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Abstract. We numerically study small bidimensional perturbations of electromagnetic
waves in a saturated ferromagnetic media. We develop and compare three schemes and
highlight some properties of the system.
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1 Introduction

The state of a ferromagnet is described by the magnetization vector M whose dynamic equation
was first given by Landau and Lifshitz [6] and later in an equivalent form by Gilbert [4]:

∂M

∂t
= −M ∧H − γM ∧ (M ∧H) in Ω, (1.1)

where γ is a dimensionless damping coefficient and H the effective field is given by:

H = η∆M + ϕ(M) +H,

where η∆M is the exchange term, ϕ(M) is the anisotropy field and H the magnetic field. We
assume in the following that there is no anisotropy field and that the exchange coefficient η is
small enough. This last assumption implies that the influence of the exchange term is negligible
far from the boundary of the domain (see [2]). We moreover only look at the behaviour in
the core of the ferromagnet thus working in the whole space instead of working in a bounded
domain:

∂M

∂t
= −M ∧H − γM ∧ (M ∧H) in R

3, (1.2)

We can note that the magnitude |M | of M is an invariant of this equation. The equation is
completed by the Maxwell equations for the electromagnetic field:





∂(H +M)

∂t
−∇∧E = 0 in R

3,

∂E

∂t
+ ∇∧H = 0 in R

3,

(1.3)

where we assume that there is no electric polarization (D = E) and where the equations are in
dimensionless form and the coefficients have been set equal to one.
The system of equations (1.2)-(1.3) admits a family of constant solutions,

(M,H,E)α = (M0, α
−1M0, 0), α > 0,
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where M0 is an arbitrary vector in R
3 and α > 0 assures that the steady solution is stable. We

may assume without restriction that |M0| = 1.

We are interested in the spatio-temporal evolution of long-waves and transverse perturbations
of such solutions. Leblond and Manna observe that these perturbations behave like travelling
and stationary waves for which diffraction effects occur for long times.
These perturbations are measured in terms of an arbitrarily small positive parameter ε and have
the form:

M(t, x, y) = M0 + εsM̃(t̃, τ, x̃, ỹ),

H(t, x, y) = α−1M0 + εsH̃(t̃, τ, x̃, ỹ),

E(t, x, y) = εsẼ(t̃, τ, x̃, ỹ),

where M̃ , H̃ and Ẽ are O(1) as ε goes to 0, and:

x̃ = εnx, ỹ = εpy, t̃ = εnt, τ = εrt.

Following H. Leblond [8, 7] we now set the characteristic sizes of the problem. We assume here
that we are in the weakly non-linear case, i.e. s > 0. We need this assumption to perform
NLS-type expansions. We look for solutions propagating in the x-direction - still unknown -
which explains the same scaling εn for x̃ and t̃; the case of long or low-frequency waves we
consider corresponds to the case n > 0. We are looking for solutions for which the dispersion
and the non-linear effects occur at the same long time scale. As the parameter n sets the time
to which the dispersion effects occur, s the intensity of the non-linear effects and thus the time
where they occur, we choose them such that these effects occur at the same long time (set by
r). Here,

r = 4, n = 2, s = 2.

We also want to study transversal deformations of these quasi-plane waves. This case corre-
sponds to the scaling ỹ = εpy with p > 2. There is a dominant diffraction effect that occurs
for the smallest value of p for which we can “solve” the equation, which is here p = 3. If we
take 2 < p < 3, the diffraction effect prevails over the dispersion and prevents us to observe the
non-linear effects. On the contrary, if p > 3 the diffraction is negligible.

Although many numerical studies exist on the Landau-Lifshitz-Maxwell equations (Halpern and
Labbé [5], Monk and Vacus [9]) we develop here numerical schemes designed to study specifi-
cally the behaviour of the perturbation on long times and expect to observe the nonlinear and
diffractive phenomena. Since these effects occur for time of order 1/ε2 we forget the long time
variable τ but perform the study on the required times in order to observe the effects:

If (M,H,E) is a solution of equations (1.2)-(1.3) then M̃ , H̃ and Ẽ have to fulfill:

ε2∂etM̃ = −M0 ∧ H̃ + α−1M0 ∧ M̃ − ε2M̃ ∧ H̃ − γ
[
M0 ∧ (M0 ∧ H̃)

−α−1M0 ∧ (M0 ∧ M̃) + ε2M0 ∧ (M̃ ∧ H̃) + ε2M̃ ∧ (M0 ∧ H̃)

−ε2α−1M̃ ∧ (M0 ∧ M̃ ) + ε4M̃ ∧ (M̃ ∧ H̃)
]
,

(1.4)





ε2∂etH̃ − ε2∇̃ex ∧ Ẽ − ε3∇̃ey ∧ Ẽ = −ε2∂etM̃ − ε4∂τM̃,

ε2∂etẼ + ε2∇̃ex ∧ H̃ + ε3∇̃ey ∧ H̃ = 0,

(1.5)
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We are interested in solutions of Eqs. (1.2)-(1.3) that describe a travelling wave propagating
in the direction k̃ with transversal perturbations in the direction l̃ where k̃ and l̃ are fixed unit
vectors. According to [8] and [11] we assume:

k̃ ∧M0 6= 0, k̃ · l̃ = 0, l̃ ·M0 = 0.

By assuming that x̃ is the coordinate in the k̃-direction and ỹ in the l̃-direction we may perform
the substitutions:

∇̃ex = k̃∂ex and ∇̃ey = l̃∂ey.

Henceforth we omit the tilde, so the equations to be considered are:

∂tM =
1

ε2
(−M0 ∧H + α−1M0 ∧M) −M ∧H − γ

ε2
[M0 ∧ (M0 ∧H)

−α−1M0 ∧ (M0 ∧M)
]
− γ [M0 ∧ (M ∧H) +M ∧ (M0 ∧H)

−α−1M ∧ (M0 ∧M) + ε2M ∧ (M ∧H)
]
,

(1.6)

∂tH − k ∧ ∂xE − εl ∧ ∂yE = −∂tM, (1.7)

∂tE + k ∧ ∂xH + εl ∧ ∂yH = 0. (1.8)

This system fulfills the following energy estimates (see Section 2):

Theorem 1.1. Let (H,E,M) a regular solution of (1.6)-(1.7)-(1.8) with the initial data (Ẽ0, H̃0, M̃0)
and T > 0 their maximum existence time. The solution then satisfies for all 0 ≤ t < T ,

1

2

(
‖H‖2

L2(R2) + ‖E‖2
L2(R2) + α−1 ‖M‖2

L2(R2)

)
(t)

+γ

∫ t

0

∥∥∥∥
1

ε
M0 ∧H + εM ∧H − 1

εα
M0 ∧M

∥∥∥∥
2

L2(R2)

dt

=
1

2

(∥∥∥H̃0

∥∥∥
2

L2(R2)
+
∥∥∥Ẽ0

∥∥∥
2

L2(R2)
+ α−1

∥∥∥M̃0

∥∥∥
2

L2(R2)

)
.

We then develop in Section 3 some numerical schemes to solve on a long time scale the equations
fulfilled by the perturbation. We obtain a semi-implicit scheme that fulfills Eq. (1.9):

1

2

(
‖Hn+1‖2 + ‖En+1‖2 + α−1‖Mn+1‖2

)

+dtγ

∥∥∥∥
1

ε
M0 ∧Hn+1/2 + εMn ∧Hn+1/2 − 1

εα
M0 ∧Mn+1/2

∥∥∥∥
2

=
1

2

(
‖Hn‖2 + ‖En‖2 + α−1‖Mn‖2

)
,

(1.9)

where V n+1/2 =
V n+1 + V n

2
and ‖ · ‖ is the L

2-norm on the discretized spatial domain.

Unfortunately this scheme does not preserve the norm of the full magnetization M0 + ε2M
neither that the divergence div (H +M) does not vary in the course of time. This scheme also
requires at each step the inversion of a 18NaNb × 18NaNb matrix (where Na and Nb are the
number of points of discretization).
Using a splitting in time and the Yee scheme to solve the Maxwell equations we obtain another
scheme that preserves the divergence of H + M but not the norm of the full magnetization
neither the energy estimate. On the opposite of the previous scheme it only requires at each
step the inversion of one 6NaNb × 6NaNb matrix.
Still using splitting methods (Strang splitting), we then develop a new scheme that preserves
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the norm of the full magnetization, the divergence of H + M in the course of time and that
fulfills the following energy estimate:

1

2

(
‖Hn+1‖2 + ‖En+1‖2 + α−1‖Mn+1‖2

)

+dtγ

∥∥∥∥
1

ε
M0 ∧Hn+1/2 + εMn+1/2 ∧Hn+1/2 − 1

εα
M0 ∧Mn+1/2

∥∥∥∥
2

=
1

2

(
‖Hn‖2 + ‖En‖2 + α−1‖Mn‖2

)
,

(1.10)

where V n+1/2 =
V n+3/4 + V n+1/4

2
. This one requires at each time step the inversion of a

12NaNb × 12NaNb matrix and many inversions of 6NaNb × 6NaNb matrices.
Finally we compare in Section 4 the three schemes we obtained. Our main goal is to have an
effective scheme that gives at least good qualitative results.

This work follows previous studies on the limit model fulfilled by these perturbations: in [3],
T. Colin, C. Galusinski and H. Kaper study the case of small mono-dimensional perturbations,
i.e. they consider the evolution in (long) time of the shape of the perturbation according to
the direction of propagation and prove that it behaves according to a semilinear heat equation.
In a recent work [11] we lead the theoretical study of the behaviour of the perturbation in a
bi-dimensional case (the direction of propagation and a slow transversal direction): we find

that the perturbation (α−1/2M̃, H̃, Ẽ)(t) remains close for t ∈ [0, T/ε2] to U0, solution of the
following Khokhlov-Zabolotskaya type equations:





U0 =

k∑

j=1

uj ,

(∂t + vj∂x) uj = 0,

∂x

(
∂τuj −Dj∂

2
xuj +Bj(uj , ∂xuj) + Fj(uj , uj , uj)

)
= Cj∂

2
yuj,

(1.11)

where U0 = (α−1/2M0,H0, E0) fulfills the polarization condition:
(
α−1M0 −H0

)
∧M0 = 0.

We expect that this numerical study highlights some properties of Eq. (1.11) particularly the
different velocities of the waves.

2 Energy estimate

As there is existence of local and regular solutions to the equations (1.6)-(1.7)-(1.8) (for example,
cf [1]) we perform some energy estimates on the solution:

1

2

d

dt
‖M‖2

L2 +
1

ε2

[ ∫

R2

((M0 ∧H) ·M − γ(M0 ∧H) · (M0 ∧M)

−α−1γ|M0 ∧M |2
)
dxdy

]
− γ

∫

R2

(M0 ∧M) · (M ∧H) dxdy = 0.

1

2

d

dt
‖H‖2

L2 −
∫

R2

(k ∧ ∂xE + εl ∧ ∂yE) ·H dxdy = −
∫

R2

∂tM ·H dxdy.

1

2

d

dt
‖E‖2

L2 +

∫

R2

(k ∧ ∂xH + εl ∧ ∂yH) ·E dxdy

=
1

2

d

dt
‖E‖2

L2 +

∫

R2

(k ∧ ∂xE + εl ∧ ∂yE) ·H dxdy

= 0.
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∫

R2

∂tM ·H =

1

ε2

∫

R2

[
α−1(M0 ∧M) ·H + γ|M0 ∧H|2 − γα−1(M0 ∧H) · (M0 ∧M)

]
dxdy

+γ

∫

R2

[
2(M0 ∧H) · (M ∧H) − α−1(M0 ∧M) · (M ∧H) + ε2|M ∧H|2

]
dxdy.

Finally, we obtain:

1

2

d

dt

(
‖H‖2

L2 + ‖E‖2
L2 + α−1 ‖M‖2

L2

)
+ γ

∥∥∥∥
1

ε
M0 ∧H + εM ∧H − 1

εα
M0 ∧M

∥∥∥∥
2

L2

= 0. (2.1)

3 Numerical Scheme

In this section we investigate the numerical approximation of the system (1.6)-(1.8) which is
made of the Maxwell equations coupled to the Landau-Lifshitz equation.

3.1 Space Discretisation

The solutions of the problem propagate at a finite speed (cf [3] and [11]). The velocities are:

v±1 = ±
(

1

1 + α

)1/2

, v±2 = ±
(

1 + (1 − (k ·M0)
2)α

1 + α

)1/2

.

We then consider a periodic domain Ω = [0, a] × [0, b] instead of R
2 with the length a and the

width b so that the support of M, H, E does not reach the boundaries of Ω for the times we
consider (t ≤ 1/ε2).

We use a classical Na × Nb Yee mesh where the unknown for the magnetic field and the mag-
netization are taken at the corners and in the middle of the cell. For the electric field we use a
translated grid where the unknowns are taken at the middle of the edges of the cell (Figure 1).

H i,j H i+1,jE

E i+1/2,j+1

i+1/2,j

i,j+1/2E

H i,j+1

H i+1/2,j+1/2

H i+1,j+1

E i+1,j+1/2

Figure 1: Space discretisation (Yee scheme)

We then express the derivatives in space of H (resp. E) on the mesh of E (resp. H). We denote

by DE
x and DE

y (resp. DH
x and DH

y ) the numerical operator of derivation
∂

∂x
and

∂

∂y
on the
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mesh of E (resp. H) expressed on the mesh of H (resp. E):

(DE
x E)i,j =

Ei+1/2,j −Ei−1/2,j

δx
(DE

x E)i+1/2,j+1/2 =
Ei+1,j+1/2 −Ei,j+1/2

δx

(DE
y E)i,j =

Ei,j+1/2 −Ei,j−1/2

δy
(DE

y E)i+1/2,j+1/2 =
Ei+1/2,j+1 −Ei+1/2,j

δy

(DH
x H)i+1/2,j =

Hi+1,j −Hi,j

δx
(DH

x H)i,j+1/2 =
Hi+1/2,j+1/2 −Hi−1/2,j+1/2

δx

(DH
y H)i+1/2,j =

Hi+1/2,j+1/2 −Hi+1/2,j−1/2

δy
(DH

y H)i,j+1/2 =
Hi,j+1 −Hi,j

δy

where δx =
a

Na
and δy =

b

Nb
.

3.2 Time discretisation

As the equations (1.6)-(1.7)-(1.8) fulfill an energy estimate, we are looking for a scheme satisfying
such properties:

3.2.1 Semi-implicit scheme

By considering the general form of the Landau-Lifshitz-Maxwell equations used in [3] and [11],
we let:

Un = (α−1/2Mn,Hn, En)t,

and we use the following discretisation:

Un+1 − Un

dt
+A1

x

(
Un+1 + Un

2

)
+ εA2

y

(
Un+1 + Un

2

)
+

1

ε2
(L0 + L1)

(
Un+1 + Un

2

)

+



B1(U

n) B2(U
n) 0

B3(U
n) B4(U

n) 0
0 0 0



(
Un+1 + Un

2

)
= 0,

where




A1
x =




0 0 0
0 0 −(k∧)(DH

x )
0 (k∧)(DE

x ) 0


 , A2

y =




0 0 0
0 0 −(l∧)(DH

y )

0 (l∧)(DE
y ) 0


 ,

L0(·) =



−α−1M0 ∧ · α−1/2M0 ∧ · 0

α−1/2M0 ∧ · −M0 ∧ · 0
0 0 0


 ,

L1(·) = γ



−α−1M0 ∧ (M0 ∧ ·) α−1/2M0 ∧ (M0 ∧ ·) 0

α−1/2M0 ∧ (M0 ∧ ·) −M0 ∧ (M0 ∧ ·) 0
0 0 0


 ,

B1(u)v = v1 ∧ u2 + γv1 ∧ (M0 ∧ u2) − γα−1/2v1 ∧ (M0 ∧ u1) + ε2γα1/2v1 ∧ (u1 ∧ u2),
B2(u)v = γM0 ∧ (u1 ∧ v2),
B3(u)v = γu1 ∧ (M0 ∧ v1),
B4(u)v = −α1/2u1 ∧ v2 − γα1/2M0 ∧ (u1 ∧ v2) − γα1/2u1 ∧ (M0 ∧ v2) − ε2αγu1 ∧ (u1 ∧ v2),
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with u = (u1, u2, u3)
t and v = (v1, v2, v3)

t.
It is a first order scheme in time and second order one in space. Following the proof of the
energy estimate (2.1), we have:

1

2

(
‖Hn+1‖2 + ‖En+1‖2 + α−1‖Mn+1‖2

)

+dtγ

∥∥∥∥
1

ε
M0 ∧Hn+1/2 + εMn ∧Hn+1/2 − 1

εα
M0 ∧Mn+1/2

∥∥∥∥
2

=
1

2

(
‖Hn‖2 + ‖En‖2 + α−1‖Mn‖2

)
,

(3.1)

where Hn+1/2 =
Hn+1 +Hn

2
and Mn+1/2 =

Mn+1 +Mn

2
.

Although this scheme is L
2-stable, it does not preserve the norm |M0+ε2M | of the magnetization

and div (H +M). It also needs at each step the inversion of a matrix whose size is 18NaNb ×
18NaNb (where Na (resp. Nb) is the number of points in the x (resp. y) direction). In the
following this scheme will be referred to as “SIS” (Semi-Implicit Scheme).

3.2.2 Splitting

Another solution consists in the use of a splitting scheme. We then only have to solve separately
the Maxwell equations and the Landau-Lifshitz equation.
At each step we solve at first the Maxwell equations using the Yee scheme [12]: we calculate the
electric field at times (n+ 1/2)δt and the magnetic field and the magnetization vector at times
nδt: 




Mn+1/2 = Mn,

En = En−1/2 − δt
(
k ∧DH

x H
n + εl ∧DH

y H
n
)
,

Hn+1/2 = Hn + δt
(
k ∧DE

x E
n+1/2 + εl ∧DE

y E
n+1/2

)
.

Although the Yee scheme is ill-adapted to obtain an energy estimate in this splitting method it
allows us to explicitly obtain the electromagnetic field, thus reducing the numbers of required
computations.
We then solve the Landau-Lifshitz equation using a semi-implicit scheme:




En+1/2 = En,

C = Mn+1/2 +Hn+1/2 = Mn +Hn+1/2,

Mn+1 = Mn+1/2 + δt

(
1

ε2
L

(
−C + (1 + α−1)

Mn+1 +Mn+1/2

2

)
+ L′

(
Mn+1 +Mn+1/2

2

)

+B

(
Mn+1 +Mn+ 1/2

2
,Mn+1/2

))
,

Hn+1 = C −Mn+1,

where 



L(·) = (M0 ∧ ·) + γM0 ∧ (M0 ∧ ·),
L′(·) = (C ∧ ·) + γM0 ∧ (C ∧ ·) + γ((M0 ∧ C) ∧ ·),
B(U, V ) = γU ∧

(
((1 + α−1)M0 + ε2C) ∧ V

)
.

Unfortunately this scheme does not preserve any energy estimate such that the one of Th. (1.1)
neither the norm of the full magnetization M0 + ε2M . This is due to the way we compute the
non-linearity of the Landau-Lifshitz equation (as well as the use of the Yee scheme to compute
the Maxwell equations). However we immediatly obtain that div (Hn +Mn) is constant on the
course of time and this scheme only requires the inversion at each step of a 6NaNb × 6NaNb

matrix. This scheme will be referred to as “SpS” (Splitting Scheme).
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3.2.3 Some numerical improvements: Strang splitting

Since the two previous schemes have major drawbacks we develop a new one using the Strang
splitting in time: we first solve the Maxwell equations on [t, t+ dt/2],

Semi-implicit scheme for the Maxwell equations.





Mn+1/4 = Mn,

Hn+1/4 −Hn

δt/2
−
(
k ∧DE

x

En+1/4 +En

2
+ εl ∧DE

y

En+1/4 +En

2

)
= 0,

En+1/4 −En

δt/2
+

(
k ∧DH

x

Hn+1/4 +Hn

2
+ εl ∧DH

y

Hn+1/4 +Hn

2

)
= 0.

then we solve the Landau-Lifshitz equation on [t, t+ dt],
Scheme for the Landau-Lifshitz equation.





En+3/4 = En+1/4,

C = Hn+1/4 +Mn+1/4 = Hn+1/4 +Mn,

Mn+3/4 −Mn+1/4

δt
=

1

ε2
L

(
−C + (1 + α−1)

Mn+3/4 +Mn+1/4

2

)
+ L′

(
Mn+3/4 +Mn+1/4

2

)

+B

(
Mn+3/4 +Mn+1/4

2
,
Mn+3/4 +Mn+1/4

2

)
,

Hn+3/4 = C −Mn+3/4.

The non-linearity prevents us from obtaining M n+3/4 implicitly. We get around this difficulty
by using a fixed point method:





U0 = Mn+1/4,

Uk+1 = Mn+1/4 + δt

(
1

ε2
L

(
−C + (1 + α−1)

Uk+1 +Mn+1/4

2

)
+ L′

(
Uk+1 +Mn+1/4

2

)

+B

(
Uk+1 +Mn+1/4

2
,
Uk +Mn+1/4

2

))
,

Mn+3/4 = lim
k→+∞

Uk.

We then reapply the scheme for the Maxwell equations on [t+ dt/2, t+ dt]:





Mn+1 = Mn+3/4,

Hn+1 −Hn+3/4

δt/2
−
(
k ∧DE

x

En+1 +En+3/4

2
+ εl ∧DE

y

En+1 +En+3/4

2

)
= 0,

En+1 −En+3/4

δt/2
+

(
k ∧DH

x

Hn+1 +Hn+3/4

2
+ εl ∧DH

y

Hn+1 +Hn+3/4

2

)
= 0.

For this scheme we obtain immediatly that div (Hn +Mn) does not vary in the course of time
and that

|M0 + ε2Mn+1|2 = |M0 + ε2Mn|2, ∀n ∈ N

8



We also obtain energy estimates for this scheme:
First Step: 




Mn+1/4 = Mn,
1

2

(
‖En+1/4‖2 + ‖Hn+1/4‖2

)
=

1

2

(
‖En‖2 + ‖Hn‖2

)
.

Second step:




En+3/4 = En+1/4,
1

2

(
‖Hn+3/4‖2 + α−1‖Mn+3/4‖2

)

+dt
Mn+3/4 −Mn+1/4

dt
·
(
C − (1 + α−1)

Mn+3/4 +Mn+1/4

2

)

=
1

2

(
‖Hn+1/4‖2 + α−1‖Mn+ 1/4‖2

)
,

where C = Hn+1/4 +Mn+1/4 = Hn+3/4 +Mn+3/4 and

Mn+3/4 −Mn+1/4

dt
·
(
C − (1 + α−1)

Mn+3/4 +Mn+1/4

2

)

= γ

∥∥∥∥εM
n+1/2 ∧Hn+1/2 +

1

ε
M0 ∧Hn+1/2 − α−1M0 ∧Mn+1/2

∥∥∥∥
2

,

where

Mn+1/2 =
Mn+3/4 +Mn+1/4

2
, Hn+1/2 =

Mn+3/4 +Mn+1/4

2
.

Third Step:




Mn+1 = Mn+3/4,
1

2

(
‖En+1‖2 + ‖Hn+1‖2

)
=

1

2

(
‖En+3/4‖2 + ‖Hn+3/4‖2

)
.

Finally,
1

2

(
‖En+1‖2 + ‖Hn+1‖2 + α−1‖Mn+1‖2

)

+γdt

∥∥∥∥εM
n+1/2 ∧Hn+1/2 +

1

ε
M0 ∧Hn+1/2 − α−1M0 ∧Mn+1/2

∥∥∥∥
2

=
1

2

(
‖En‖2 + ‖Hn‖2 + α−1‖Mn‖2

)
.

(3.2)

This scheme fulfills then the same type of energy estimates we prove on the continuous equation.
It requires at each step the inversion of two matrix whose size are 12NaNb × 12NaNb (Maxwell
equations) and the inversion at each step of the fixed point method of a 6NaNb×6NaNb matrix.
In the following this scheme will be referred to as “ECSpS” (Energy Conservating Splitting
Scheme)

4 Numerical simulations

As explained in the introduction we are interested in the behaviour of small perturbations of
the steady-state solutions of the Maxwell-Landau-Lifshitz equations. These solutions are given
by:

M0 =




cosϕ0

sinϕ0

0


 , H0 =

1

α




cosϕ0

sinϕ0

0


 , E0 =




0
0
0


 ,

9



for some ϕ0 ∈]0, π[. At t = 0, we perturb this basic solution near the origin. The perturbation
depends on two space parameters who varies along the axes defined by the vector k̃ and l̃:

k̃ =




1
0
0


 , l̃ =




0
0
1


 .

The perturbation is uniform in the third direction defined by k̃ ∧ l̃ and is given by

M(0, x, y) =
1

ε2






cos(ϕ0 + ε2ϕ) cos(ε2ψ)
sin(ϕ0 + ε2ϕ) cos(ε2ψ)

sin(ε2ψ)


−




cosϕ0

sinϕ0

0


 ,


 ,

where ϕ et ψ are sharply peaked near the center of the domain [0, a] × [0, b] in x and y, where
x and y are the coordinates along the axes defined respectively by k̃ and l̃:

ϕ = ψ = e−4(X2+Y 2)

where X = x− a/2 and Y = y − b/2.
The initial perturbation for H and E is also taken to be O(1) with the additional condition that
the initial data fulfills the polarization condition given in [11]:

(
α−1M(0, x, y) −H(0, x, y)

)
∧M0 = 0.

All computations reported in this section refer to the case ε2 = 0.01, γ = 1 and α = 2.

4.1 Comparison between the schemes

In this section we take:

ϕ =
π

6
, H(t = 0, x, y) = α−1M(t = 0, x, y) + fM0, E0

0 = 0, f = 2.

Our main objective consists in highlighting the differences and the similarities between these
schemes. In a first time we only compare them in the 1D case to obtain a first validation, we
then look at them in the 2D case.

4.1.1 Comparison between the 1D schemes

In a first attempt to compare these methods, we consider the 1D-case, i.e. the case where
the initial data is uniform along the y-axis (directed by l̃). As the three schemes SIS, ECSpS
and SpS use the same discretizations for the derivatives in space and as they preserve the
monodimensional feature of the solution (we show this conservation only for one scheme (ECSpS)
Fig. 2) we are lead back to the case studied by Colin, Galusinski and Kaper in [3].

We consider the evolution in time of the energy given by the three schemes (Fig 3).

As the schemes SIS and ECSpS theoretically fulfill energy estimates (respectively (3.1) and
(3.2)), we look numerically at their accuracy and plot:

1

2

(
‖Hn‖2 + ‖En‖2 + ‖Mn‖2

)
+ γdt

n∑

k=1

‖Dk‖2,

(Fig. 4) where,

10



t = 0: 1D initial data for M3 t = 10: M3 still monodimensional

Figure 2: Conservation of the monodimensional feature for SpS.
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Figure 3: Evolution of the energy in the course of time until
T

ε2
.
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• for the SIS scheme:

Dk =
1

ε
M0 ∧

Hk−1 +Hk

2
+ εMk−1 ∧ Hk−1 +Hk

2
− 1

εα
M0 ∧

Mk−1 +Mk

2
,

• for the SpS and the ECSpS scheme:

Dk =
1

ε
M0 ∧

Hk−1 +Hk

2
+ ε

Mk−1 +Mk

2
∧ Hk−1 +Hk

2
− 1

εα
M0 ∧

Mk−1 +Mk

2
,

and where Ek =
Ek−1/2 +Ek+1/2

2
for the SpS scheme.
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+

+
+

+
+

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Crank
×

Split-PF
Split

+

Figure 4: Numerical evolution of the theoretical conservation law in the course of time until
T

ε2
.

Even if the scheme SpS does not fulfill the same energy estimates as ECSpS and SIS we ob-
serve that the energy for SpS remains close from the one for SIS and ECSpS. More precisely
we consider the evolution in time of the relative difference on the energy, particularly when the
discretization steps are halved (Fig. 5).

We observe numerical convergence for the three schemes as the discretisations steps go to zero.
We note that the norm of the full magnetization M0 + εM is preserved by ECSpS. We then plot
the maximum and the minimum of |M0 + ε2M |2 in the course of time (Fig. 6).
The last point we have to verify is the preservation of div (H +M). We then plot ‖div (H +
M) − div (H +M)t=0‖L∞ (Figure 7):
As we are considering waves, we now show a component of the magnetization at various times
(Figure 8). We observe the propagation of the data in the course of time at the same velocity
for the three schemes. The high oscillations are purely numerical effects that disappear when
we refine the discretization in SIS and ECSpS.

4.1.2 Comparison between the 2D schemes

At first, let us consider a small transversal perturbation of a 1D solution:

ϕ = ψ = e−4X2

(1 + ε2e−4Y 2

)M0
0 .
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Figure 5: Relative difference between the energies of the 1D schemes until
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Figure 6: Evolution of the norm of M0 + ε2M in the course of time until T
ε2 .
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Figure 7: Evolution of div (H +M) in the course of time until T
ε2 .
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ε2
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Figure 8: M3 at various times for SIS, ECSpS and SpS.
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To observe the effect of this small perturbation, we consider the difference between the solution
obtained with the previous initial data and the unperturbed 1D initial data (Figure 9). We
observe a 2D behaviour of the perturbation.

Figure 9: Perturbation of the 1D case for M1 at
T

ε
(ECSpS scheme).

We now compare the three schemes in the 2D case. As the schemes SIS and ECSpS need a lot
more calculations than SpS, we reduce the time interval on which we compare them. This also
allows us to reduce the space domain of study since the informations propagate at a finite speed.
As in the 1D case, we verify that the energy evolves according to the estimates we obtained for
SIS and ECSpS (Figure 10).
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Figure 10: Evolution of the energy in the course of time until
T

ε
.
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Since the schemes SIS and ECSpS respectively fulfill the conservation laws (3.1) and (3.2), we
expect to observe them numerically (Figure 11) and we plot as for the 1D case :

1

2

(
‖Hn‖2 + ‖En‖2 + ‖Mn‖2

)
+ γdt

n∑

k=1

‖Dk‖2,
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Figure 11: Numerical evolution of the theoretical conservation law in the course of time until
T

ε
.

We observe now the evolution in time of the relative difference between the energies when the
discretization steps are halved (Figure 12).
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Figure 12: Relative difference between the energies of the 2D schemes until
T

ε
.

Remark 4.1. On Figure 10 we remark that the energy for SpS grows initially then decreases.
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This problem seems inherent to SpS and purely numerical and we can see on Figure 12 that this
error decreases with the time step.

As the figure 12 suggests it, the three schemes give energetically consistant results and they
converge toward the same solution as the discretization steps go to zero. We now look at the
evolution of the maximum and the minimum of the norm of the full magnetization M0 + ε2M
(Figure 13).
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Figure 13: Evolution of the norm of M0 + ε2M in the course of time until T
ε .

And we also look at the preservation of div (H +M). We then plot ‖div (H +M) − div (H +
M)t=0‖L∞ (Figure 14):
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Figure 14: Evolution of div (H +M) in the course of time until T
ε .

We now compare visually the obtained solutions at
T

ε
(Figure 15).

As in the mono-dimensional case we observe that the peaks appear at the same points, the
informations propagate then at the same speed.
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Figure 15: M3 at
T

ε
.
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The three schemes give comparable qualitative results. Moreover, even if we have no theoretical
stability results on the scheme SpS neither the preservation of the norm for the full magnetization
with SpS and SIS, these schemes are numerically stable and converge toward the solution given
by ECSpS as the discretisation steps tend to zero and give the good qualitative behaviour of
the solution.
In the following we will use ECSpS since he fulfills more properties.

4.2 Velocities and influence of ϕ

In [11] we prove that the solution splits in five standing and traveling waves. The eigenvectors
(M i

0,H
i
0, E

i
0) associated to the non-null velocities vi, i = ±1,±2 are:

M±1
0 = ±α k ∧M0, M±2

0 = ∓ α cosϕ M0 ∧ (k ∧M0),

H±1
0 = ± k ∧M0, H±2

0 = ∓ cosϕ M0 ∧ (k ∧M0),

E±1
0 =

√
1 + α k ∧ (k ∧M0), E±2

0 =
1

cosϕ

√
1 + α

√
1 + α sin2 ϕ k ∧M0.

To highlight the different velocities, we use ECSpS with ϕ =
π

6
and ϕ =

π

3
(Figure 16).

ϕ =
π

6
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π
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(
1

1 + α

)1/2

=
1√
3

v1

(
1

1 + α

)1/2

=
1√
3

v2 =

(
1 + α sin2 ϕ

1 + α

)1/2

=
1√
2

v2 =

(
1 + α sin2 ϕ

1 + α

)1/2

=

√
5

6

Figure 16: H3 at
T

2ε2
.

We observe the expected difference between the velocities: as the initial data is placed at the

center of the domain we find a ratio close to

√
3

2
' 1.225 for ϕ =

π

6
and a ratio close to

√
5

2
' 1.581. As on the previous figures we also observe the diffraction of the perturbation in
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the transverse direction, and that according to the Khokhlov-Zabolotskaya equation which rules
the main profile.
We verify in this case that the numerical scheme agrees with the equations fulfilled by the profile
and we observe the expected velocities for the propagation.

We moreover observe a lot of small ripples. This effect is purely numerical and tends to disappear
when we double the number of mesh used (Figure 17).

ϕ =
π

6
, Na = 400, Nb = 200 ϕ =

π

6
, Na = 800, Nb = 400

Figure 17: H3 at
T

ε2
.
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actuels, InterEditions/Editions du CNRS,1991.

[2] G. Carbou, P. Fabrie, O. Guès, On the ferromagnetism equations in the non static case,
Commun. Pure Appl. Anal. 3, No.3, 367–393 (2004).

[3] T. Colin, C. Galusinski, H. Kaper, Waves in ferromagnetic media, Commun. Partial Differ.
Equations 27, No.7-8, 1625-1658 (2002).

[4] T.L. Gilbert, A Lagrangian formulation of gyromagnetic equation of the magnetization
field, Phys. Rev. 100 (1955) 1243.

[5] L. Halpern and S. Labbé, .
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