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Behaviour of the Landau-Lifschitz equation in a ferromagnetic
wire

DAVID SANCHEZ
Mathématiques Appliquées de Bordeaux, UMR 5466, Université Bordeaux 1,
351 Cours de la Libération, 33405 Talence cedex, France.

Abstract. Following a suggestion from A. Thiaville and J. Miltat whose work and experiments
are about ferromagnetic thin layers and nanowires we study in this paper the behaviour of the
Landau-Lifschitz equation in a straight ferromagnetic wire. As the diameter of the domain and
the exchange coefficient in the equation simultaneously tend to zero we perform an asymptotic
expansion to precise the solution for well-prepared initial conditions and are lead to consider 2D
exterior problems.

Résumé. Suite a une suggestion d’A. Thiaville et J. Miltat dont les travaux et expériences
portent sur les couches minces et les nanofils ferromagnétiques, nous étudions dans cet arti-
cle le comportement de I’équation de Landau-Lifschitz dans un fil ferromagnétique rectiligne.
Alors que le diametre du domaine et le coefficient d’échange dans I’équation tendent simul-
tanément vers zéro, nous effectuons un développement asymptotique, précisons la solution pour
des données initiales bien préparées et sommes amenés a traiter des problemes extérieurs en
dimension 2.

1 Introduction

Further to [22, 23] in which we study the behaviour of the solutions of the Landau-Lifschitz
equation in a thin layer, A. Thiaville and J. Miltat whose work and experiments are about
ferromagnetic material asked if models and asymptotic expansions could be proved in the case
they were interested, i.e. ferromagnetic nanowires and particularly circular-based ones [25, 26].

We then consider here a ferromagnetic wire w. whose diameter is of order € and placed in the
vacuum. The ferromagnetic material is characterized by a spontaneous magnetization that is
modelized by an unitary vector field u® called the magnetic moment and defined on the domain
w. where the ferromagnetic material is confined. This magnetic moment links the magnetic field
H(u®) and the magnetic induction B by the relation B = H(u®) + u® where uf is the extension
of u® by 0 outside w. (c¢f [4]). Its evolution is described by the Landau-Lifschitz equation (cf

[15]):

( Ou®
ot :ug/\Heff—uE/\(ug/\Heff) n we,
3
%12 =0 on Jw, (1.1)
ut(t=0,2) =up(r) in we,

where v denotes the outward unitary normal on dw. and Herr = e?Auf 4+ H(u®) + ¢(uf) is the
effective field composed of the exchange term 2Au® modelling the spin-like interactions in the
ferromagnetic medium, ¢(u®) is an anisotropic field that takes into account the geometry of the
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material and H(u®) is the magnetic field. In the following we neglect the anisotropy field since
it only induces more computations and has no mathematical influence on the results we obtain
(at least for classical anisotropy fields deriving from quadratic anistropy energy). We moreover
assume that we always are at the electromagnetic equilibrium:

div (H(u®) +u°) =0 in R3,
(1.2)
curl H(u®) =0 in R3,

Many works take an interest in the behaviour of this magnetic moment: when the exchange
coefficient is fixed and the domain w. = 2 does not depend on €, Carbou and Fabrie prove in [7]
the local existence of a strong H?(f2) solution of (1.1). When the exchange coefficient £? goes
to zero and w. = Q, Carbou, Fabrie and Gues prove in [9] that the time of existence goes to
infinity when e goes to zero for an initial data in H?(Q) (instead of H?(f2)) by proving that a
boundary layer whose characteristic thickness is of order € appears. Moreover they obtain that
the solution u® tends to the solution of the hyperbolic system formally obtained by taking € = 0
n (1.1). Their theorem however does not give a first order asymptotic expansion of the solution.
These results are established in the case where the domain w. does not depend on €. Interesting
phenomena happen when the ferromagnetic material lies in small domains such as thin layers
and nanowires. In these cases we expect a much simpler behaviour and we need to justify the
models in use. In the case of thin layers, Carbou studies in [6] by means of energy estimates
the limit of the magnetic field H(u®) when the thickness ¢ of the domain goes to 0 and the
exchange coefficient is fixed. In a previous work [22] we consider the case of a flat periodic thin
layer in the vacuum when the exchange coefficient is €2 and the thickness of the layer is €. In
this critical case where the thickness of the thin layer and of the boundary layer are of the same
order we justify a first-order asymptotic expansion of the magnetic moment and of the magnetic
field for small values of ¢ and find again the classical physical description of such a case. In
[23] we extend these results to a non-flat geometry by considering a thin layer of ferromagnetic
material spread on a perfect conductor.

In this paper we consider the other kind of studied domain, i.e. the case of a periodic straight
ferromagnetic wire placed in the the case of a straight ferromagnetic wire placed in the vacuum.
We want to establish and justify the passage from the 3D case to the 1D case. As for the case
of thin layers, we expect to have an interaction between the boundary layers that arise from the
exchange coefficient and whose size is of order ¢, and the small dimension of the domain, also of
order €. A rescaling shows that there is no boundary layer in the rescaled domain and that the
Landau-Lifschitz equation becomes anisotropic. The small size of the domain also influences the
magnetostatic equations as we will see it later and leads us to work with e-dependent domains
and to precise the dependence on ¢ of the Sobolev embeddings.

Remark 1.1. We consider in the following a periodic straight wire pointing at the direction eg.
The assumption of the periodic wire allows us to forget the formation of a boundary layer at the
ends of the wire. The domain we then consider writes w. = €2 X Iy where Q) is an open bounded
regular star-shaped set in R? and Iy = (0,1) is the periodic domain. These results remain valid
i ) X R if we use the Fourier transform.

In the following we denote Hé([ 1) the subspace of H'(I;) whose functions are periodic on I, and
by L;(Il) the closure of H;(Il) in L2(I;). The spaces H*(V) ® HP(I;) are the classical tensor

spaces endowed with the norm |ju|| = H||“('7Z)”Hk(V)HH ()’
P(Iy



We also use the following decompositions : for V € R3, we let V; = (V,e3) the longitudinal
component of V and V. = V — Vjesg the transversal component. We let V., the transversal
component of V, i.e. V, = (8w1,812,0)t and

div, =(V,,-), curl, =(V-A:), A;=div, V..

In order to perform the asymptotic expansion and obtain the profiles we work on a rescaled
form of the Landau-Lifschitz equation. We obtain the following result:

uE
Y — 0 on dw. and which can be written in

ov

Theorem 1.1. Let uf an initial data satisfying
the form:

ug(x) = Ug (g,z) , Vx=(e0,z2) € we,

where U§ € HY(Q) @ HI(I1) and |UJ| = 1. There exists Ty > 0 independent from e and there
exists two profiles U°, U fulfilling

3
e U0 (| Whee (o,TO;HG—%(Q) ® H;(Il)) NHF (o,TO;H7—2k(Q) ® H;(Il)) is solution of:

k=0
8U0 0 012770 0 0 0 0 0 0 0 ;
5 AU =IVAUTFUN A UPAAUP+ UPAHD U AU ANHY)  inQx I,
0
88%:0 on 02 x Iy,

Ul%t=0)=U) inQxIy,

( H'=H(U") inQx I,

where —HO is the projection of U° on the transversal gradient field,

e Ulc ;éo (W’W (O,TO;H5_2k(Q) ® HS(RZ)) N (o,TO;HG—%(Q) ® HS(RZ))),

such that the regular solution of Eq. (1.1)-(1.2) exists on [0,To] and has an asymptotic expansion
in the form:

uf (t,z) = U° (t, %,z) +eU!t (t, %,z) +e¥rf(t,z), x=(c0,2) € we, t€0,Tp),
where for all 2 < p < 400, r® € L> (0, Tp; LP(we)) and :

Sup |7 ||Le (o) = O(E¥P).
te[0,To]

In the case where the section of the wire is a disk we enhance this result in the following way:

Theorem 1.2. Let Q = D(0,1) the unitary disk and w. = e x I. Let uj an initial data which
can be written in the form:

ug(ﬂj‘) = U(()) (Z)v Vo = (507 Z) € We,

where UY € H;(Il) is invariant in the section of the wire and |UY| = 1. If T¢ is the mazimum
time of existence of the regular solution of (1.1)-(1.2) then lim._oT° = 400 and for all 0 <
T < T¢ there exists two profiles U°, U fulfilling



o UV e (™ (RZF,H;(Q)) 1s solution of the following ordinary differential equation:

8UO 0 0 0 0 0 ;
- U ANH U ANU°ANH")  in I,

Ut=0)=0 inI,

1
where HO = —§U$ s a local operator.

2
e U'e) (ka (O,T;H5‘2k(9) ® Hg(]R{Z)> nH* <O,T;H6‘2k(ﬂ) ® HS(RZ))), VT > 0
k=0
such that u® has an asymptotic expansion in the form:

uf(t,x) = U (t,2) + eU! <t, g,z) +e2rf(t,x), x=(c0,2) €we, t€[0,Ty),
where for all 2 < p < 400, r® € L> (0,7%;LP(w,)) and :

sup |r°|p () = O(E7).
t€[0,7°¢]

Remark 1.2.

e In the case where the section of the wire is a disk we prove that the magnetic field is a local
operator at the order €. We then obtain a monodimensional model for the wire which is
an ordinary differential equation with a 1D parameter.

o The limit model we obtain has the expected behaviour and matches the physical observa-
tions.

This paper is organized in the following way. In the first part we formally build the asymptotic
expansion of u® and we prove the local existence and the regularity of its terms. Consequently
we study the operator H and are lead to obtain regular solutions to 2D exterior problem for
which we introduce weighted Sobolev spaces. In the second part we introduce anisotropic and
e-dependent norms adapted to the size of the domain and we give all the e-dependent Sobolev
embeddings and energy estimates in the space w. that we need in the last parts. The equation
satisfied by the remainder terms of u® and H® are explained in the third part while the fourth
contains the energy estimates that conclude the proof of theorem 1.1.

2 Formal asymptotic expansion

As the diameter of the wire is of order ¢ we want to get rid of the € parameter and explain the
behaviour in the small domain. If we only rescale the equations inside the ferromagnetic wire,
we are lead to solve the magnetostatic equations in a non simply connected exterior domain
which depends on . We instead perform a rescaling in the whole space, thus transforming the
magnetostatic equations in the exterior domain.

We will now search an asymptotic expansion of u® and H® = H(u) in the form:

e in we,
w(tz) =U° (t,g,z) 4 Ut (t,g,z) ¥
: : (2.1)
He(t,x) = H° (t,g,z) el (t,g,z) ¥

S



e in (R? x ) \ w., . .
Heé(t,z) = H° (t,g,z) +eH! (t,g,z)+... (2.2)

where z = (0,2) € R? x I;.
Let us perform some preliminary calculus on the curl and divergence operator. If we have

V(x) = ;Vi (g,z),

1 . , ,
curl V. = gcurlT Vo4 ZEZ <(% (63 A VZ) + curl;, VZH) ,

i>0
(2.3)
1 o .
divV = Zdiv, VY + ZEZ <—V}Z + div, V’+l> )
€ ; 0z
>0
0
where curl, V=V, AV = (VTV;J,)l + 0 ,and AL = A Aes.
curlsp Vip
2.1 Equations of the profiles
As it is proved in [7], the equation (1.1) is equivalent for regular enough solutions to:
8 €
81; — 2 Auf = VUl |Puf + % A Auf +uf A H(uF) —u A (u€ AH(uE)) . (2.4)

Since this equation isolates the dissipative term we will use it in the following. We then substi-
tute to u®, H(u®) their asymptotic expansions (2.1) and (2.2) in the equations (1.2) and (2.4)
to obtain the expression fulfilled by the profiles for (o, 2) in and outside w.

As the equations (1.2) are linear, each H* fulfills outside w.:
div, Hi 4+ 0,H ' =0 inQ x Iy,
curlyp H: =0 in Q' x I,
V.H =0,H! in Q' x I,

where Q' = R?\ Q. As we will also determine the equations fulfilled by H? in Q x I;, we need
some transmission conditions on the boundary 92 x I; that we deduce from Eq. (1.2):

[Hi/\y] =0 on Owg,
- (2.5)
[(H’—I—UZ) -1/} =0 on Jdw,,
where [f] denotes the jump of f at the interface Ow.. Changing the notation it also writes:
[H]] =0 on 90 x I,
[H:Av] =0 on 9Q x I, (2.6)

[(Hf.—l—vz_) -1/} =0 ondxI.

5



7

ov

The Neumann condition on «* also becomes =0 for all x = (0, 2) € dw, = (e092) x I and

1€ N.

Terms in ¢~ ': in Q x I,
div, (HY+U;) =0,
curlap HB =0,
V. HY =0.

From the last equation and the first transmission condition in (2.6) we deduce that H ZO =
HY(t,z). As we do not impose an external magnetic field and as we are looking for a solution
in L2(R?), we set Hl0 = 0. The other components of HY, i.e. H?, fulfills then

H® € 1L2(R? x I),
div, (H2+U?) =0 onR?x Iy, (2.7)

curlsp HB =0 on R2 x I.

As we do not impose an external magnetic field, we obtain that —H?Y is the projection of UT0 -
and then of U° - on the vector field of transversal gradients.

Terms in €%: in Q x I,

0
O AU’ = [VUOPU° + U A AU U NHO U A (U0 AHY). (28)

div, (HI+U})+0. (H) +U}) =0,

curlyp H =0, (2.9)
V. H} =0,.H.
Terms in e: in Q x I3,
8U1 1 012771 0 1 0 0 1 1 0
AU = [VLUCPUN 4 2(V,UC VL UNUY + U A AU+ U AALU
ot 0 1 1 0 0 0 1 0 1 0 (2.10)
+UNH' +U'NH? —U° AN (U ANHY) —U° A (U AHY) ‘
~U'A(U°AHY).
div, (H? +U?)+0. (H' +U}') =0,
curlyp H? = 0, (2.11)
V. Hf =0.HL.
Terms in 2: in Q x Iy,
8U2 2 012772 0 2 0 0 2 2 0
o~ AU = [VAUOPUR + 20 VURUC + U AAUR + UP A AU

+UANH? + U NHY —U° A (U AH?) —U° A (U? A HY)

~U? A (U A H?) (2.12)
+UL, + |UPUC + U ANUD, + U A AU + |V, U 20U

+2(V.U° - v, UNYU' + U ' AH = U° A (U AHY)

—U'A(U°ANHY) —U'A(U'ANHY).

6



div, (H?+U?)+ 0. (Hf +U}) =0,

curlyp H3 = 0, (2.13)
V.H} =0.H2
Termes d’ordre &3 : dans Q x I3
3
% AU = |VLURUR 4+ 2V, U0 - VUHU + U AAUR + U2 AAUC

+UNH? + UP NHY = U A (U AH?) = U A (UP AH)

U A (U AH)

+02U + |V UYUY + 2V, U - v UNYU? + 2V, U - v, UHU?
LAV, UL - VU + |0,U°PU + 2(0,U° - 9,0 U (2.14)
+ULANQPUC + UONQPUT + UL AAU? + U A ALUY
+U'ANH? + U NH —U° A (U' ANH?) U A (U2 A HY)
~U'AU°ANH?) —-U'AN (U2 AH®) = U* A (U A HY)

~U'AN(U*ANH?) —U'A(U'ANHY).

2.2 Existence of the asymptotic expansion
2.2.1 Behaviour of H

In the following we have to solve the exterior problem:

div(H+7u)=f inR2
curl H=0 in R?

where u is only defined in a regular open bounded subset Q of R? and % is the extension of u
by 0 outside €.

Following the work of M.N. Le Roux [16] on the 2D exterior problem we introduce weighted
Sobolev spaces adapted to the solving of the problem:

Definition 2.1. Let p = (1+ |z|?)Y/2. We define the weighted Sobolev spaces W, (R2) by:

1 2\ /(2 22 2 (2
WL(R?) = {u e D'(R?), 7p(1+1np)u€L(R ), Vue]L(]R)},

W32(R?) = {u € D'(R?), u € L*(R?), Vu € L3(R?), D*u € L2(R2)} :

p(1+Inp)
oPu e LA(R?), (8] < z} ,

p*(1+1np)
1

p*~1PI(1 + 1n p)

W (R?) = {u € D'(R?),

where l € N and a > 1.
To solve the exterior problem, we need equivalent norms on the previous spaces:

Proposition 2.1. There exists a constant C' such that, for all u € W%(Rz), we have:

< O Vullp2(gey -

u
H p(1+1np)||p2ge)

By the same way, for all u € WL(R?), a > 1 we have:

|

1

u
p*~1(1+Inp) Ve

p*(1+1np)

| |
L%(R?) L2(R2)



Proof. we use a generalized Hardy inequality proved by Bolley and Camus in [2]. See also
Nédélec [20]. O

Proposition 2.2. The 2D magnetostatic equations

div (H(u) +u) =0  in R
curlop H(u) =0 in R% (2.15)
[(H(u)+u)-v]=0  on 09,

where w € HY(Q), n € N*, has an unique solution H(u) € H*(R?). Moreover there erists
© € W1(R?) such that H(u) = —V¢ and
lellwimzy < CllullLz@),  [H(W)|lmm @) < Cllullgn g2)-

Proof. We combine ideas taken from [7, 9, 14] for the existence and regularity of the solutions
with the space W1(R?) [16]. We follow the same steps as in [7, 9]:

Step 1: As curl H(u) = 0 in R? there exists a regular function ¢ such that H(u) = —V¢ and
[¢]jan = 0 where [f] denotes the jump of f at the interface 9. ¢ fulfills:

—Ap = —divu in ,
—Ap=0 in O =R3\Q,
[90]|8Q =0, [81190]\39 =u- .

Step 2: Let Q; an open bounded subset of R? containing 2. By surjectivity of the trace
operator, there exists ¢; € H""1(Q; \ Q) such that

1 lnt1@\Q) < Cllullan @),

and
1/}1|8Q = 07 wl|8Q/1 = 07 auwlwﬂ/l = 0, a,/lplwﬂ =u-v,

where Q) = R?\ Q1. We let ¢ = o1 + 11 and we have to solve:

—Ap; = —divu in €,
—A(pl = Awl in Ql \ Q,
—Ap; =0 in Qf,

[901]\891- =0, [31/901]\391. =0,:=0,1,
where g = Q2. We let:

flz_lﬂdivu7 f2:192\QA7/J17 F:f1+f2

We are lead to solve —Ap; = F in R? where F is regular and with compact support. Thanks to
an integration by parts, Prop. 2.1 and the Lax-Milgram theorem we obtain the existence and
uniqueness of p; € W1(R?) hence the existence of ¢ € W1(R?) and of H € L2(R?). Moreover
we have:

lellw @ey < Cllullrzre)-

Classical regularity results on the solution of the Laplace operator (¢f [3]) improve the estimates:

IVolla @2y = IH(w) g @2y < Cllullpewe)-

Step 3: By following [7, 14], Step 2 and with the linearity of Eq. (2.15), we get the regularity
result. O



Proposition 2.3. The 2D exterior problem

div H = 1o f in R?,
curlop H =0 in R?, (2.16)
[H-v]=0, [HAv]=0 ondQ,

where f € H(Q), s € N, has a unique solution H € H*(R?) with H = —V¢ with ¢ € W1(R?).
Moreover, we have:

[H[gs+1®2) < Cllflms@)s  ellwigey < Cllfllzre)-

Proof. We combine ideas taken from [7, 9, 14] for the existence and regularity of the solutions
with the space W1(R?) [16]. The proof follows the same steps as in Lemma 2.15 except the
integration by parts in Step 2. O

In the following, we are also lead to solve:
divH = f in R?,
curlbp H=0 in R2,

[H-v]=0, [HAv]=0 on 09,

where f is such that —V f is either solution of Eq. (2.15), either solution of Eq. (2.16). The
first problem also writes:

div (AH +7) =0 in R?
curlypp H=0 in R?, (2.17)
[H-v]=0, [(AH +7w)-v]=0.

We have

Proposition 2.4. The 2D exterior problem (2.17) where u € H™(Q), n € N, has an unique
solution H = —V ¢ such that p € W3(R?) and VH € H"(R?). Moreover, we have

lellwzmse) < CllullLe),  IVH | @2) < Cllullano)-

Proof. The proof follows the same scheme as Prop. 2.2. Prop 2.1 gives the equivalent norms to
gain the continuity and the coercivity in the Lax-Milgram theorem at Step 2. O

The second problem writes:

div AH = 1qf in R?,
curlop H =0 in R?, (2.18)
[H-v]=0, [(AH)-v]=0 on 0.

We have :

Proposition 2.5. The 2D exterior problem (2.18) where f € H"(R?), n € N, has an unique
solution H = —V such that p € W2(R?) and VH € H"(R?). Moreover, we have:

lellwzee) < Cllfllz@)s IVH|mnge) < Cllf [lan@2)-

Proof. The proof follows the same scheme as the ones of the previous propositions. O



In the case where the magnetic domain is the unitary disk D(0,1) and the magnetic moment
is a constant 2D vector field on Q2 = D(0, 1), the magnetostatic equations write:

div H(u) =0 in QU
curl H(u) = 0 in R?, (2.19)
[H(u) -v]=u-v on dQ,

where ' = R?\ Q and we have:

Proposition 2.6. The equations (2.19) have an unique solution H(u) in R?, constant on Q =
D(0,1) and which is given by:

() =~ 511 - 1] + o) [DE (1)) 4 2002 (1],

where x = (x1,72) and u = (u, uz)’.

Proof. Since curl H(u) = 0 in R? there exists a regular function ¢ such that H(u) = —Ve. ¢
then fulfills:

Ap =0 in QU
g—f:—u-u on 0f2.

This equation has an unique solution (see [10]):

¢@) = | -l =y 0)o) dot),

™

and then

H(u)(x) = /8 L)) 2L do(y).

Q 27 |z — y|?
We assume now that the unitary magnetic moment u writes © = uije; + uses and we write the

previous equation using the canonical bijection between R? and C.
Since 00 = {y € R?, |y| = 1} = {e'", 7 € [0,27[} we have:

1 2w T — ez’T
H(u) = o ), (ug cosT + ugsinT) P dr
1 2 eiT + e—’iT eiT _ e—’iT T — eiT
= : — dr,
2 Jy (“1 y Ty > (z—en) @ —eir) T
where Z is the conjugate complex of z. We now let z = €' and remark that e " = 27! and
obtain: ) ) ) L4
. z
Hw = g2 [ [n(r2) ()5 %
1 up (22 + 1) —dug(2? — 1) P
= — Z.
4y |z|=1 Z(EZ — 1)

Applying the Residue theorem we have

H(u) = —%Indag(o)[ul +ius + % [ul <1 + %) s (% _ 1)] Tndgg (%) ,

where Indpo(z) = 1 if z € Q and 0 otherwise. Back to the real coordinates we obtain the
announced result. U

10



2.2.2 Existence of UY

0
Theorem 2.7. Given UY € H%(Q) ®H;(I1), such that |UJ| =1 and aaiyo =0 on 0Q x I, there

exists Ty > 0 and an unique solution to the equation (2.20):

( 0
%—ATUOZ\VTUO|2UO+U0AATUO+UOAHO—UOA(UOAHO) in Q x I,
0
G&L:O on 0N x I, (2.20)
1%

U'(t=0)=U) inQxI,

where
div, (HO + W) —0,

curl, H® =0,
such that |[U°| =1 and

0 e Iéo [wkm (0, To; HE-24(Q) ® H;(Il)) i (o, To; H-2%(Q) ® H;(Il))] .

Proof. We apply Prop. 2.2 and obtain that —H? is the projection of U° on the vector field
transversal gradients and fulfills:

I H |l r2) < CIIU°|s (-

In the proof of Prop. 2.2 we only consider the behaviour in the transversal direction, the z-
coordinate being considered as a parameter. Applying the existence result to the z-derivatives
of H? we obtain:

1H s (@@t (1) < ClU° s (o (10)-

When we consider the z-coordinate as a parameter, the proof of existence follows the proof given
in [7], we obtain that U° € C ([0, Tp}; H*(R?) ® L2(11)) NL? (0, Tp; H*(R?) @ L2(11)). As we need
more regularity in time and space (along the transversal direction and the z-direction) we use
the arguments provided in [9, 21] for the existence of the boundary layer terms: we take the
derivative of U with respect to ¢t and apply the previous result. The regularity in time provides
regularity on A,U° and then enhances the result. We obtain the regularity in the parameter
z by taking the derivative in z and applying all the previous steps. We take now the scalar
product of the equation with U° and remark that

AU =2(U°- AU+ |VUP). (2.21)
We obtain:
a([U°P = 1) = A (U = 1) = 2|V U°P(JU° - 1),
which implies |U°| = 1 thanks to Gronwall’s lemma as soon as it is fulfilled at ¢ = 0. O

11



Theorem 2.8. If Q is the unitary disk D(0,1) and the initial data does not depend on o € €,

ie. UY € H;(Il) then U fulfills the following ordinary differential equation with parameter
zely:

ou”°

ot 1

H® = —§U9 in I,

U(t=0)=U in I,

which has an unique solution in C* (Rf; H;(Il)).

=UANH°—U"A(U°NH") inly,
(2.22)

1
Proof. Thanks to Prop. 2.6 we have H? = —§U9 in 2. We now apply Th. 2.7 and have that

UY is regular and |U°] = 1 on Q. We now prove that the solution does not depend on o € Q
(see [7]). We take the scalar product of (2.20) with —A,U? in L2(12), integrate by parts and use
(2.21) and the conservation of the norm of U° to obtain:

3 VU By + 18 0y < [ (9,000 da+ €IV U0l ey

Since |V,U°| € L (0, Tp; L>°(2)) Gronwall’s lemma ensures that V,U° = 0 since it is fulfilled
at t = 0. So UY does not depend on o € Q and fulfills (2.22). Since H;(Il) is an algebra the
Cauchy-Lipschitz theorem gives the local existence and uniqueness of U" € C*® (O, To; H;(I 1))
Thanks to successive estimates on the derivates V,U?, V2U",...we prove the global existence

of UY. O

Remark 2.1. The following results state the existence of the next profiles in the asymptotic
expansion and of the remainder term for the general case. They remain true in the case of Th.
2.8 for all Ty > 0 since we are limited in the proofs by the existence time of U°.

2.2.3 Existence of Ul

Proposition 2.9. Under the assumptions of Th. 2.7 and with the additional assumptions that
1

U e H(Q) ® Hg([l) and 5@& =0 on 002 x I, there exists an unique solution to
v

1
aaUt — AU = |VLUPU + 2V, U0V UNUY + U A AU+ U A AU
+UNH '+ U'NHY = U A (U AHY) = U A (U AHO)
—U'A(U°ANH")  inQx I,
ou?
— =0 ondQ x I,
ov
L UN0,)=Ul() inQxIy,

where H = H(UY) + Q*, solution of Eq. (2.9), fulfills

_ div, QF +9,U =0 inR?x I,

div, (H(U")+ Ul) =0 inRZx Iy, curlyp QL — 0 in B2 I,
curl, H(U') = in R? x I, [QL-v] =0 on 0 x I,
[( U )+U_) } 0  ondQxI, V,Q] = 0.H in R? x I,
Ql]=0 on OQ x Iy,

12



such that

2
vte N {ka (O,TO;H5—%(Q) ®H§;(Il)) nHF (O,TO;HG—%(Q) ® Hg(h))] .
k=0

Proof. We use the linearity of Eq. (2.9) to split the problem in the two exposed above. We apply
Prop. 2.2 to the first exterior problem and we track the dependence on the z-coordinate as in
the case of H? = H(U?) to obtain the existence and regularity of H(U!). Thanks to Prop. 2.3
we obtain the existence of QL and we track the dependence on the parameter z. Now we remark
that H? = —V,¢" (according to Prop. 2.2 applied to the solving of H?). With the dependence
on z, we have that ¢ € W"»> (0, Tp; W} (R?) ® Hg([l)) and HY has the same regularity as U°.
As we do not impose an external magnetic field we have that Q} = 0,¢° and

Qf € W (0, To; Wi (R?*) @ HS(I1))

V.Q) € ﬁ [whe (0, Ty HO24(Q) @ HY(1) ) NEF (0, T HT—24(2) @ HY(1y) )|

k=0
The proof follows then the same scheme as in [22, 23] and Th. 2.7. O
Remark 2.2. The terms U', U?, ...in the asymptotic expansion take non null values even if

their initial data s zero.

2.2.4 Existence of U?

Proposition 2.10. Under the assumptions of Th. 2.7 and 2.9 and with the extra assumptions
2

U e () ® Hg([l) and 5@& =0 on 082, there exists an unique solution to
v

( 2
aait —AU? = |VLUVPU? +2(V,.U° -V, UHU + U A AU+ U2 AAUC
+UANH? + U NHY = U A (U° AH?) —U° A (U? AHY)
—UPA(UAHY) +F  inQx Iy,
2
% =0 ondQ x I,
ov
U%0,-) =UZ(:) inQxI,

where

F=U% +|UPUC + U AUY, + UL AAU + [VLUYPUC + 2(V,U° - VU U?
+U'ANH' - U A (U AHY -U' A (U AHY) U A (U AHY),

and H? = H(U?) + Q?, solution of Eq. (2.11), fulfills
div, Q2+ 0,(H! +U) =0 inR?>x I,

. 2 779 .
div, (H(U )+U2) =0 inR? x Iy, curlsp Q?_ZO in R2 x I,
curl, H(U?) =0 in R? x I, Q% v] =0 on 9 x I,
[(H(zﬂ) +T7) - y} —0 ondUxI, V,Qf = 0.H] in Q x I,
Q] =0 on 092 x I,
such that

U2 e ]éo [wkm (o, To:; HP~25(Q) Hg(fl)) N H* (o, To:; HO25(Q) @ Hf,([l))] .
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Proof. We use the linearity to split Eq. (2.11). The existence and regularity of H(U?2) is given
by Prop. 2.2 as in Th 2.9. The solving of Q% follows the same scheme as in Th. 2.9. We now
split the equation on Q2 in:

div, Q2 +80.U} =0 in R% x I, div, Q>+ 9,H! =0 in R%x I,
curlyp Q31 =0 in R? x I, curlyp Q%2 =0 in R? x I,
[Qz’l'u] =0 on 082 x I. [Q?_’2'V] =0 on 0N x I,

where Q% = Q%! + Q%2. Prop. 2.3 and Th. 2.9 give the existence and regularity of Q%! but we
can not apply this proposition to the case of Q%2. As H}! =Q] = 0,0°, Q%2 is solution to Eq.
(2.17) with u = 92U°. Thanks to Prop. 2.4 and with the study of the z-regularity, we obtain
that Q%’Q = —VTg02 with

902 € W37oo (07TO7W%(R2) ® Hg(Il)) ’
3
v.Q*? e [w’fvoo (o, To; HO -2 (Q) @ Hg(fl)) NHF (o, To; H-2(Q) ® Hg(fl))} .
k=0
The proof follows then the same scheme as in [22, 23] and Th. 2.7. O

2.2.5 Existence of U3

Proposition 2.11. Under the assumptions of Th. 2.7, 2.9 and 2.10 and with the additional
3

oU,
assumptions U3 € H(Q) @ Hg(ll) and 8—0 =0 on 0R2, there exists an unique solution to
v

( 3
aait — AU = |VLUYPUR +2(V,.U° -V, UHU + U A A UR +UR AAU°
+UANH? + UP NHY = U A (U° AH?) —U° A (UP AHY)
—UPAUAHY) +F  inQx Iy,
3
% =0 ondQ x I,
ov
U30,-) =U3(:) inQxIi,

where

F =8*U! + |V, U U 4+ 2(V,U° - V.U HYU? + 2(V,.U° - vV, U*U!
+2(V,U - v, UHU° +10.U°PU 4 2(0.U° - 0,UMU°
+ULANPPU + U A Q?U + U A AU+ U2 AAU?
+U'NH?*+U* NH' —U A (U' ANH?) = U A (U? ANHY)
~U'AU°ANH?) —U'AN (U ANH?) —U* A (U AHY)
~U'A(UANH) —U'A(U'AHYY,

and H? = H(U?) + Q3, solution of Eq. (2.13), fulfills

div, Q3+ 0,(H? +U2) =0 nR>x I,

div, (H(U3) +W) =0 inR?xI, curlsp Qi -0 on R2 x I,
curl, H(U?) =0 in R? x I, [Q-v] =0 on 09 x I,
[(H(US) +U3) - I/} =0 ondQxI, V.Q} = 0.H? in Q x I,
[Q?] =0 on 0N x I,
such that

U3 e ]éo [wkm (o, To; HP~25(Q) ® Hg(fl)) N H* (o, To:; HO25(Q) @ H;(Il))] .
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Proof. We use the linearity to split the equations (2.13). The existence and regularity of H(U?)
is given by Prop. 2.2 as in Th. 2.9. We follow the same scheme as in Th. 2.9 to obtain Q?, and
we split the equation on Q2 in

div, Q3 +9.U2 =0 inR?x I, div, Q22 +9,H? =0 in R% x I,
curlyp Q31 =0 in R? x I, curlyp Q32 =0 in R? x I,
[Qi’l'y] =0 on 0% x I. [Q§’2'V] =0 on 0% x I,

where Q% = Q3! + Q>2. Prop. 2.3 and Th. 2.9 give the existence and regularity of @>! but wa
can not apply this proposition to the case of Q2. As H 12 = QZQ, Q2 is the sum of the solutions

of the equation (2.17) with u = 92U! and of the equation (2.18) with f = BE’U?. Thanks to
Prop. 2.4 and 2.5 and with the study of the z-regularity, we obtain that Qi’Q = —V,¢? withavec

903 S Wg’oo (07TOaW%(R2) ®H§(Il)) )

3
v.Q* e N [wkvoo (o, To: HS2F(R?) @ H;‘;(fl)) N HF (o, To: H-2*(R?) & H;‘;(Il))] .
k=
The proof follows then the same scheme as in [22, 23] and Th. 2.7. O

3 Sobolev embeddings and energy estimates in the space w.

In the following we are lead to perform energy estimates on the remainder terms of u® and HE€.
These terms will be defined respectively in w. and R? (i.e. there is no rescaling) and we need to
track the dependence on the domain and particularly on ¢ of the Sobolev embeddings and other
classical inequalities. The following results are taken from [22, 23, 24] where they were proved
in the case of a thin layer. Thanks to a rescaling (to get rid of the ¢ in the definition of the
domain), v(o, z) = u(eo, z) for u defined on w,, we introduce anisotropic Sobolev spaces on the
domain w,. In a first time we remind some anisotropic Sobolev inequalities, the first two being
proved in [24], the last one in [22] :

Theorem 3.1 (Anisotropic Agmon’s inequality). Let Qo =0, 1[3. There exists an absolute
constant C such that

ou
8:137;

1
1
+ ||U||L2(QO)) ; (3.1)

1 > 0%u
||u||]Loo(QO) <C ||U”ﬁ2(go) H HW
i=1 i

for all u € H2(Qyp).

Theorem 3.2 (Anisotropic Ladyzhenskaya’s inequality). Let Qo = []5_,]0, \i[ with A; > 0
fori=1,2,3. There exists an absolute constant C' such that

l
L2(0) L?(€0)

3 ou
ulloy < C
B 1;[1 9z ||p2(q)

1 3
+ Iy ||U||]L2(QO)> ) (3.2)

for all u € HY(Qp).
Theorem 3.3. Let Qg =]0,1[>. There exists an absolute constant C such that

1 1
1 4 12

3
[ullLize) < C H Z
=1

8j U
8x

83 U
83:

7

>

(3.3)

L2(Q0) ¢ 1.2 (Q0)
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We introduce now the anisotropic Sobolev spaces and the anisotropic inequalities.

Definition 3.1. For1 < p < 400, we define the normalized Lebesques spaces L in the following
way:

1
LP = {u € D' (w-), lu(z)[P dx < —i—oo} )
‘wf‘ We

1 1/p
iley = (2 [ 0P )

‘w5| We

We let WS”’ = LL and we define the anisotropic Sobolev spaces WZ'"F, m € N, and their norms

as follows:
WO = {u e L2, d.u € WP and (eV.)u € WP},

1/p
lllygr = (Il + 10:0lyms + eVl )

When p = 2 we let H™ = W™ and [ullem = llullyym.z-
When p = +00, we let:

TEWe

|ul, 0o = sup |u(z)].
TEWe

L = {u € D'(w:), sup |u(z)] < +oo},

With W2 = L2, we define the anisotropic Sobolev spaces W:"*°, m € N, and their norms as
follows:
Worthee = Ly € L, d,u € W™ and (eV,)u € W}

ullypone = (1l + 10zulignee + €9 tllyy
Corollary 3.4. There exists an e-independent constant C such that:

e forallue H! and 1 <p <6,

3_1 3_3
|u|a,p < c |U|§72 ||u||5,1 i (34)
e for allu € H? and 2 < p < +o0,
g 33
ul.p < C fulzy ™ fulle, ™ - (3.5)
e for all u € H2,
3 1
|U|a,12 <C HUH,;H Hu”fz (3.6)

Proof. Thanks to a global map of Q we only have to prove the results in ]0, 1[?x]0, 1].

We obtain the first estimate in the case p = 6 thanks to theorem 3.2. An interpolation between
L2 and L¢ give the result.

With the rescaling strategy we use to introduce the anisotropic Sobolev spces we deduce from
Th. 3.1 and 3.3 the two inequalities. [l
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3.1 Trace and lifting
Let us remind a definition of the spaces HS(Q), s=k+6>0,0<s<1 (see[19,18]) :

H*(2) = {u € H¥(Q // [D%u(z) — D7uly )|2da:dy < +oo, Vo] =k
|.73— ’n+25 ’ ’

1/2

Doy 2
w55 () = ||U||Hk + Z//' |$_ |n+2s( vl dz dy

|la|=F

With the rescaling strategy we use for the HP spaces we define anisotropic Sobolev spaces on
the boundary dw. = Q2 x Iy (Where the periodic domain I; has no boundary):

s _ |Du(y) — D2u(y')[? ) _
HE (Owe) = {uEH (Owe), FRE 8‘ /&u /c%.) o —o'E i P )n/2+sdydy < o0, Vla| =k ¢,
1/2
|DEu(y) — D2u(y')® /
S(Ow. == d d 3
||u||Hs(8 <) ||u||Hk(8w5 + E |8w5| /&ug /aws 6 2|O._O-l|2+|z_zl| )n/2+s yay

|a|=k
where y = (0,2), y' = (¢/,2'), De = (¢V%,0.)! and a € N,

Lemma 3.5. There exists an e-independent constant C' such that for all € > 0 small enough
and u € H,

[l <Cull -

1
HZ2 (dwe)

1
There exists an e-independant constant C' such that for all 0 < & small enough and f € HZ (Ow,),
there exists a lifting 1 € H! of f such that:

L S

Proof. Anisotropic trace theorem: for all (o,z) € Q x I} we let v(o,z) = u(eo, z). We now
apply the classical trace theorem to v and we get:

HUHH%(aﬂXll) S CHUHHI(QX_Il)J

where ¢ does not depend on . We now perform some estimates on v: as in Lemma 3.4 we obtain
that there exists some e-independant constants C' and C’ such that:

C llully < ol @xr) < € ull.; -

1

As the spaces HZ2 (0w, ) are defined such that they take into account the anisotropy of the domain,
1

we obtain th following estimates on the norm H?Zz:

C ] <l

< HUHH% X 11) 3
(Owe) (0%2x HZ (dwe)

1
HZ (dwe
which gives the result.

Anisotropic lifting theorem : In the same way we apply the classical lifting theorem to
g(0,2) = f(eo,2), (0,2) € O x I and we obtain a lifting v € H(Q x I;). We define then
u by u(eo, z) = v(o,2) and v is a lifting of f € H%(&UE), the previous estimates conclude the
proof. O
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3.2 Some inequalities

In the following we need the following results :

Lemma 3.6. Let Q a regular open bounded set of R™. There exists a constant C' such that for

0
all w € H%(Q) such that G_Z =0 on 092, we have:

1/2
lullieey < € (JlullZzqey + N1AulFa) - (3.7)

There exist a constant C' such that for all w € H™(Q2), m € N*, we have:

[w[[gm @y < C (||u||L2(Q) + [|div uflgm—1 () + [leurl u|gm-1(q) + [lu - V”Hm—1/2(89)) . (38

Proof. The first inequality comes from the regularity of the operator I — A with domain

D(I - A) = {u € H?(Q), % = 0 sur 89}
(cf [10]). The second inequality is proved in [11]. O

Remark 3.1. The second result remains true with uw A v instead of u - v and in a domain with
bounded complementary instead of a bounded set.

We also use anisotropic versions of these results:

0
Lemma 3.7. For all u € Hg such that 8_u =0 on Jwg, there exists an e-independent constant
n
C such that 12
2 2 2
lullo < C (Jul25 + |020]2, + [2A0u)2,) (3.9)

For all w € H", m € N*, there exists an e-independent constant C such that:

ull., < C (|u|572 + 102wl g + lledive ull, g + [[(e30:) Au+ ecurly ull,,, 4
(3.10)

vy
H, (Owe)

Proof. We let v(o, z) = u(eo, z) to consider the domain 2 x I;. We then apply Lemma 3.6 to v
and we deduce the result thanks to Lemma 3.5. O

Corollary 3.8. There exists an e-independent constant C such that for all u € Hg satisfying

0
au_ 0 on Ow, we have:

ov

I(e30. + eV )ull., < C (|azu|€72 +[eVrul,  + [0Pul_, + |52A7u‘6,2) . (3.11)
Moreover if u € H2, there exists an e-independent constant C' such that:

(€30 + eV, )ull., < C (\azu|6,2 eVl g+ [[02u]|, + HEMTUHEJ) . (3.12)
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4 Study of the remainder term

We let:

e in we,
W (t, ) = U" (t, gz) +eU! (t,g,z) + 2202 (t, g::) + 33 (t, gz) + &35 (¢, z),
He(t,z) = HC (t%z) teH! (t, gz) +2H2 (t, gz) 1 3H3 (t, gz) + 3Q°(L, 2),
o in (R*x ) \ w:
HE(t,2) = H° (t%z) teH! (t, gz) t 22 (t, gz) 433 (t, gz) +3Q(t, x),

where ¢ and @ are the remainder terms of v and H and x = (o, z). In the following we let

Viz)=V (g,z).

4.1 Remainder term of H°¢

Back in Egs. (1.2) and (2.5) we simplify by using the equations fulfilled by the profiles and we
obtain:

div (Q° +7%) + 0, <I}?’ +U_l3> =0 inR?xI,

curl Q° + 9, (eg/\ﬁ/?’) =0 in R? x I, (4.1)
[(Q°+78)-v]=0 on Ow,,
Q°Av]=0 on Jws.

We then consider the remainder Q¢ as a function of ¢ to get:

Theorem 4.1. Under the assumptions of Th. 2.7, 2.9, 2.10 and 2.11 and if r¢ € HZ, p € N,
there exists an unique Q° = R + S¢ such that

div (RE+75) =0 inR? x I, div ¢ + 0, (Hf + Ul3> in R? x I,

curl R°* =0 in R? x I, 5 —~ 3

(R +7) 1] =0 on B, owl §°40; (e ) in B,

[R"Av]=0 on Owe, [5%-v] =0 on duwe,
[S*Av]=0 on dwe,

and there exists some € independent constant cy such that

175]]e.p < co 7]l
15%l.5 < co-

€7p )

Proof. See Appendix A O
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4.2 Remainder term of u¢

According to Th. 4.1 we let:

as(t,x) = U° (t, f,z) +eU! (t,g,z) + 202 (t, g
€ 5 €
be(t,x) = U? (t, z,z) + eU? (t, g,z) +2U3 <t, z,z) in we,
€ € €
cg(t,a;):U2 (t,iz) +eU? (t,iz) in we,
€ €

Q=R +5 inuw,

Ké(t,z) = H° (t, z,z) +eH! (t,iz) + e2H? (t,iz) + 303 (t, z,z) +e35°  inw,,
€ 5 € €

Back in Eq. (2.4) we simplify by using the equations of the profiles (2.8), (2.10), (2.12) and

(2.14). We obtain :

ore I A e e
5 ¢ Arf=T1+---+T3+F° inw,
85

8—7;:0 on Jwe,

r(0,z) = r5(z) in we,

where
( Ty =8| Vre|2re,

Ty =¢° (|Vr5\2a‘€ +2(Vr® - Va®)re) ,
Ty = &2 (|Va*[*r + 2(Vr® - Va©)a®)
T, = €2 (r6 AAGE 4 af A AT+ 3rF A Are) ,

Ts = a° A R° +1° AK€ +%° A R?,

Ts = —57° A (r° A RE),

To=—[a°*N(a°AR°)+a" A (r* ANK®)+71° A (a® ANKT)],

Tr = —3 [ A (rF AK®) +1° A (a5 A RY) + a° A (15 A R)]

and F€ = A+ a® NS¢ —a® A (a® A S%) where A is the sum of products of the profiles and their
derivatives, both valued in (%, z) (See Appendix B).

According to the regularity results we obtained on the profiles, we have the following proposition:

Proposition 4.2. Under the assumptions of Th. 2.7, 2.9, 2.10 and 2.11, for allp, 1 <p < +o0
and for all 0 < T < Ty, there exists some e-independent and positive constants C), such that for
alle >0,te0,T], and 1 =0,1,2,

la(t, Ml < G
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For allp, 2 <p < +00 and for all 0 < T < T there exists some e-independent positive constants
Cp such that for alle >0 and t € [0,T],

la (¢, )y < G

For all p, 1 < p < 400 and 0 < T < Ty there ewists some e-independent positive constants C,,
such that for alle >0 and t € [0,T],

K= (e < G,
E= @t ey < Co

Proof. Thanks to the regularity results we have some estimates on the profiles in the spaces
WHo(Q x I;). Thanks to a rescaling we are lead to consider the anisotropic spaces WE An
interpolation with the estimates obtained in Lg and the estimates performed on S¢ in Th. 4.1
give the result. U

4.3 Estimate on the remainder term

We will now perform some estimates on the remainder term r¢. This will provides us a proof
of the existence of u® for a more regular initial data (H®(Q2) ® H(I1)) in the case of straight
wires (instead of H? in [7]) and also an asymptotic expansion of u®. The loss of regularity of the
initial data is typical of the asymptotic expansion method we use (see also [5, 9, 12, 21, 22, 23]).
These estimates are performed on a Galerkin approximation which will allow us to justify all
integration by parts. The approximation space we consider for the Landau-Lifschitz equation is
built on the basis of eigenfunctions of the Laplace operator solved on the domain w, = €2 x I

au_ 0 on Jw, ». We also use this basis for the magnetic field thanks

on

to the projection operator (we will not detail this step). In the following we then have to prove
estimates on 75, the projection of r® on the approximation space, that are independent of ¢.
We let:

and with domain {u € Hi,

2 2 2
Q) = [l I+ 105 (1 )25 + €7t )12,
2 2
e (|02t )2, + 69,0 20 + [P0t ]2,

and we assume that Q(0) < ||7“8||§1 + €2 ||r5||§72 is bounded.

As we consider a Galerkin approximation of ¢ we get the existence of Q on a maximum time
interval [0, 1, . [ where 0 < T, . <Tp and Tp is the existence time of U°. We want to prove here
the existence of ep small enough such that we have the existence of Q on [0,7] independently
of nif 0 < ¢ < ep. We also show the estimates of the main result. We will proceed as it follows:
We let 0 < T' < Ty and we perform energy estimates independtly of n, we take the scalar product
in L2 of Eq. (4.2) with 75, 02r¢ + e2A.r® and & (9] + 202A, + *A2) r°. By integrating by
parts and absorbing the cumbersome terms thanks to the dissipative term —e?Ar€ in Eq. (4.2)
we prove (see Appendix C) that Q fulfills on [0,77] N [0, 7}; [ the differential inequality:

Q'(t) < Or(1+Q(t) +*Pr(Q(t), te[0,TIN[0,T; ], (4.3)

where Cp is a constant and Pr a polynomial, both independent from n and e (but not from 7).

We let now .

27

T* = sup {T, T <7, PQ) <

Vte[O,T]}.
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Forallt<T <T° Q <C(1+Q), and
Q) < (1+Q(0))exp(Ct) —1

1
thanks to the Gronwall lemma. We then deduce that P(Q(t)) < s for all t < min (Tp,alnl +b).
We then have that lin%] T. = Ty, which implies T}, > T as soon as € €0, er| where 7 is a con-
e— ’

stant small enough. Moreover r¢ is bounded independtly from e in IL*° (O,T;H;) and er® is
bounded independently from e in L*° (0, T; Hg) forall 0 < T < T,.

The anisotropic Sobolev embeddings and the renormalization in the Lebesgue spaces give the
main result.

Remark 4.1.

In the case of Th. 2.8 where the domain is the unitary disk and the initial data does not depend
on o € (1, this proof remains valid and moreover give that the existence time T¢ of ¢ goes to
infinity as € goes to zero.

Acknowledgments: The author wishes to thanks his Ph.D. advisors G. Carbou and P. Fabrie
for their help. He is also grateful to A. Thiaville and J. Miltat for fruitful discussions and for
the suggestion of this topic.

A Proof of Theorem 4.1

Under the assumptions of Th. 2.7, 2.9, 2.10 and 2.11 and if r® € H%, p € N, there exists an
unique Q° = R® + 5°¢ such that

div (RE+7%) =0 inR?x I, div $° + 0. <H5’+U_;”> in R? x I,
curl RF =0 in R? x I, — .
[(RF+7¢)-v] =0 on Ow. l curl 5+ 0; (63 " Hg) in R?,
[RFAv]=0 on Odw, [S°-v] =0 on Ow,,
[S*Av]=0 on Owe,

and there exists some ¢ independent constant ¢y such that

175]]e.p < co 7]l
15%l..5 < co-

€7p )

Proof. We use the linearity to split Eq. (4.1).
Equation on R®: Since curl R = 0, there exists ¢* € W!(R? x I;) (Beppo-Levi’s space, cf.
[10]) such that R® = —V¢* and ¢° is solution of:

—Ap® = —div r® in we,
—Ap® =0 in wl,
op®
[— 50 +7“5'1/] =0 on Jw,,
v

[©]=0 on Jwe.

For all ®, ¥ € WH(R? x 1), we let a(®, ¥) = / V& . VU dz and
R2><11

5(\11):—/52\11-divr5da:+/8 (r®-v)¥ 0.
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The application « is continuous and coercive on W!(R? x I;) and
1B < 17 lL2@wo) IV llz 2 x1y)-

We apply now the Lax-Milgram theorem and we obtain the existence of ¢° € W!(R? x I1) and
R lL2mexr) = IV llL2@e ) < II7°[lL2(w.)- Back to the anisotropic Sobolev norms we have
|R?|. 5 < |rf|. 5 Toenhance the regularity while taking into account the anisotropy of the spaces,
we derive the7equation on R° in the transversal and longitudinal directions and we reapply the
same arguments (we follow the strategy given in [7, 9, 14]). We obtain ||R®||. , < C'[|r¥[|_ .

Equation on S¢: Thanks to the linearity we split again the equation in three terms, one for
each one in the second member. We let S¢ = §1 4 §52 4 53,

Since the domain w, is z-periodic, we temporarily forget what happens in this direction by
decomposing the magnetic field in Fourier series, we are then lead to consider problems of the
same kind as the ones solved for H°, H', H? and H3. 5! fulfills:

div §51 + 8,U% = 0 in R2 x I,
curl S5 =0 in R? x I,

(S5t v]=0, [S®'AVY]=0 on duw..

There exists then ¢®! such that S5! = —V>!, and by decomposing in Fourier series in the z
direction the equation we obtain, we get:

—Ascn(0®h) + n?ep (™) = zncn(U_l?’) in R?,

where ¢, (f) is the n-th Fourier’s coefficient of f and n € Z. By the same way we used in Prop.
2.3 to obtain the existence and regularity we get that —Ve®! = §51 ¢ L>® (O,TO;Hé) and for
all t < Ty

)1 3
157 < ellOP]l. s 0k <4,
The application S=? fulfills:
WETT o0 R
curl $52 =0 in R? x I,

[S52.0] =0, [S*?Av]=0 on dw,.

In the same way we introduce ¢®2 such that S*2 = —V¢®? and we use the Fourier series
in the z-direction. Since Hl3 = Q? (¢f Th. 2.11), we use the same method as in Prop. 2.4
and we take into account the Fourier variable to get some regularity for S%!. We obtain that
552 € L> (0,Tp; H2) and for all 0 < k < 4,

HSE’Q(t, ')H&k’ s <‘ 02U° (t’ é’ ) ek + ‘ 0. (t’ é’ ) ek + ‘ 9.U* (t’ é’ ) e,k> ’
The application S&3 fulfills:
div $53 =0 in R2 x I,
curl $53 + 8, (63 A ﬁ”) = in R? x I,

[S¢3. 1] =0, [S**Av]=0 on duw,
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which also writes: 5
div, S5% +9,57° =0,
curlyp S5 =0,
V,.S0% —9,55% = 0, H?.

Let ¢f such that §53 = —V 7. Since H? = —V,?, we have S’lg’g + 0,97 = — .03 (there is
no constant through integration since we assume that there is no external magnetic field), and
finally, the divergence equation gives:

—Angf — 02¢f = 020",

This case is similar to the case of S%2, except that the equation fulfilled by (? is more compli-
cated. Following the proof of Prop. 2.3 and 2.4, the existence proof of S%! and S%? and with
the results of Prop. 2.1, we obtain that S3 € L>® (0, To; Hg’) and for 0 < k < 3,

5590, € (1007 + 102070+ 0207+ [0207).)

B Expression of F*

Ff = c[02¢° + |V 02 + 2V, P — 26|V, [26° +(0,0°[*a° — 2¢|0.b°|%b° — 2¢|Vb°|2U
+| Ve 2a® + 0.a°|?c® + €2]0.6°|%cF + 2(V, U3 - V,a%)b® + 2(0.a° - 0,b°)b°
+2(V,U3 - V)af + 2(Vra® - Vob)U3 — 4e(V b5 - VU3 — 26(8,b° - 0.¢%)a’
—26(V ¢ -V, Ua® + 262(0,6° - 0,°)b° — 2e(V,af - VU3 +2(0,a° - 0.¢°)a’
—26(8,0° - 0,b°)E — 26(,0° - Do ® )b — 26(Vra - VrcE)UP + 262(V,bF - Vo) UP
+2(V,af - Vo) +2e2(Vc® - VLU +2e2(V0° -V, U3)E — 4e(Vb° - Vief) e
+2(V b - V)b + & NO2af + & N A —ec® NO2E +af A O2cE + b5 A O2b°
+0EANAUS FUBANAD —cUBANAE —ec® ANAUR —eb® NO?cE + U3 N HY
+5 ANH3 + E ANH2 = U3 A (af AHY) —a® A (UP ANHY) — et A (UP A HP)
t+ec® A (U3 AKE) +&3%° A (UBAH?) — b5 A (a° AHP) — b A (UP A KF)

—tUB A (F ANH?) +eUP A (ENK®) + U3 A (5 ANH?) — U A (b AKE)
—a® A (5 AN H3) + e3¢ A (E ANH3) — & A (ENKE) +eb® A (b5 A H?)

—e2E N (U ANHY) — e3¢ A (UP ANH?) — & A (a® AH?) 4 2eb° A (UP AHY)
+e26° A (UP ANH?) — 2U3 A (E ANHY) —3UP A (€ A H?) +a° A (F A H?)
+2eU3 A (b5 AHY) + 203 A (b5 AH?) + 2 A (F AH?) = A (5 AHY)
+2ec® A (FANHY) — & A (05 ANHY) =65 A (b5 A H?) 4 eb° A (&€ A H?)

+ec® A (b AH?)] +a° A ST —a® A(a® AST)

C Proof of the estimates

In the following inequalities the operators V and A are the usual differential operators. We then
lose some powers in € when we perform the estimates in the anisotropic Sobolev spaces:

e[Vl , < (|azu|57p n |€V7u|57p) :

e |Au|e,p < (mgu‘ap + ‘EzATuLvP) '
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L? estimates: we take the scalar product of Eq. (4.2) with | |7°‘€ to obtain the norm | |_,.
We ’

The integrations by parts are licit since we consider a Galerkin approximation. We get:

1d

5= (Ir22) + &2 IVre2, < o |/ (T4 + -+ + Ty + F¥) 1% da.
5

We estimate each T; r® dz thanks to Holder’s inequalities then by anisotropic Sobolev’s

|w6| We
embeddings:
1
— / Tirfdx| < &8 |r5|2 \V?‘8|z2
‘w5| We
< C P I, et 25 < Ce¥*Q
(thanks to Ineq. (3.5) and Rem. 4.1)
1
Do | Tortde] < e 9+ 27 7 Ve 9L
e we
1/2 3/2 3/2 1/2
< CE LG I I2Y Nlerllg +C e Ly P27 Nl
(thanks to Prop. 4 2, Ineq. (3.4), (3.11) and Rem 4.1)
< 0(82 +55/2)Q3/2
o] / Tyrdo| < e2[rf|2,|Vas|2 o + 262 0|, o |r¥]. 5 [V7°| 5 |V o
We
2
< O+ Ol el <€ Q
(thanks to Prop. 4.2 and Rem. 4.1)
1 € 2
T47’ dx < € |r6|52|va6‘aoo‘vra|52
‘w5| we ) ) )
< O|TE|E,2||TE||8,1 < OQ
(thanks to Prop. 4.2 and Rem. 4.1)
- / Tyrde| < |0 ] B 5
We
< C ’7’6‘?,2 <C0Q

(thanks to Prop. 4.2 and Th. 4.1)
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1 2 2
e S R e N NI S
e we
< Ch2, <CQ
(thanks to Prop. 4.2 and Th. 4.1)
1 € 3. €12 €
|w6| T7rcdx < Ce ‘a ‘s,oo |T |5,4|R |e,2
We
< oy 1P < 028 Qi
(thanks to Prop. 4.2, Ineq. (3.4) and Th. 4.1)
1 g
— Tgredr|= 0
‘w5| We
1

< |FE|5,2 |TE|E,2

< OO+ 2y
(thanks to Prop. 4.2 and Young’s inequality)

By summing the previous inequalities we obtain the existence of a constant C' and a polynomial
P, both independent from e such that:

d
- 2, + 2 |V, < C(1+ Q) +£°P(Q), (C.1)

H! estimates: By taking the scalar product of the Galerkin approximation of Eq. (4.2) by

(837‘5 + €2AT7*E)

|we |

and by integrating by parts we get:

1 d ) , ) , 2 2
5& (|az7"5|572 T |€VTT€|572) T 62 ‘8§r5|6,2 + ‘€2ATTE|€,2 + 52 |V7—8z7“8|5,2 + 54 |VT827"E|E,2
1
S ) @t R T ) (0 4 200
wel Jo.

and we estimate each term of the second member in the following way:

1 2
o] /w Ty (02r° + 2 Apr®) dx| < 8 |rf|_4|Vr¥|26 <‘8§r5|572 + ‘E2A7r5|€72>
< Gy flert|2, < C° Q2
(thanks to Ineq. (3.4), (3.11) and Rem. 4.1)
1
@ /w Ts (831"5 + 52AT1"5) dr| < &° |a€|‘€7OO |Vr5|§74 (‘831"5‘6’2 + ‘52AT1"5|€72)
2% 1| [V IV, o (10277 + 2007 . )
1/2 5/2 3/2 3/2
< CeV Y lert |2 + 2 e 2P e 25
(thanks to Prop. 4.2, Ineq. (3.4), (3.11) and Rem. 4.1)
< C (81/2 _|_€3/2) Q3/2
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1

|we |

/ Ty (920 +2A.r) de| < €2 [Va|? . [Ir]12,
We

26 |0, o (10: V%, o + eV VoL oo ) Il o Iy

+2¢2 Vo, o, (10:0°] o0 + Va7 o0 ) V77 o 17

122 |a|, o (10:V0 | oo + V- VL ) 17 o 1

1222 |a|, oo [V07). o (1027°] , + 120- 910

+10:V 5775 + 16877 2) 7]l

C (W02 + 1] 17l )

+C ¥l (2]027°],, + (14 €) 16V, V1| + [2A00°) )
(thanks to Prop. 4.2 and Rem. 4.1)

< CQ+ % (52 [02r°]2 , + (1+ %) [V Vo2, + |52A7r5|§,2)

IA

To estimate Ty we look more precisely the behaviour of the terms with Ar€ thanks to integrations
by parts (which are licit thanks to the splitting between the two directions):

A =
<
<

Ay =
<

/ e%a® A Ar® - (920 + 2 A0rf) da

|e|

2 2.6 2 2
ol ). e? (a° NOr® - 2 Arr® +a° A AT 07r7) do

1— 2
w €| </ —£20,a° N ArE - 0,r° da + / 2V af AV, 0,15 - O.rf dm)

|8Za8|5

5 e
701 |2 8072 | o + eV oo 175121 1€0: V1)

7OO| £,

2
2 € 2 2
2, + 35 (6200 2, + 120V, 2,

/ e N AT - (02rF + 2 Aprf) da

|owe|

ol €’ (r* A 0% 2 ALt 41T AN AT 837“5) dz
Wel| Jw,

1-— 62 5 5 5 15
W €20, r* ANV, r® -0,V rdr
£ w,

€
Ce? ‘8z7°8‘s,4 ‘€VTTE|5,4 |€azv7'7°g|s,2 .

Back in the estimates of T, we obtain:

1

|we|

/ Ty (02r° + e Arr®) da

2
S €2|Aa5|5,oo ||r€||571

e (10:80%. 5 + eV, AL ) 1] 6 7

< C )2y + Ce2 N NerliZ (e 1002907 )
1 2
—|—1—8 <|€2ATTE|5,2 + |582V7r8|§72)
(thanks to Prop. 4.2, Ineq. (3.4) and Rem. 4.1)
1 2
< CQ+CQ 4 — (a2, + 120V, 12,
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1

|we|

2 2
[ 150 2 da| < e g B 15+ o IR
We
I e 7] 71l
3
2 L g Ry (107 + 1V )

5/2 1/2
< Crf2, + O™ [r¥)127 ler]l 23
(thanks to Prop. 4.2, Th. 4.1 and Ineq. 3.4)
< CQ + 085/2 Q3/2

1 2
ol / Ts (02r° +2Arr®) dx| < 2/|a%||gyroe [0°]. o [ BEL o 17511y + 102 o0 RSy 1]
e wWe
+2[|a o0 [ K| o 7] 2 1751l 0
2K |yyoe (07| oo 7] 2 1751l 0
2
+ |a€|€,oo |KE|5,00 ||TE||€,1
< Ol + el ) Il <€ Q
(thanks to Prop. 4.2 and Th. 4.1)
1
o / T (0% + 2000) de| < & (1924 (K| oy + 200 7] 4B )
We
X <|a§r€‘5,2 + |E2ATT€|E,2>
< O 2T lertle, < © € Q2
(thanks to Prop. 4.2, Th. 4.1 and Ineq. (3.4))
1 2 2 2
o] /w Ts (07r° + e*Arr®) dz| < &5 126 IR |6 (!837“5!6’2 + ‘52ATTE|5,2)
< O |2 llerll., < C 2 Q7
(thanks to Th. 4.1 and Ineq. (3.4))
1
[ FE @ v 2ant) i < IF
wel | Jw. ! !

< C1+Q)
(thanks to Prop. 4.2 and Young’s Inequality)
By summing the previous estimates and absorbing the terms that appeared during the estimate
of Ty, we get:
1d €2 €2 L/ oiq2 2 2 e|? 2 €2
g 10 Lot 19 En) + 5 (2102, + 2072, + (14 210,92 ) (C2)

<C(1+Q)+£*P(Q),

where C' is a constant and P a polynomial, both independent from e.

H? estimates: We now estimate &2 (‘8?1"5@ 5t |632V7—7"6|572 + |52A7r5‘: 2) by taking the scalar

2

9 52

product of (4.2) by (0 + 202A, 4 *A2)rF = o
We We
integration by parts, use Holder’s inequality, anisotropic Sobolev embeddings and finally Young’s

inequality to isolate the term

'A% =4 |93r"

B. For each term we perform an

‘372 + 2 ‘E@?VTT‘E‘:Q + &2 |€28ZA77°5‘:72 + 2 ‘€3V7A7r‘3|:’2 .
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We finally have:

N / 2Ty Bdx| < &' |Vr€|z’6 (2 0.7%|. 6 + |€V77’6\576) A
210 1] 13 (210:V7° | + 16V ) [V 1 A
c13/4 e 1312 (1e LA ci11/2
< o= e el (el + A (1125 + AV2) A
+CEPA Jler|Z,
(thanks to Ineq. (3.4), (3.6), (3.11), (3.12) and Rem. 4.1)
< 1_854A2 +C 66 Q3 + C 628/3 Q11/3 +C€13Q5 +C€24Q9
™ / STyBdr| < < (200.0%], o+ [eVral. ) IV A

1257 |0 oo [V 6 (210:V7°L s + |2V, V7 ) A
+2‘€7 ‘vaa‘s,oo |VT€|6,4 (2 |8ZT€|6,4 + |€V7’r6‘674) A
7 (200:V0 ) oo + V07| ) 177 |97 o A
1257 Va0 Irl. g (210:V7°L s + eV, V7 ) A
enl/2 en3/2 e13/2 enl/2
<kmnn/nen/A+0éwn/0|n/+AW)A
e 1/2 £113/2 e13/2 e1/2
+OT2 27 Nler |12y A + O 2|27 ler® Iy A
e el/2 e 1/2
L0 ol eI (112 + A2) A
(thanks to Ineq. (3.4), (3.11), (3.5), Prop. 4.2 and Rem. 4.1)

1
< 1—854A2 + C2Q% + C2Q3

IA

To obtain the estimates of T3 we integrate by parts several times the term:

4
A= % o (vTae ' azvﬂ'ra) (a(S : 827“6) dx < 254 |AT&E|5,oo |a€|a,oo |azr5|5,2 ‘8§TE|5,2
+26* V7072 o 10277,  [027°]
+2E4 ‘aa‘s,oo |8Zv7'a6‘6,oo ‘8ZT€|€,2 ‘agvTT€|E,2
+2¢* IVra|, o 10207, o 1027, 5 ‘8§V7r5|572
+2E4 ‘v7a6|e,oo ‘ae‘e,oo |a§r€‘a,2 |a§v7r6|5,2
CQY2(2A)

IN
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Back in the estimate of T3,

/ 2Ty Bdx

|we |

+ eV, 5 |3V, AL 2) + 264 Ve, o Il <|82Va5|
+10:Va®|, o, |e20.0.7°_, + eV, Va|, o |3V A 2)

< Ve (1901 100 10 200

1264 Vel [Vr°). (|aza6|57oo 047,

+ |(9Za5|5,OO |e28zATr€|E o+ 1eVra®|

3V7ATT‘€|E’2>

0 |

€,00 |

+2e4 \ae\em ‘VT€|E’2 (|82ch5|6,OO |8§T€|5,2 + |(9ZVCL5|E,OO |€28ZATTE‘E72

+ eV, Va®|

o0 |

3V7ATT‘8|E’2> L L (|a§r8

‘5,2 ‘

+ |32V7"5|5’2 |€262ATT8|6’2 + |€VTVT8|8,2 ‘53V7A7T8|6,2) + A

IA

C(||r8||5,1 + ||6r8||5,2)(62A)

(thanks to Ineq. (3.4), (3.11), Prop. 4.2 and Rem. 4.1)

L 4,4
< —&*A
< 185 +CQ

To obtain the estimates of Ty, we integrate by parts several times each terms:

4

A== 5 A AG - (04 + 20201 + 1 AZrf) dr

‘wf‘ We

3..€
a;r

< 1807 (1007 027] 100 200y 190907

€4

B = af A (021 + Arr®) - (02r° + 202 A0 r° + 2 A2rf) da

|w8‘ We
= DBy1+ By + B3+ By + Bs + Bg,

where

4
£
By / a® A\ 0%rF - OMrF da
We

el

4
By = — / a® NArE - 837‘5 dx
We

IN

IN

IN

IN

54 |82a6|5,oo |8§T€|5,2 ‘8§T6|5,2

1
— A% 4+ C? ||er®|2,

200
A
— 9.a° N A€ - 93¢ dx
|wel Ju -
L
+ wr] / a® N O, ATt - 82’7’5 dx
€ w

1>
et |82V7a5|8700 |VT1"5|€72 |8§’r5‘€72
+et |8§a5|57oo ‘VTT’E‘EQ |8§V77’5‘872

—1—64 |8Za8|€700 |8ZV77~5|€72 |83VTTE|5,2

+64 |v7—ae|57oo |8ZVT7"6|5,2 ‘837"6‘5,2

Lot 1020%], o0 10:V77°. 5 |a§vﬂ,e|5’2

1

452
A
2005 +CQ
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€,00 |8§r5 ‘5,2 ‘8§v7—’l"5 ‘5,2

6
€
B3 = / af A o%re - OEATW dr < €5|V.a°|
We

L 42 4
< —&*A
< 2005 + Ce*Q

6
€
By = m / af ANAE P A dr < 1020°|, oo [A77¢] 5 |0:A77°] 5
el Jwe
1
< %E4A2 +CQ
8
€
Bs = wr] / af NOXrF  A2rfdr < €8 Vrafl, o ‘837’5‘572 VA7, o
el Jwe
+£8 |8Za‘€|€7OO |82V77“8|872 |VTAT7“‘€|E72
+£8 |VTaE|E7oo |8ZVT1"E|E72 |82AT7“8|E72
L 4p0 4
< —e*A“ 4 Ce
- 200 * Q
28
Bg = ] af NAE AT dr < €8 IVraf|, o |Arre| o V2 AT,
el Jwe
1
S %A+CE2 H€T€H§72.
By the same way,
o7
c = ol / " A (8?1"5 + Arf) - (8§re + 64A72_7"6) dx
Wel Jw,

IN

257 (10,11 + |2V ) 180%] A 7 [V 1V,004] [0,
+e ‘8z7°8|a,6 |V78zr5‘a,3 |83VTTE|5,2 +e'! |8z7°8|5,6 |V7'8z7°8|a,3 |V7’AT7°8|5,2
+elt |V7T5|576 |V7821"5|573 |8ZAT1"E|E’2

< Ce3QA 4+ CeT2Q3/1A32 < %&AZ’ +Ce2Q? + C2Q°

Back in the estimate of Ty,

/52T4de < A+B+C
|w6| We 1
< 1—854A2+CQ+052Q2+CE2Q3
—| [ EmBds| < 2 K A+ 2 L K A
£ We

+e2(la oo |BZ| o A+ 0% o 1 BEl A
63 (10715 + 1Vl ) [REL g A
23 |1l (10-FE L5 + eV, 2L ) A

2 |8 5 (|58 e)1/2 e|1/2 1/2
Ce[lréllo, A+ Ce” Il il (lIrslles + AVE) A
(thanks to Ineq. (3.4), Prop. 4.2, Th. 4.1 and Rem. 4.1)
CQ!2 (2A) + C=2Q (2A) + C=32Q¥4 (2A)*?

1
1—854A2 +CQ + C* Q2+ 0P

IN

VAN VAN
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2
S ng”aauwgvoo ‘as‘a‘,oo |T€|5,2 A + 82 ‘aa‘s,oo |’T€H8,1 A

+26% [l yroo |KF|. o ¥, o A
267 K o0 |07, o I7°). o A
+26% |0, o |K®|. oo IIr°l.0 A

Ce? |r ., A < 1—854A2 + CQ
(thanks to Prop. 4.2 and Th. 4.1)

IA

< 28007 Il (10-FEL. s + eV, 2L ) A

122107, o IR (10:7°. 5 + |V ) A

+26| % [y |74 [RELL 4 A

122 K|, 12 (107715 + £V 77°) ) A

+&2 | Kl P2, A

CeS2 ||re |27 llers |15 (2A) + Ce¥ [re |15 (¥ 277 (2 A)
(thanks to Ineq. (3.4), Prop. 4.2 and Th. 4.1)

1
1_852A4+ C (€5+€6) Q2

IA

IA

< 287 (107 + Vel ) 1L A

28 2 (10-FE|. g + 16V, oL ) A

2
Ce [[r¥]Zy lerll. o (£2A)

IA

(thanks to Ineq. (3.4) and Th. 4.1)

L 4,2 10 3
—c*A
185 + Ce” Q

IA

< |Fq (£2A)

/ e2FeBdx

|we|

L a2

—c*A

T +C

(thanks to Prop. 4.2)

IN

By summing the previous inequalities we get:

d

- (52 8202, + €2 |0,V ¥ 2, + €2 |52A7r€\§2) FAAZ <01+ Q) +2P(Q),  (C.3)

where P is an e-independent polynomial.
By summing the inequalities (C.1), (C.2) and (C.3) we finally obtain:

dQ<c0+Q+2PQ)

wich implies the inequality (4.3) and then the main theorems.
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