,∞
ε } ,

‖u‖
W

m+1,∞
ε

=
(
|u|ε,∞ + ‖∂zu‖W

m,∞
ε

+ ‖ε∇τu‖W
m,∞
ε

)
.

Corollary 3.4. There exists an ε-independent constant C such that:

• for all u ∈ H
1
ε and 1 ≤ p ≤ 6,

|u|ε,p ≤ C |u|
3

p
− 1

2

ε,2 ‖u‖
3

2
− 3

p

ε,1 . (3.4)

• for all u ∈ H
2
ε and 2 ≤ p ≤ +∞,

|u|ε,p ≤ C |u|
1

4
+ 3

2p

ε,2 ‖u‖
3

4
− 3

2p

ε,2 . (3.5)

• for all u ∈ H2
ε,

|u|ε,12 ≤ C ‖u‖
3

4

ε,1 ‖u‖
1

4

ε,2 . (3.6)

Proof. Thanks to a global map of Ω we only have to prove the results in ]0, 1[2×]0, 1[.
We obtain the first estimate in the case p = 6 thanks to theorem 3.2. An interpolation between
L

2
ε and L

6
ε give the result.

With the rescaling strategy we use to introduce the anisotropic Sobolev spces we deduce from
Th. 3.1 and 3.3 the two inequalities.
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3.1 Trace and lifting

Let us remind a definition of the spaces H
s(Ω), s = k + θ > 0, 0 < s < 1 (see [19, 18]) :

H
s(Ω) =

{
u ∈ H

k(Ω),

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|2

|x− y|n+2s
dx dy < +∞, ∀|α| = k

}
,

‖u‖Hs(Ω) =


‖u‖2

Hk(Ω) +
∑

|α|=k

∫

Ω

∫

Ω

|Dαu(x) −Dαu(y)|2

|x− y|n+2s
dx dy




1/2

.

With the rescaling strategy we use for the H
p spaces we define anisotropic Sobolev spaces on

the boundary ∂ωε = εΩ × I1 (where the periodic domain I1 has no boundary):

H
s
ε(∂ωε) =

{
u ∈ H

k
ε(∂ωε),

1

|∂ωε|2

∫

∂ωε

∫

∂ωε

|Dα
ε u(y) −Dα

ε u(y
′)|2

(ε−2|σ − σ′|2 + |z − z′|2)n/2+s
dy dy′ < +∞, ∀|α| = k

}
,

‖u‖Hs
ε(∂ωε) =


‖u‖2

Hk(∂ωε) +
∑

|α|=k

1

|∂ωε|2

∫

∂ωε

∫

∂ωε

|Dα
ε u(y) −Dα

ε u(y
′)|2

(ε−2|σ − σ′|2 + |z − z′|2)n/2+s
dy dy′




1/2

,

where y = (σ, z), y′ = (σ′, z′), Dε = (ε∇t
τ , ∂z)

t and α ∈ N
k.

Lemma 3.5. There exists an ε-independent constant C such that for all ε > 0 small enough
and u ∈ H

1
ε,

‖u‖
H

1
2
ε (∂ωε)

≤ C ‖u‖ε,1 .

There exists an ε-independant constant C such that for all 0 < ε small enough and f ∈ H

1

2
ε (∂ωε),

there exists a lifting ψ ∈ H
1
ε of f such that:

‖ψ‖ε,1 ≤ C ‖f‖
H

1
2
ε (∂ωε)

.

Proof. Anisotropic trace theorem: for all (σ, x) ∈ Ω × I1 we let v(σ, x) = u(εσ, z). We now
apply the classical trace theorem to v and we get:

‖v‖
H

1
2 (∂Ω×I1)

≤ c‖v‖H1(Ω×I1),

where c does not depend on ε. We now perform some estimates on v: as in Lemma 3.4 we obtain
that there exists some ε-independant constants C and C ′ such that:

C ‖u‖ε,1 ≤ ‖v‖H1(Ω×I1) ≤ C ′ ‖u‖ε,1 .

As the spaces H

1

2
ε (∂ωε) are defined such that they take into account the anisotropy of the domain,

we obtain th following estimates on the norm H
1

2 :

C ‖u‖
H

1
2
ε (∂ωε)

≤ ‖v‖
H

1
2 (∂Ω×I1)

≤ C ′ ‖u‖
H

1
2
ε (∂ωε)

,

which gives the result.

Anisotropic lifting theorem : In the same way we apply the classical lifting theorem to
g(σ, z) = f(εσ, z), (σ, x) ∈ ∂Ω × I1 and we obtain a lifting v ∈ H

1(Ω × I1). We define then

u by u(εσ, z) = v(σ, z) and u is a lifting of f ∈ H
1

2 (∂ωε), the previous estimates conclude the
proof.
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3.2 Some inequalities

In the following we need the following results :

Lemma 3.6. Let Ω a regular open bounded set of R
n. There exists a constant C such that for

all u ∈ H
2(Ω) such that

∂u

∂ν
= 0 on ∂Ω, we have:

‖u‖
H2(Ω) ≤ C

(
‖u‖2

L2(Ω) + ‖∆u‖2
L2(Ω)

)1/2
. (3.7)

There exist a constant C such that for all u ∈ H
m(Ω), m ∈ N

∗, we have:

‖u‖Hm(Ω) ≤ C
(
‖u‖L2(Ω) + ‖div u‖Hm−1(Ω) + ‖curl u‖Hm−1(Ω) + ‖u · ν‖

Hm−1/2(∂Ω)

)
. (3.8)

Proof. The first inequality comes from the regularity of the operator I − ∆ with domain

D(I − ∆) =

{
u ∈ H

2(Ω),
∂u

∂ν
= 0 sur ∂Ω

}

(cf [10]). The second inequality is proved in [11].

Remark 3.1. The second result remains true with u ∧ ν instead of u · ν and in a domain with
bounded complementary instead of a bounded set.

We also use anisotropic versions of these results:

Lemma 3.7. For all u ∈ H
2
ε such that

∂u

∂n
= 0 on ∂ωε, there exists an ε-independent constant

C such that

‖u‖ε,2 ≤ C
(
|u|2ε,2 +

∣∣∂2
zu
∣∣2
ε,2

+
∣∣ε2∆τu

∣∣2
ε,2

)1/2
, (3.9)

For all u ∈ H
m
ε , m ∈ N

∗, there exists an ε-independent constant C such that:

‖u‖ε,m ≤ C
(
|u|ε,2 + ‖∂zul‖ε,m−1 + ‖εdivτ u‖ε,m−1 + ‖(e3∂z) ∧ u+ εcurlτ u‖ε,m−1

+‖u · ν‖
H

m−
1
2

ε (∂ωε)

)
.

(3.10)

Proof. We let v(σ, z) = u(εσ, z) to consider the domain Ω× I1. We then apply Lemma 3.6 to v
and we deduce the result thanks to Lemma 3.5.

Corollary 3.8. There exists an ε-independent constant C such that for all u ∈ H
2
ε satisfying

∂u

∂ν
= 0 on ∂ωε we have:

‖(e3∂z + ε∇τ )u‖ε,1 ≤ C
(
|∂zu|ε,2 + |ε∇τu|ε,2 +

∣∣∂2
zu
∣∣
ε,2

+
∣∣ε2∆τu

∣∣
ε,2

)
. (3.11)

Moreover if u ∈ H
3
ε, there exists an ε-independent constant C such that:

‖(e3∂z + ε∇τ )u‖ε,2 ≤ C
(
|∂zu|ε,2 + |ε∇τu|ε,2 +

∥∥∂2
zu
∥∥

ε,1
+
∥∥ε2∆τu

∥∥
ε,1

)
. (3.12)
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4 Study of the remainder term

We let:

• in ωε,





uε(t, x) = U 0
(
t,
σ

ε
, z
)

+ εU1
(
t,
σ

ε
, z
)

+ ε2U2
(
t,
σ

ε
, z
)

+ ε3U3
(
t,
σ

ε
, z
)

+ ε3rε(t, x),

Hε(t, x) = H0
(
t,
σ

ε
, z
)

+ εH1
(
t,
σ

ε
, z
)

+ ε2H2
(
t,
σ

ε
, z
)

+ ε3H3
(
t,
σ

ε
, z
)

+ ε3Qε(t, x),

• in
(
R

2 × I1
)
\ ωε

Hε(t, x) = H0
(
t,
σ

ε
, z
)

+ εH1
(
t,
σ

ε
, z
)

+ ε2H2
(
t,
σ

ε
, z
)

+ ε3H3
(
t,
σ

ε
, z
)

+ ε3Qε(t, x),

where rε and Qε are the remainder terms of u and H and x = (σ, z). In the following we let

Ṽ (x) = V
(σ
ε
, z
)
.

4.1 Remainder term of H
ε

Back in Eqs. (1.2) and (2.5) we simplify by using the equations fulfilled by the profiles and we
obtain: 




div (Qε + rε) + ∂z

(
H̃3

l + Ũ3
l

)
= 0 in R

2 × I1,

curl Qε + ∂z

(
e3 ∧ H̃3

)
= 0 in R

2 × I1,

[(Qε + rε) · ν] = 0 on ∂ωε,

[Qε ∧ ν] = 0 on ∂ωε.

(4.1)

We then consider the remainder Qε as a function of rε to get:

Theorem 4.1. Under the assumptions of Th. 2.7, 2.9, 2.10 and 2.11 and if rε ∈ H
p
ε, p ∈ N,

there exists an unique Qε = Rε + Sε such that





div (Rε + rε) = 0 in R
2 × I1,

curl Rε = 0 in R
2 × I1,

[(Rε + rε) · ν] = 0 on ∂ωε,

[Rε ∧ ν] = 0 on ∂ωε,





div Sε + ∂z

(
H̃3

l + Ũ3
l

)
in R

2 × I1,

curl Sε + ∂z

(
e3 ∧ H̃3

)
in R

3,

[Sε · ν] = 0 on ∂ωε,

[Sε ∧ ν] = 0 on ∂ωε,

and there exists some ε independent constant c0 such that

‖Rε‖ε,p ≤ c0 ‖r
ε‖ε,p ,

‖Sε‖ε,3 ≤ c0.

Proof. See Appendix A
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4.2 Remainder term of u
ε

According to Th. 4.1 we let:




aε(t, x) = U 0
(
t,
σ

ε
, z
)

+ εU1
(
t,
σ

ε
, z
)

+ ε2U2
(
t,
σ

ε
, z
)

+ ε3U3
(
t,
σ

ε
, z
)

in ωε,

bε(t, x) = U 1
(
t,
σ

ε
, z
)

+ εU2
(
t,
σ

ε
, z
)

+ ε2U3
(
t,
σ

ε
, z
)

in ωε,

cε(t, x) = U 2
(
t,
σ

ε
, z
)

+ εU3
(
t,
σ

ε
, z
)

in ωε,

Qε = Rε + Sε in ωε,

Kε(t, x) = H0
(
t,
σ

ε
, z
)

+ εH1
(
t,
σ

ε
, z
)

+ ε2H2
(
t,
σ

ε
, z
)

+ ε3U3
(
t,
σ

ε
, z
)

+ ε3Sε in ωε,

Back in Eq. (2.4) we simplify by using the equations of the profiles (2.8), (2.10), (2.12) and
(2.14). We obtain : 




∂rε

∂t
− ε2∆rε = T1 + · · · + T8 + F ε in ωε,

∂rε

∂ν
= 0 on ∂ωε,

rε(0, x) = rε
0(x) in ωε,

(4.2)

where 



T1 = ε8|∇rε|2rε,

T2 = ε5
(
|∇rε|2aε + 2(∇rε · ∇aε)rε

)
,

T3 = ε2
(
|∇aε|2rε + 2(∇rε · ∇aε)aε

)
,

T4 = ε2
(
rε ∧ ∆aε + aε ∧ ∆rε + ε3rε ∧ ∆rε

)
,

T5 = aε ∧Rε + rε ∧Kε + ε3rε ∧Rε,

T6 = − [aε ∧ (aε ∧Rε) + aε ∧ (rε ∧Kε) + rε ∧ (aε ∧Kε)] ,

T7 = −ε3 [rε ∧ (rε ∧Kε) + rε ∧ (aε ∧Rε) + aε ∧ (rε ∧Rε)] ,

T8 = −ε6rε ∧ (rε ∧Rε) ,

and F ε = εA+ aε ∧ Sε − aε ∧ (aε ∧ Sε) where A is the sum of products of the profiles and their
derivatives, both valued in

(
x
ε , z
)

(See Appendix B).

According to the regularity results we obtained on the profiles, we have the following proposition:

Proposition 4.2. Under the assumptions of Th. 2.7, 2.9, 2.10 and 2.11, for all p, 1 ≤ p ≤ +∞
and for all 0 < T < T0, there exists some ε-independent and positive constants Cp such that for
all ε > 0, t ∈ [0, T ], and i = 0, 1, 2,

‖aε(t, .)‖
W

i,p
ε

≤ Cp.
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For all p, 2 ≤ p < +∞ and for all 0 < T < T0 there exists some ε-independent positive constants
Cp such that for all ε > 0 and t ∈ [0, T ],

‖aε(t, .)‖
W

3,p
ε

≤ Cp,

For all p, 1 ≤ p ≤ +∞ and 0 < T < T0 there exists some ε-independent positive constants Cp

such that for all ε > 0 and t ∈ [0, T ],

‖Kε(t, .)‖
W

1,p
ε

≤ Cp,

‖F ε(t, .)‖ε,1 ≤ C2.

Proof. Thanks to the regularity results we have some estimates on the profiles in the spaces
W

k,∞(Ω × I1). Thanks to a rescaling we are lead to consider the anisotropic spaces W
k,∞
ε . An

interpolation with the estimates obtained in L
2
ε and the estimates performed on Sε in Th. 4.1

give the result.

4.3 Estimate on the remainder term

We will now perform some estimates on the remainder term rε. This will provides us a proof
of the existence of uε for a more regular initial data (H6(Ω) ⊗ H

7(I1)) in the case of straight
wires (instead of H

2 in [7]) and also an asymptotic expansion of uε. The loss of regularity of the
initial data is typical of the asymptotic expansion method we use (see also [5, 9, 12, 21, 22, 23]).
These estimates are performed on a Galerkin approximation which will allow us to justify all
integration by parts. The approximation space we consider for the Landau-Lifschitz equation is
built on the basis of eigenfunctions of the Laplace operator solved on the domain ωε = εΩ × I1

and with domain

{
u ∈ H

2
ε,
∂u

∂n
= 0 on ∂ωε

}
. We also use this basis for the magnetic field thanks

to the projection operator (we will not detail this step). In the following we then have to prove
estimates on rε

n, the projection of rε on the approximation space, that are independent of ε.
We let:

Q(t) = |rε
n(t, .)|2ε,2 + |∂zr

ε
n(t, .)|2ε,2 + |ε∇τr

ε
n(t, .)|2ε,2

+ε2
(∣∣∂2

zr
ε
n(t, .)

∣∣2
ε,2

+ |ε∇τ∂zr
ε
n|

2
ε,2 +

∣∣ε2∆τr
ε
n(t, .)

∣∣2
ε,2

)
,

and we assume that Q(0) ≤ ‖rε
0‖

2
ε,1 + ε2 ‖rε‖2

ε,2 is bounded.
As we consider a Galerkin approximation of rε we get the existence of Q on a maximum time
interval

[
0, T ∗

n,ε

[
where 0 < T ∗

n,ε < T0 and T0 is the existence time of U 0. We want to prove here
the existence of εT small enough such that we have the existence of Q on [0, T ] independently
of n if 0 < ε ≤ εT . We also show the estimates of the main result. We will proceed as it follows:
We let 0 < T < T0 and we perform energy estimates independtly of n, we take the scalar product
in L

2
ε of Eq. (4.2) with rε, ∂2

zr
ε + ε2∆τr

ε and ε2
(
∂4

z + ε2∂2
z∆τ + ε4∆2

τ

)
rε. By integrating by

parts and absorbing the cumbersome terms thanks to the dissipative term −ε2∆rε in Eq. (4.2)
we prove (see Appendix C) that Q fulfills on [0, T ] ∩ [0, T ∗

n,ε[ the differential inequality:

Q′(t) ≤ CT (1 + Q(t)) + ε2PT (Q(t)), t ∈ [0, T ] ∩ [0, T ∗
n,ε[, (4.3)

where CT is a constant and PT a polynomial, both independent from n and ε (but not from T ).
We let now

T ε = sup

{
T, T < T0, P (Q(t)) ≤

1

ε2
, ∀t ∈ [0, T ]

}
.
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For all t < T < T ε, Q′ ≤ C(1 + Q), and

Q(t) ≤ (1 + Q(0)) exp(Ct) − 1

thanks to the Gronwall lemma. We then deduce that P (Q(t)) ≤
1

ε2
for all t ≤ min

(
T0, a ln 1

ε + b
)
.

We then have that lim
ε→0

Tε = T0, which implies T ∗
n,ε ≥ T as soon as ε ∈]0, εT ] where εT is a con-

stant small enough. Moreover rε is bounded independtly from ε in L
∞
(
0, T ; H1

ε

)
and εrε is

bounded independently from ε in L
∞
(
0, T ; H2

ε

)
for all 0 < T < Tε.

The anisotropic Sobolev embeddings and the renormalization in the Lebesgue spaces give the
main result.

Remark 4.1.

In the case of Th. 2.8 where the domain is the unitary disk and the initial data does not depend
on σ ∈ Ω, this proof remains valid and moreover give that the existence time T ε of rε goes to
infinity as ε goes to zero.

Acknowledgments: The author wishes to thanks his Ph.D. advisors G. Carbou and P. Fabrie
for their help. He is also grateful to A. Thiaville and J. Miltat for fruitful discussions and for
the suggestion of this topic.

A Proof of Theorem 4.1

Under the assumptions of Th. 2.7, 2.9, 2.10 and 2.11 and if rε ∈ H
p
ε, p ∈ N, there exists an

unique Qε = Rε + Sε such that





div (Rε + rε) = 0 in R
2 × I1,

curl Rε = 0 in R
2 × I1,

[(Rε + rε) · ν] = 0 on ∂ωε,

[Rε ∧ ν] = 0 on ∂ωε,





div Sε + ∂z

(
H̃3

l + Ũ3
l

)
in R

2 × I1,

curl Sε + ∂z

(
e3 ∧ H̃3

)
in R

3,

[Sε · ν] = 0 on ∂ωε,

[Sε ∧ ν] = 0 on ∂ωε,

and there exists some ε independent constant c0 such that

‖Rε‖ε,p ≤ c0 ‖r
ε‖ε,p ,

‖Sε‖ε,3 ≤ c0.

Proof. We use the linearity to split Eq. (4.1).
Equation on Rε: Since curl Rε = 0, there exists ϕε ∈ W1(R2 × I1) (Beppo-Levi’s space, cf.
[10]) such that Rε = −∇ϕε and ϕε is solution of:





−∆ϕε = −div rε in ωε,

−∆ϕε = 0 in ω′
ε,[

−
∂ϕε

∂ν
+ rε · ν

]
= 0 on ∂ωε,

[ϕε] = 0 on ∂ωε.

For all Φ,Ψ ∈ W1(R2 × I1), we let α(Φ,Ψ) =

∫

R2×I1

∇Φ · ∇Ψ dx and

β(Ψ) = −

∫

Ω
Ψ · div rε dx+

∫

∂ωε

(rε · ν)Ψ ∂γ.
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The application α is continuous and coercive on W1(R2 × I1) and

|β(Ψ)| ≤ ‖rε‖L2(ωε)‖∇Ψ‖L2
p(R2×I1).

We apply now the Lax-Milgram theorem and we obtain the existence of ϕε ∈ W1(R2 × I1) and
‖Rε‖L2(R2×I1) = ‖∇ϕε‖L2(R2×I1) ≤ ‖rε‖L2(ωε). Back to the anisotropic Sobolev norms we have
|Rε|ε,2 ≤ |rε|ε,2. To enhance the regularity while taking into account the anisotropy of the spaces,
we derive the equation on Rε in the transversal and longitudinal directions and we reapply the
same arguments (we follow the strategy given in [7, 9, 14]). We obtain ‖Rε‖ε,p ≤ C ‖rε‖ε,p.

Equation on Sε: Thanks to the linearity we split again the equation in three terms, one for
each one in the second member. We let Sε = Sε,1 + Sε,2 + Sε,3.
Since the domain ωε is z-periodic, we temporarily forget what happens in this direction by
decomposing the magnetic field in Fourier series, we are then lead to consider problems of the
same kind as the ones solved for H0, H1, H2 and H3. Sε,1 fulfills:





div Sε,1 + ∂zŨ
3
l = 0 in R

2 × I1,

curl Sε,1 = 0 in R
2 × I1,

[Sε,1 · ν] = 0, [Sε,1 ∧ ν] = 0 on ∂ωε.

There exists then ϕε,1 such that Sε,1 = −∇ϕε,1, and by decomposing in Fourier series in the z
direction the equation we obtain, we get:

−∆τ cn(ϕε,1) + n2cn(ϕε,1) = i ncn(U3
l ) in R

2,

where cn(f) is the n-th Fourier’s coefficient of f and n ∈ Z. By the same way we used in Prop.
2.3 to obtain the existence and regularity we get that −∇ϕε,1 = Sε,1 ∈ L

∞
(
0, T0; H

4
ε

)
and for

all t < T0 ∥∥Sε,1
∥∥

ε,k
≤ c

∥∥U3
l

∥∥
ε,k
, 0 ≤ k ≤ 4.

The application Sε,2 fulfills:




div Sε,2 + ∂zH̃
3
l = 0 in R

2 × I1,

curl Sε,2 = 0 in R
2 × I1,

[Sε,2 · ν] = 0, [Sε,2 ∧ ν] = 0 on ∂ωε.

In the same way we introduce ϕε,2 such that Sε,2 = −∇ϕε,2 and we use the Fourier series
in the z-direction. Since H3

l = Q3
l (cf Th. 2.11), we use the same method as in Prop. 2.4

and we take into account the Fourier variable to get some regularity for S ε,1. We obtain that
Sε,2 ∈ L

∞
(
0, T0; H

4
ε

)
and for all 0 ≤ k ≤ 4,

∥∥Sε,2(t, ·)
∥∥

ε,k
≤ c

(∥∥∥∂3
zU

0
(
t,

·

ε
, ·
)∥∥∥

ε,k
+
∥∥∥∂2

zU
1
(
t,

·

ε
, ·
)∥∥∥

ε,k
+
∥∥∥∂zU

2
(
t,

·

ε
, ·
)∥∥∥

ε,k

)
.

The application Sε,3 fulfills:




div Sε,3 = 0 in R
2 × I1,

curl Sε,3 + ∂z

(
e3 ∧ H̃3

)
= in R

2 × I1,

[Sε,3 · ν] = 0, [Sε,3 ∧ ν] = 0 on ∂ωε,
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which also writes: 



divτ S
ε,3
τ + ∂zS

ε,3
l = 0,

curl2D Sε,3
τ = 0,

∇τS
ε,3
l − ∂zS

ε,3 = ∂zH
3
τ .

Let ϕε
l such that Sε,3

τ = −∇τϕ
ε
l . Since H3

τ = −∇τϕ
2, we have Sε,3

l + ∂zϕ
ε
l = −∂zϕ

3 (there is
no constant through integration since we assume that there is no external magnetic field), and
finally, the divergence equation gives:

−∆τϕ
ε
l − ∂2

zϕ
ε
l = ∂2

zϕ
3.

This case is similar to the case of Sε,2, except that the equation fulfilled by ϕ3 is more compli-
cated. Following the proof of Prop. 2.3 and 2.4, the existence proof of S ε,1 and Sε,2 and with
the results of Prop. 2.1, we obtain that Sε,3 ∈ L

∞
(
0, T0; H

3
ε

)
and for 0 ≤ k ≤ 3,

∥∥Sε,3(t, ·)
∥∥

ε,k
≤ C

(∥∥∂zU
3
∥∥

ε,k
+
∥∥∂2

zU
2
∥∥

ε,k
+
∥∥∂3

zU
1
∥∥

ε,k
+
∥∥∂4

zU
1
∥∥

ε,k

)
.

B Expression of F
ε

F ε = ε
[
∂2

zc
ε + |∇τ b

ε|2cε + ε2|∇τ c
ε|2cε − 2ε|∇τ c

ε|2bε + |∂zb
ε|2aε − 2ε|∂zb

ε|2bε − 2ε|∇τ b
ε|2U3

+|∇τ c
ε|2aε + |∂za

ε|2cε + ε2|∂zb
ε|2cε + 2(∇τU

3 · ∇τa
ε)bε + 2(∂za

ε · ∂zb
ε)bε

+2(∇τU
3 · ∇τ b

ε)aε + 2(∇τa
ε · ∇τ b

ε)U3 − 4ε(∇τ b
ε · ∇τU

3)bε − 2ε(∂zb
ε · ∂zc

ε)aε

−2ε(∇τ c
ε · ∇τU

3)aε + 2ε2(∂zb
ε · ∂zc

ε)bε − 2ε(∇τa
ε · ∇τU

3)cε + 2(∂za
ε · ∂zc

ε)aε

−2ε(∂za
ε · ∂zb

ε)cε − 2ε(∂za
ε · ∂zc

ε)bε − 2ε(∇τa
ε · ∇τ c

ε)U3 + 2ε2(∇τ b
ε · ∇τ c

ε)U3

+2(∇τa
ε · ∇τ c

ε)cε + 2ε2(∇τ c
ε · ∇τU

3)bε + 2ε2(∇τ b
ε · ∇τU

3)cε − 4ε(∇τ b
ε · ∇τ c

ε)cε

+2(∇τ b
ε · ∇τ c

ε)bε + cε ∧ ∂2
za

ε + cε ∧ ∆τ c
ε − εcε ∧ ∂2

zb
ε + aε ∧ ∂2

z c
ε + bε ∧ ∂2

z b
ε

+bε ∧ ∆τU
3 + U3 ∧ ∆τ b

ε − εU3 ∧ ∆τ c
ε − εcε ∧ ∆τU

3 − εbε ∧ ∂2
z c

ε + U3 ∧H1

+bε ∧H3 + cε ∧H2 − U3 ∧
(
aε ∧H1

)
− aε ∧

(
U3 ∧H1

)
− ε4cε ∧

(
U3 ∧H3

)

+εcε ∧
(
U3 ∧Ke

)
+ ε3bε ∧

(
U3 ∧H3

)
− bε ∧

(
aε ∧H3

)
− bε ∧

(
U3 ∧Kε

)

−ε4U3 ∧
(
cε ∧H3

)
+ εU3 ∧ (cε ∧Ke) + ε3U3 ∧

(
bε ∧H3

)
− U3 ∧ (bε ∧Kε)

−aε ∧
(
bε ∧H3

)
+ ε3cε ∧

(
cε ∧H3

)
− cε ∧ (cε ∧Kε) + εbε ∧

(
bε ∧H3

)

−ε2cε ∧
(
U3 ∧H1

)
− ε3cε ∧

(
U3 ∧H2

)
− cε ∧

(
aε ∧H2

)
+ 2εbε ∧

(
U3 ∧H1

)

+ε2βε ∧
(
U3 ∧H2

)
− ε2U3 ∧

(
cε ∧H1

)
− ε3U3 ∧

(
cε ∧H2

)
+ aε ∧

(
cε ∧H2

)

+2εU3 ∧
(
bε ∧H1

)
+ ε2U3 ∧

(
bε ∧H2

)
+ ε2cε ∧

(
cε ∧H2

)
− bε ∧

(
cε ∧H1

)

+2εcε ∧
(
cε ∧H1

)
− cε ∧

(
bε ∧H1

)
− bε ∧

(
bε ∧H2

)
+ εbε ∧

(
cε ∧H2

)

+εcε ∧
(
bε ∧H2

)]
+ aε ∧ Sε − aε ∧ (aε ∧ Sε)

C Proof of the estimates

In the following inequalities the operators ∇ and ∆ are the usual differential operators. We then
lose some powers in ε when we perform the estimates in the anisotropic Sobolev spaces:

ε |∇u|ε,p ≤
(
|∂zu|ε,p + |ε∇τu|ε,p

)
,

ε2 |∆u|ε,p ≤
(∣∣∂2

zu
∣∣
ε,p

+
∣∣ε2∆τu

∣∣
ε,p

)
.
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L
2 estimates: we take the scalar product of Eq. (4.2) with

1

|ωε|
rε to obtain the norm | |ε,2.

The integrations by parts are licit since we consider a Galerkin approximation. We get:

1

2

d

dt

(
|rε|2ε,2

)
+ ε2 |∇rε|2ε,2 ≤

1

|ωε|

∫

ωε

(T1 + · · · + T8 + F ε) · rε dx.

We estimate each
1

|ωε|

∫

ωε

Ti r
ε dx thanks to Hölder’s inequalities then by anisotropic Sobolev’s

embeddings:

1

|ωε|

∣∣∣∣
∫

ωε

T1 r
ε dx

∣∣∣∣ ≤ ε8 |rε|2ε,∞ |∇rε|2ε,2

≤ C ε9/2 |rε|
1/2
ε,2 ‖rε‖2

ε,1 ‖εr
ε‖

3/2
ε,2 ≤ Cε9/2Q2

(thanks to Ineq. (3.5) and Rem. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T2 r
ε dx

∣∣∣∣ ≤ ε5 |aε|ε,∞ |rε|ε,3 |∇r
ε|2ε,3 + 2ε5 |rε|2ε,3 |∇a

ε|ε,∞ |∇rε|ε,3

≤ Cε2 |rε|
1/2
ε,2 ‖rε‖

3/2
ε,1 ‖εrε‖ε,2 + C ε5/2 |rε|ε,2 ‖rε‖

3/2
ε,1 ‖εrε‖

1/2
ε,2

(thanks to Prop. 4.2, Ineq. (3.4), (3.11) and Rem. 4.1)

≤ C(ε2 + ε5/2)Q3/2

1

|ωε|

∣∣∣∣
∫

ωε

T3 r
ε dx

∣∣∣∣ ≤ ε2 |rε|2ε,2 |∇a
ε|2ε,∞ + 2ε2 |aε|ε,∞ |rε|ε,2 |∇r

ε|ε,2 |∇a
ε|ε,∞

≤ C |rε|2ε,2 + C |rε|ε,2 ‖r
ε‖ε,1 ≤ C Q

(thanks to Prop. 4.2 and Rem. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T4 r
ε dx

∣∣∣∣ ≤ ε2 |rε|ε,2 |∇a
ε|ε,∞ |∇rε|ε,2

≤ C |rε|ε,2 ‖r
ε‖ε,1 ≤ C Q

(thanks to Prop. 4.2 and Rem. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T5 r
ε dx

∣∣∣∣ ≤ |aε|ε,∞ |rε|ε,2 |R
ε|ε,2

≤ C |rε|2ε,2 ≤ CQ

(thanks to Prop. 4.2 and Th. 4.1)
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1

|ωε|

∣∣∣∣
∫

ωε

T6 r
ε dx

∣∣∣∣ ≤ |aε|2ε,∞ |rε|ε,2 |R
ε|ε,2 + |aε|ε,∞ |Kε|ε,∞ |rε|2ε,2

≤ C |rε|2ε,2 ≤ CQ

(thanks to Prop. 4.2 and Th. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T7 r
ε dx

∣∣∣∣ ≤ Cε3 |aε|ε,∞ |rε|2ε,4 |R
ε|ε,2

≤ Cε3 |rε|
3/2
ε,2 ‖rε‖

3/2
ε,1 ≤ C ε3 Q3/2

(thanks to Prop. 4.2, Ineq. (3.4) and Th. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T8 r
ε dx

∣∣∣∣ = 0

1

|ωε|

∣∣∣∣
∫

ωε

F ε rε dx

∣∣∣∣ ≤ |F ε|ε,2 |r
ε|ε,2

≤ C(1 + |rε|2ε,2)

(thanks to Prop. 4.2 and Young’s inequality)

By summing the previous inequalities we obtain the existence of a constant C and a polynomial
P , both independent from ε such that:

d

dt
|rε|2ε,2 + ε2 |∇rε|2ε,2 ≤ C (1 + Q) + ε2P (Q), (C.1)

H
1 estimates: By taking the scalar product of the Galerkin approximation of Eq. (4.2) by

1

|ωε|

(
∂2

zr
ε + ε2∆τr

ε
)

and by integrating by parts we get:

1

2

d

dt

(
|∂zr

ε|2ε,2 + |ε∇τr
ε|2ε,2

)
+ ε2

∣∣∂2
zr

ε
∣∣2
ε,2

+
∣∣ε2∆τr

ε
∣∣2
ε,2

+ ε2 |∇τ∂zr
ε|2ε,2 + ε4 |∇τ∂zr

ε|2ε,2

≤
1

|ωε|

∫

ωε

(T1 + · · · + T8 + F ε) ·
(
∂2

zr
ε + ε2∆τr

ε
)
dx

and we estimate each term of the second member in the following way:

1

|ωε|

∣∣∣∣
∫

ωε

T1

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ε8 |rε|ε,6 |∇r
ε|2ε,6

(∣∣∂2
zr

ε
∣∣
ε,2

+
∣∣ε2∆τr

ε
∣∣
ε,2

)

≤ Cε3 ‖rε‖ε,1 ‖εr
ε‖3

ε,2 ≤ Cε3 Q2

(thanks to Ineq. (3.4), (3.11) and Rem. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T2

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ε5 |aε|ε,∞ |∇rε|2ε,4

(∣∣∂2
zr

ε
∣∣
ε,2

+
∣∣ε2∆τr

ε
∣∣
ε,2

)

+2ε5 |rε|ε,6 |∇r
ε|ε,3 |∇a

ε|ε,∞

(∣∣∂2
zr

ε
∣∣
ε,2

+
∣∣ε2∆τr

ε
∣∣
ε,2

)

≤ Cε1/2 ‖rε‖
1/2
ε,1 ‖εrε‖

5/2
ε,2 + Cε3/2 ‖rε‖

3/2
ε,1 ‖εrε‖

3/2
ε,2

(thanks to Prop. 4.2, Ineq. (3.4), (3.11) and Rem. 4.1)

≤ C (ε1/2 + ε3/2) Q3/2
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1

|ωε|

∣∣∣∣
∫

ωε

T3

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ε2 |∇aε|2ε,∞ ‖rε‖2
ε,1

+2ε2 |aε|ε,∞

(
|∂z∇a

ε|ε,∞ + |ε∇τ∇a
ε|ε,∞

)
|rε|ε,2 ‖r

ε‖ε,1

+2ε2 |∇aε|ε,∞

(
|∂za

ε|ε,∞ + |ε∇τa
ε|ε,∞

)
|∇rε|ε,2 ‖r

ε‖ε,1

+2ε2 |aε|ε,∞

(
|∂z∇a

ε|ε,∞ + |ε∇τ∇a
ε|ε,∞

)
|rε|ε,2 ‖r

ε‖ε,1

+2ε2 |aε|ε,∞ |∇aε|ε,∞

(∣∣∂2
zr

ε
∣∣
ε,2

+ |ε∂z∇τr
ε|ε,2

+ |∂z∇τr
ε|ε,2 + |ε∆τr

ε|ε,2

)
‖rε‖ε,1

≤ C
(
‖rε‖2

ε,1 + |rε|ε,2 ‖r
ε‖ε,1

)

+C ‖rε‖ε,1

(
ε
∣∣∂2

zr
ε
∣∣
ε,2

+ (1 + ε) |ε∇τ∇r
ε|ε,2 +

∣∣ε2∆τr
ε
∣∣
ε,2

)

(thanks to Prop. 4.2 and Rem. 4.1)

≤ C Q +
1

18

(
ε2
∣∣∂2

zr
ε
∣∣2
ε,2

+ (1 + ε2) |ε∇τ∇r
ε|2ε,2 +

∣∣ε2∆τr
ε
∣∣2
ε,2

)

To estimate T4 we look more precisely the behaviour of the terms with ∆rε thanks to integrations
by parts (which are licit thanks to the splitting between the two directions):

A1 =
1

|ωε|

∫

ωε

ε2aε ∧ ∆rε ·
(
∂2

zr
ε + ε2∆τr

ε
)
dx

=
1

|ωε|

∫

ωε

ε2
(
aε ∧ ∂2

zr
ε · ε2∆τr

ε + aε ∧ ∆τr
ε · ∂2

zr
ε
)
dx

=
1 − ε2

|ωε|

(∫

ωε

−ε2∂za
ε ∧ ∆τr

ε · ∂zr
ε dx+

∫

ωε

ε2∇τa
ε ∧∇τ∂zr

ε · ∂zr
ε dx

)

≤ |∂za
ε|ε,∞ ‖rε‖ε,1

∣∣ε2∆τr
ε
∣∣
ε,2

+ |ε∇τa
ε|ε,∞ ‖rε‖ε,1 |ε∂z∇τr

ε|ε,2

≤ C ‖rε‖2
ε,1 +

ε2

18

(∣∣ε2∆τr
ε
∣∣2
ε,2

+ |ε∂z∇τr
ε|2ε,2

)

A2 =
1

|ωε|

∫

ωε

ε2rε ∧ ∆rε ·
(
∂2

zr
ε + ε2∆τr

ε
)
dx

=
1

|ωε|

∫

ωε

ε5
(
rε ∧ ∂2

zr
ε · ε2∆τr

ε + rε ∧ ∆τr
ε · ∂2

zr
ε
)
dx

=
1 − ε2

|ωε|

∫

ωε

ε5∂zr
ε ∧∇τr

ε · ∂z∇τr
ε dx

≤ Cε3 |∂zr
ε|ε,4 |ε∇τr

ε|ε,4 |ε∂z∇τr
ε|ε,2 .

Back in the estimates of T4 we obtain:

1

|ωε|

∣∣∣∣
∫

ωε

T4

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ε2 |∆aε|ε,∞ ‖rε‖2
ε,1

+ε2
(
|∂z∆a

ε|ε,3 + |ε∇τ∆a
ε|ε,3

)
|rε|ε,6 ‖r

ε‖ε,1

≤ C ‖rε‖2
ε,1 + Cε1/2 ‖rε‖

1/2
ε,1 ‖εrε‖

3/2
ε,2

(
ε |ε∂z∇τr

ε|ε,2

)

+
1

18

(∣∣ε2∆τr
ε
∣∣2
ε,2

+ |ε∂z∇τr
ε|2ε,2

)

(thanks to Prop. 4.2, Ineq. (3.4) and Rem. 4.1)

≤ C Q + Cε1/2Q3/2 +
1

18

(∣∣ε2∆τr
ε
∣∣2
ε,2

+ |ε∂z∇τr
ε|2ε,2

)
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1

|ωε|

∣∣∣∣
∫

ωε

T5

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ‖aε‖
W

1,∞
ε

|Rε|ε,2 ‖r
ε‖ε,1 + |aε|ε,∞ ‖Rε‖ε,1 ‖r

ε‖ε,1

+‖Kε‖
W

1,∞
ε

|rε|ε,2 ‖r
ε‖ε,1

+ε3 |rε|ε,6 ‖R
ε‖ε,1

(
|∂zr

ε|ε,3 + |ε∇τr
ε|ε,3

)

≤ C ‖rε‖2
ε,1 + Cε5/2 ‖rε‖

5/2
ε,1 ‖εrε‖

1/2
ε,2

(thanks to Prop. 4.2, Th. 4.1 and Ineq. 3.4)

≤ C Q + C ε5/2 Q3/2

1

|ωε|

∣∣∣∣
∫

ωε

T6

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ 2‖aε‖
W

1,∞
ε

|aε|ε,∞ |Rε|ε,2 ‖r
ε‖ε,1 + |aε|2ε,∞ ‖Rε‖ε,1 ‖r

ε‖ε,1

+2‖aε‖
W

1,∞
ε

|Kε|ε,∞ |rε|ε,2 ‖r
ε‖ε,1

+2‖Kε‖
W

1,∞
ε

|aε|ε,∞ |rε|ε,2 ‖r
ε‖ε,1

+ |aε|ε,∞ |Kε|ε,∞ ‖rε‖2
ε,1

≤ C(|rε|ε,2 + ‖rε‖ε,1) ‖r
ε‖ε,1 ≤ C Q

(thanks to Prop. 4.2 and Th. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

T7

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ε3
(
|rε|2ε,4 |K

ε|ε,∞ + 2 |aε|ε,∞ |rε|ε,4 |R
ε|ε,4

)

×
(∣∣∂2

zr
ε
∣∣
ε,2

+
∣∣ε2∆τr

ε
∣∣
ε,2

)

≤ Cε2 |rε|
1/2
ε,2 ‖rε‖

3/2
ε,1 ‖εrε‖ε,2 ≤ C ε2 Q3/2

(thanks to Prop. 4.2, Th. 4.1 and Ineq. (3.4))

1

|ωε|

∣∣∣∣
∫

ωε

T8

(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ε6 |rε|2ε,6 |R
ε|ε,6

(∣∣∂2
zr

ε
∣∣
ε,2

+
∣∣ε2∆τr

ε
∣∣
ε,2

)

≤ Cε5 ‖rε‖3
ε,1 ‖εr

ε‖ε,2 ≤ C ε5 Q2

(thanks to Th. 4.1 and Ineq. (3.4))

1

|ωε|

∣∣∣∣
∫

ωε

F ε
(
∂2

zr
ε + ε2∆τr

ε
)
dx

∣∣∣∣ ≤ ‖F ε‖ε,1 ‖r
ε‖ε,1

≤ C(1 + Q)
(thanks to Prop. 4.2 and Young’s Inequality)

By summing the previous estimates and absorbing the terms that appeared during the estimate
of T4, we get:

1

2

d

dt

(
|∂zr

ε|2ε,2 + |ε∇τr
ε|2ε,2

)
+

1

2

(
ε2
∣∣∂2

zr
ε
∣∣2
ε,2

+
∣∣ε2∆τr

ε
∣∣2
ε,2

+ (1 + ε2) |ε∂z∇τr
ε|2ε,2

)

≤ C(1 + Q) + ε2P (Q),

(C.2)

where C is a constant and P a polynomial, both independent from ε.

H
2 estimates: We now estimate ε2

(∣∣∂2
zr

ε
∣∣2
ε,2

+ |ε∂z∇τr
ε|ε,2 +

∣∣ε2∆τr
ε
∣∣2
ε,2

)
by taking the scalar

product of (4.2) by
ε2

|ωε|
(∂4

z + ε2∂2
z∆τ + ε4∆2

τ )r
ε =

ε2

|ωε|
B. For each term we perform an

integration by parts, use Hölder’s inequality, anisotropic Sobolev embeddings and finally Young’s
inequality to isolate the term

ε4A2 = ε4
∣∣∂3

zr
ε
∣∣2
ε,2

+ ε2
∣∣ε∂2

z∇τr
ε
∣∣2
ε,2

+ ε2
∣∣ε2∂z∆τr

ε
∣∣2
ε,2

+ ε2
∣∣ε3∇τ∆τr

ε
∣∣2
ε,2
.
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We finally have:

1

|ωε|

∣∣∣∣
∫

ωε

ε2T1 B dx

∣∣∣∣ ≤ ε10 |∇rε|2ε,6

(
2 |∂zr

ε|ε,6 + |ε∇τ r
ε|ε,6

)
A

+ε10 |rε|ε,12

(
2 |∂z∇r

ε|ε,3 + |ε∇τ∇r
ε|ε,3

)
|∇rε|ε,12 A

≤ Cε8 ‖rε‖
3/4
ε,1 ‖rε‖

3/2
ε,2

(
‖rε‖

1/4
ε,2 + A1/4

)(
‖rε‖

1/2
ε,2 + A1/2

)
A

+Cε5A ‖εrε‖3
ε,2

(thanks to Ineq. (3.4), (3.6), (3.11), (3.12) and Rem. 4.1)

≤
1

18
ε4A2 + C ε6 Q3 + C ε28/3 Q11/3 + Cε13Q5 + Cε24Q9

1

|ωε|

∣∣∣∣
∫

ωε

ε2T2 B dx

∣∣∣∣ ≤ ε7
(
2 |∂za

ε|ε,∞ + |ε∇τa
ε|ε,∞

)
|∇rε|2ε,4 A

+2ε7 |aε|ε,∞ |∇rε|ε,6

(
2 |∂z∇r

ε|ε,3 + |ε∇τ∇r
ε|ε,3

)
A

+2ε7 |∇aε|ε,∞ |∇rε|ε,4

(
2 |∂zr

ε|ε,4 + |ε∇τ r
ε|ε,4

)
A

+2ε7
(
2 |∂z∇a

ε|ε,∞ + |ε∇τa
ε|ε,∞

)
|rε|ε,6 |∇r

ε|ε,3 A

+2ε7 |∇aε|ε,∞ |rε|ε,6

(
2 |∂z∇r

ε|ε,3 + |ε∇τ∇r
ε|ε,3

)
A

≤ Cε7/2 ‖rε‖
1/2
ε,1 ‖εrε‖

3/2
ε,2 A + Cε5 ‖rε‖

3/2
ε,2

(
‖rε‖

1/2
ε,2 + A1/2

)
A

+Cε7/2 ‖rε‖
1/2
ε,1 ‖εrε‖

3/2
ε,2 A + Cε9/2 ‖rε‖

3/2
ε,1 ‖εrε‖

1/2
ε,2 A

+Cε5 ‖rε‖ε,1 ‖r
ε‖

1/2
ε,2

(
‖rε‖

1/2
ε,2 + A1/2

)
A

(thanks to Ineq. (3.4), (3.11), (3.5), Prop. 4.2 and Rem. 4.1)

≤
1

18
ε4A2 + Cε2Q2 + Cε2Q3

To obtain the estimates of T3 we integrate by parts several times the term:

A =
2ε4

|ωε|

∫

ωε

(∇τa
ε · ∂z∇τr

ε)
(
aε · ∂3

zr
ε
)
dx ≤ 2ε4 |∆τa

ε|ε,∞ |aε|ε,∞ |∂zr
ε|ε,2

∣∣∂3
zr

ε
∣∣
ε,2

+2ε4 |∇τa
ε|2ε,∞ |∂zr

ε|ε,2
∣∣∂3

zr
ε
∣∣
ε,2

+2ε4 |aε|ε,∞ |∂z∇τa
ε|ε,∞ |∂zr

ε|ε,2
∣∣∂2

z∇τr
ε
∣∣
ε,2

+2ε4 |∇τa
ε|ε,∞ |∂za

ε|ε,∞ |∂zr
ε|ε,2

∣∣∂2
z∇τr

ε
∣∣
ε,2

+2ε4 |∇τa
ε|ε,∞ |aε|ε,∞

∣∣∂2
zr

ε
∣∣
ε,2

∣∣∂2
z∇τr

ε
∣∣
ε,2

≤ CQ1/2(ε2A)
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Back in the estimate of T3,

1

|ωε|

∣∣∣∣
∫

ωε

ε2T3 B dx

∣∣∣∣ ≤ ε4 |∇aε|2ε,∞

(
|∂zr

ε|ε,2
∣∣∂3

zr
ε
∣∣
ε,2

+ |∂zr
ε|ε,2

∣∣ε2∂z∆τr
ε
∣∣
ε,2

+ |ε∇τ r
ε|ε,2

∣∣ε3∇τ∆τr
ε
∣∣
ε,2

)
+ 2ε4 |∇aε|ε,∞ |rε|ε,2

(
|∂z∇a

ε|ε,∞
∣∣∂3

zr
ε
∣∣
ε,2

+ |∂z∇a
ε|ε,∞

∣∣ε2∂z∆τr
ε
∣∣
ε,2

+ |ε∇τ∇a
ε|ε,∞

∣∣ε3∇τ∆τr
ε
∣∣
ε,2

)

+2ε4 |∇aε|ε,∞ |∇rε|ε,2

(
|∂za

ε|ε,∞
∣∣∂3

zr
ε
∣∣
ε,2

+ |∂za
ε|ε,∞

∣∣ε2∂z∆τr
ε
∣∣
ε,2

+ |ε∇τa
ε|ε,∞

∣∣ε3∇τ∆τr
ε
∣∣
ε,2

)

+2ε4 |aε|ε,∞ |∇rε|ε,2

(
|∂z∇a

ε|ε,∞
∣∣∂3

zr
ε
∣∣
ε,2

+ |∂z∇a
ε|ε,∞

∣∣ε2∂z∆τr
ε
∣∣
ε,2

+ |ε∇τ∇a
ε|ε,∞

∣∣ε3∇τ∆τr
ε
∣∣
ε,2

)
+ 2ε4 |aε|ε,∞ |∇aε|ε,∞

(∣∣∂2
zr

ε
∣∣
ε,2

∣∣∂3
zr

ε
∣∣
ε,2

+ |∂z∇r
ε|ε,2

∣∣ε2∂z∆τr
ε
∣∣
ε,2

+ |ε∇τ∇r
ε|ε,2

∣∣ε3∇τ∆τr
ε
∣∣
ε,2

)
+A

≤ C(‖rε‖ε,1 + ‖εrε‖ε,2)(ε
2A)

(thanks to Ineq. (3.4), (3.11), Prop. 4.2 and Rem. 4.1)

≤
1

18
ε4A4 +CQ

To obtain the estimates of T4, we integrate by parts several times each terms:

A =
ε4

|ωε|

∫

ωε

rε ∧ ∆aε ·
(
∂4

zr
ε + ε2∂2

z∆τr
ε + ε4∆2

τr
ε
)
dx

≤ |∆aε|ε,∞

(
|∂zr

ε|ε,2
∣∣∂3

zr
ε
∣∣
ε,2

+ |∂zr
ε|ε,2

∣∣ε2∂z∆τr
ε
∣∣
ε,2

+ |ε∇τr
ε|ε,2

∣∣ε3∇τ∆τr
ε
∣∣
ε,2

)

B =
ε4

|ωε|

∫

ωε

aε ∧ (∂2
zr

ε + ∆τr
ε) ·
(
∂4

zr
ε + ε2∂2

z∆τr
ε + ε4∆2

τr
ε
)
dx

= B1 +B2 +B3 +B4 +B5 +B6,

where

B1 =
ε4

|ωε|

∫

ωε

aε ∧ ∂2
zr

ε · ∂4
zr

ε dx ≤ ε4 |∂za
ε|ε,∞

∣∣∂2
zr

ε
∣∣
ε,2

∣∣∂3
zr

ε
∣∣
ε,2

≤
1

200
ε4A2 + Cε2 ‖εrε‖2

ε,2

B2 =
ε4

|ωε|

∫

ωε

aε ∧ ∆τr
ε · ∂2

zr
ε dx =

ε4

|ωε|

∫

ωε

∂za
ε ∧ ∆τr

ε · ∂3
zr

ε dx

+
ε4

|ωε|

∫

ωε

aε ∧ ∂z∆τr
ε · ∂3

zr
ε dx

≤ ε4 |∂z∇τa
ε|ε,∞ |∇τr

ε|ε,2
∣∣∂3

zr
ε
∣∣
ε,2

+ε4
∣∣∂2

za
ε
∣∣
ε,∞

|∇τr
ε|ε,2

∣∣∂2
z∇τr

ε
∣∣
ε,2

+ε4 |∂za
ε|ε,∞ |∂z∇τr

ε|ε,2
∣∣∂2

z∇τr
ε
∣∣
ε,2

+ε4 |∇τa
ε|ε,∞ |∂z∇τr

ε|ε,2
∣∣∂3

zr
ε
∣∣
ε,2

+ε4 |∂za
ε|ε,∞ |∂z∇τr

ε|ε,2
∣∣∂2

z∇τr
ε
∣∣
ε,2

≤
1

200
ε4A2 + CQ
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B3 =
ε6

|ωε|

∫

ωε

aε ∧ ∂2
zr

ε · ∂2
z∆τr

ε dx ≤ ε6 |∇τa
ε|ε,∞

∣∣∂2
zr

ε
∣∣
ε,2

∣∣∂2
z∇τr

ε
∣∣
ε,2

≤
1

200
ε4A2 + Cε4Q

B4 =
ε6

|ωε|

∫

ωε

aε ∧ ∆τr
ε · ∂2

z∆τr
ε dx ≤ |∂za

ε|ε,∞ |∆τr
ε|ε,2 |∂z∆τr

ε|ε,2

≤
1

200
ε4A2 + CQ

B5 =
ε8

|ωε|

∫

ωε

aε ∧ ∂2
zr

ε · ∆2
τr

ε dx ≤ ε8 |∇τa
ε|ε,∞

∣∣∂2
zr

ε
∣∣
ε,2

|∇τ∆τr
ε|ε,2

+ε8 |∂za
ε|ε,∞ |∂z∇τr

ε|ε,2 |∇τ∆τr
ε|ε,2

+ε8 |∇τa
ε|ε,∞ |∂z∇τr

ε|ε,2 |∂z∆τr
ε|ε,2

≤
1

200
ε4A2 + Cε4Q

B6 =
ε8

|ωε|

∫

ωε

aε ∧ ∆τr
ε · ∆2

τr
ε dx ≤ ε8 |∇τa

ε|ε,∞ |∆τr
ε|ε,2 |∇τ∆τr

ε|ε,2

≤
1

200
A + Cε2 ‖εrε‖2

ε,2 .

By the same way,

C =
ε7

|ωε|

∫

ωε

rε ∧
(
∂2

zr
ε + ∆τr

ε
)
·
(
∂4

zr
ε + ε4∆2

τr
ε
)
dx

≤ 2ε7
(
|∂zr

ε|ε,6 + |ε∇τr
ε|ε,6

)
|∆rε|ε,3 A + ε7 |∇τr

ε|ε,6 |∇τ∂zr
ε|ε,3

∣∣∂3
zr

ε
∣∣
ε,2

+ε7 |∂zr
ε|ε,6 |∇τ∂zr

ε|ε,3
∣∣∂2

z∇τr
ε
∣∣
ε,2

+ ε11 |∂zr
ε|ε,6 |∇τ∂zr

ε|ε,3 |∇τ∆τr
ε|ε,2

+ε11 |∇τr
ε|ε,6 |∇τ∂zr

ε|ε,3 |∂z∆τr
ε|ε,2

≤ Cε3QA + Cε7/2Q3/4A3/2 ≤
1

200
ε4A2 +Cε2Q2 + Cε2Q3

Back in the estimate of T4,

1

|ωε|

∣∣∣∣
∫

ωε

ε2T4 B dx

∣∣∣∣ ≤ A+B + C

≤
1

18
ε4A2 + CQ + Cε2Q2 + Cε2Q3

1

|ωε|

∣∣∣∣
∫

ωε

ε2T5 B dx

∣∣∣∣ ≤ ε2 ‖rε‖ε,1 |K
ε|ε,∞ A + ε2 |rε|ε,2 ‖K

ε‖
W

1,∞
ε

A

+ε2‖aε‖
W

1,∞
ε

|Rε|ε,2 A + ε2 |aε|ε,∞ ‖Rε‖ε,1 A

+ε5
(
|∂zr

ε|ε,3 + |ε∇τ r
ε|ε,3

)
|Rε|ε,6 A

+ε5 |rε|ε,6

(
|∂zR

ε|ε,3 + |ε∇τR
ε|ε,3

)
A

≤ Cε2 ‖rε‖ε,1 A + Cε5 ‖rε‖ε,1 ‖r
ε‖

1/2
ε,2

(
‖rε‖

1/2
ε,2 + A1/2

)
A

(thanks to Ineq. (3.4), Prop. 4.2, Th. 4.1 and Rem. 4.1)

≤ CQ1/2
(
ε2A

)
+ Cε2Q

(
ε2A

)
+ Cε3/2Q3/4

(
ε2A

)3/2

≤
1

18
ε4A2 + C Q + C ε4 Q2 + Cε6Q3

31



1

|ωε|

∣∣∣∣
∫

ωε

ε2T6 B dx

∣∣∣∣ ≤ 2ε2‖aε‖
W

1,∞
ε

|aε|ε,∞ |rε|ε,2 A + ε2 |aε|2ε,∞ ‖rε‖ε,1 A

+2ε2‖aε‖
W

1,∞
ε

|Kε|ε,∞ |rε|ε,2 A

+2ε2‖Kε‖
W

1,∞
ε

|aε|ε,∞ |rε|ε,2 A

+2ε2 |aε|ε,∞ |Kε|ε,∞ ‖rε‖ε,1 A

≤ Cε2 ‖rε‖ε,1 A ≤
1

18
ε4A2 + C Q

(thanks to Prop. 4.2 and Th. 4.1)

1

|ωε|

∣∣∣∣
∫

ωε

ε2T7 B dx

∣∣∣∣ ≤ 2ε5 |aε|ε,∞ |rε|ε,6

(
|∂zR

ε|ε,3 + |ε∇τR
ε|ε,3

)
A

+2ε5 |aε|ε,∞ |Rε|ε,6

(
|∂zr

ε|ε,3 + |ε∇τ r
ε|ε,3

)
A

+2ε5‖aε‖
W

1,∞
ε

|rε|ε,4 |R
ε|ε,4 A

+2ε5 |Kε|ε,∞ |rε|ε,6

(
|∂zr

ε|ε,3 + |ε∇τr
ε|ε,3

)
A

+ε5‖Kε‖
W

1,∞
ε

|rε|2ε,4 A

≤ Cε5/2 ‖rε‖
3/2
ε,1 ‖εrε‖

1/2
ε,2

(
ε2A

)
+Cε3 |rε|

1/2
ε,2 ‖rε‖

3/2
ε,1

(
ε2A

)

(thanks to Ineq. (3.4), Prop. 4.2 and Th. 4.1)

≤
1

18
ε2A4 + C (ε5 + ε6) Q2

1

|ωε|

∣∣∣∣
∫

ωε

ε2T8 B dx

∣∣∣∣ ≤ 2ε8 |rε|ε,6

(
|∂zr

ε|ε,6 + |ε∇τr
ε|ε,6

)
|Rε|ε,6 A

+ε8 |rε|2ε,6

(
|∂zR

ε|ε,6 + |ε∇τR
ε|ε,6

)
A

≤ Cε5 ‖rε‖2
ε,1 ‖εr

ε‖ε,2

(
ε2A

)

(thanks to Ineq. (3.4) and Th. 4.1)

≤
1

18
ε4A2 + C ε10 Q3

1

|ωε|

∣∣∣∣
∫

ωε

ε2F ε B dx

∣∣∣∣ ≤ ‖F ε‖ε,1

(
ε2A

)

≤
1

18
ε4A2 + C

(thanks to Prop. 4.2)

By summing the previous inequalities we get:

d

dt

(
ε2
∣∣∂2

zr
ε
∣∣2
ε,2

+ ε2 |ε∂z∇τr
ε|2ε,2 + ε2

∣∣ε2∆τr
ε
∣∣2
ε,2

)
+ ε4A2 ≤ C(1 + Q) + ε2P (Q), (C.3)

where P is an ε-independent polynomial.
By summing the inequalities (C.1), (C.2) and (C.3) we finally obtain:

d

dt
Q ≤ C(1 + Q) + ε2P (Q),

wich implies the inequality (4.3) and then the main theorems.
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[20] J.C. Nédélec, Acoustic and Electromagnetic Equations- Integral Representations for Har-
monic Problems, Applied Mathematical Sciences 144, Springer, 2001.

[21] D. Sanchez, Phénomène de couche limite dans un modèle de ferromagnétisme, Ann. Fac.
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