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Abstract:  

Shear aggregation is an important phenomenon occurring during particle precipitation in a 

stirred chemical reactor. It concerns micro-particles that are often non-spherical or aggregated. 

Modelling of precipitation involves the selection of internal parameters describing the particle. 

Among them, morphological or geometrical descriptors are required. In this paper, the inertia 

or gyration tensor of primary particles and of their cluster is considered and evaluated for the 

modelling of aggregation. An equivalent ellipsoid is defined from the inertia tensor. In this 

framework, the collision event becomes the collision between two equivalent ellipsoids and 

leads to a larger ellipsoid. The inertia tensor and the semi-axis lengths of the equivalent 

ellipsoid are explicitly calculated in the case of shear aggregation in a three-dimensional space. 

Two ways for performing these calculations are presented. The statistics of the equivalent 

ellipsoids associated with the set of collision events undergone by two given ellipsoids have 

been computed. Statistics includes the probability density for geometrical parameters and the 

average value. Collision rate constant, i.e. aggregation kernel, is also calculated. 

Corresponding approximate expressions are presented and checked. Finally, equivalence 
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between the sphere cluster and the equivalent ellipsoid with respect to the aggregation act is 

checked and ascertained. 

 

Keywords: aggregation, inertia tensor, probability density, equivalent ellipsoid, aggregation 

kernel 

 

Nomenclature (main notations) 

 

a  translation vector for particle 

a,b,c semi-axes of ellipsoid 

Ak random numbers (k=1-4) 

EA, A  ellipsoid matrices 

b    1 2b b1 2c c  

c  position vector  of ellipsoid center 

C center of mass 

i i, jC ,C  fitting parameters 

ED  inertia tensor for ellipsoid 

ID  diagonalized inertia tensor 

ID  diagonalized inertia tensor after averaging 

qD  tensor (q=y, z; Eq.23) 

f  diagonal matrix (Eq.29) 

F  tensor (Eq.32) 

, ,i j k  unit vectors 

I  inertia tensor of the particle 



k,l aspect ratii of ellipsoid 

k12 contribution to K12  

K12 kernel of aggregation 

m particle mass 

MC Monte Carlo 

N number of primary particle in the cluster 

Nc number of effective collisions (MC) 

Nr number of events (MC) 

pdf probability density function  

P  point of tangency 

 P k,l ,  Q k,l : intermediate variables (Eqs.28d-f) 

p position vector on ellipsoid surface 

R sphere radius 

Rg gyration radius 

r  position vector  

R  rotation matrix 

Sp projected surface area 

u normal vector 

U  unit tensor 

x,y,z: space coordinates 

X size parameter (Eq.28a) 

 

Greek letters 

  shear rate 

  i 1 2/= m m m  



 eigenvalue 

 mass density 

 ,y z      rotation angles for vectors 

 , ,y z x     Euler angles for solids 

 relative standard deviation 

 1 2,    collision area 

 

Superscript 

T transpose 

 

Subscript 

approx  approximation (Eqs. 28a-f) 

CC sphere cluster – sphere cluster collision 

EE ellipsoid – ellipsoid collision 

i for scalar, vector, tensor (particle i=1,2) or for index of series 

12 for scalar, vector, tensor (particle set, 1 and 2) 

proj corresponds to the method developed in section 3 

pv corresponds to the method developed in section 2 

S relative to Smoluchowski  

 

symbol 

< > average 

 

 

 



 

1. Introduction 

Aggregation of particles in a suspension is due to the binary collisions between two 

particles. Resulting aggregate or cluster is a branched and porous object consisting of 

primary particles, usually considered as identical. The morphology of the cluster is usually 

described in terms of the fractal theory: it is defined by the radius of its primary particle, 

the number of primary particles and the fractal dimension [1]. The last quantity is a real 

number within the 1-3 range. Three basic collision mechanisms have been identified: 

Brownian for nanoparticles and colloids, shear and differential settling for micro-particles. 

The fractal dimension value depends on the mechanism details [2]. Even if the fractal 

hypothesis was successful for describing the dynamics of aggregation, the fractal 

dimension is not the only relevant morphological parameter. Indeed, the shape of the 

colliding bodies or more precisely the shape of the convex hull is also a major factor for 

the encounter efficiency [3].  

Torres et al. [4] have, for instance, performed simulations of 3-D shear aggregation. They 

found a fractal dimension value equal to 1.83 and they observed a non-spherical shape of 

the aggregate. Moreover they have calculated the inertia tensor (normalized by the square 

of the gyration radius) for clusters with a number N of primary particles smaller than 4100. 

They have observed that the semi-axes of the equivalent ellipsoid were in the ratio 

1/1.6/3.1 independently of the origin of the particle collision (Brownian motion, shear 

flow, elongation flow). Applying the coupling between Stokesian Dynamics and Discrete 

Element Method to sphere-like particle aggregation under shear flow, Frungieri and Vanni 

[5] proved the importance of the aspect ratio of the aggregate. The aspect ratio has been 

calculated from the inertia ellipsoid of the sphere cluster. This fact has been 

experimentally observed for particle cluster larger than one micrometre [6]. Independently, 



Gruy laid the foundations of a new modelling method for the aggregation based on the 

equivalent ellipsoid of colliding aggregates [7]. This has been illustrated in the simplest 

case: the 2D-aggregation of equivalent ellipses of 2D-clusters under shear flow. 

According to all of the aforementioned researchers the crucial point is the collision of two 

ellipsoids taking into account the stochastic behaviour of the aggregation in suspensions 

containing a very large number of particles. Herein, ellipsoid in this sense means convex 

ellipsoidal particle or equivalent ellipsoid for a cluster of spheres. This paper is dedicated 

to a fine description of the collision of two ellipsoids and the resulting equivalent ellipsoid. 

It appears that the application of the new approach [7] to 3D-shear aggregation leads to 

tricky calculations requiring some careful validation. Replacing sphere by ellipsoid for 

representing any object drastically increases the difficulty level when trying to model the 

physical phenomena of interest. This has been already underlined by, for instance, [8]. 

Therefore two methods for performing collision of ellipsoids under shear flow have been 

proposed and compared: quasi-analytical calculations and Monte-Carlo simulations. Our 

goal is to determine the collision dynamics and the parameters of the resulting equivalent 

ellipsoid. As a result, some empirical expressions aiming at accelerating the simulations of 

particle population dynamics [9] will be proposed.   

The Section 2 (§2) presents the theoretical background on the collision of two ellipsoids 

under shear flow. This will be hereinafter referred to as quasi-analytical method. The 

principles of Monte-Carlo approach are explained in the section 3 (§3). This will be 

hereinafter referred to as Monte Carlo method. The section 4 is dedicated to the results 

concerning the collision of ellipsoids and the statistics relative to the resulting body. The 

kinetic and morphological aspects for the collision between clusters of primary particles 

and collision of their equivalent ellipsoids are compared there. The conclusion is 

presented in the Section 5. 



 

2. Theory on the collision of two ellipsoids under shear flow  

In this section we establish the fundamentals about the collision between two ellipsoids 

under shear flow and the characteristics of the resulting object. This will lead to analytical 

expressions containing integrals that must be later numerically evaluated.  

2.1. Notations 

In the following text, lower case is used to denote scalar quantities, while bold lower case 

characters correspond to vectors and bold uppercase characters to matrices or second-

order tensors. 

Let us consider (Figure 1) the orthonormal system with z aligned in the flow direction 

(unit vector k), y perpendicular to the flow and parallel to the velocity gradient (unit 

vector j), x to complete the orthonormal system (unit vector i). The rotation of a unit 

vector will be defined by two angles  ',y z   : y  denoting the rotation angle around 

y, ' ' 'x x y y z z   , 'z  denoting the rotation angle around z’, 

' '' ' '' '' 'x x y y z z   . The corresponding rotation matrices are:   

   z y Ψ z' yR R R  or    y z Ψ y zR R R  with  ,y z    

In the same vein, the rotation of an ellipsoid can be defined from the Tait-Bryan angle 

triplet [10]  , ,y z x     : y  denoting the rotation angle around y, 

' ' 'x x y y z z   , 'z  denoting the rotation angle around z’, ' '' ' '' '' 'x x y y z z   , 

''x  being the rotation angle around x”, ''' '' '' ''' '' '''x x y y z z   . 

Then, 

     x z y  Θ x'' z' yR R R R  or      y z x  Θ y z xR R R R . 

It may be underlined that other angle triplets can be defined and used instead of Tait-

Bryan angles [11]. 



An ellipsoid is characterized by the three semi-axes ( a b c  ); its position is defined by 

the coordinates of the center, the generalized Tait-Bryan angles  to rotate it from the 

reference position , ,a x b y c z to its current position ''', ''', '''a x b y c z . 

The ellipsoid itself is described by the position vector c of its center C and a matrix 

containing the semi-axes: 

2

2

2

0 0

0 0

0 0

a

b

c







 
 

  
 
 

EA          (1) 

A point on the ellipsoid surface satisfies the vector equation: 

    1
T

r - c A r - c          (2) 

With 

 T

Θ E ΘA R A R           (3) 

 

2.2 Contact between two ellipsoids 

Let us consider two ellipsoids E1 and E2. The center C1 of E1 matches with the origin of 

the orthonormal system. E1 is rotated by the angle 1 . The position of the E2 center is 

called 2C . E2 is rotated by the angle 2 . Let P be the point of tangency and u the normal 

vector to the tangent plane: u is characterized by . Then, 

 Ψu R i            (4) 

P complies with the two conditions for each ellipsoid (i=1, 2): 

 

i) P is located on Ei: 

    1
T

i i ip - c A p - c          (5) 

With 



T

i Θi E,i Θ,iA = R A R           (6) 

ii) The surface of the ellipsoid is normal to u in P: 

    i  
 

T

i i ip - c A p - c u         (7) 

Where i is a scalar to be determined. 

As 
iA  is a symmetrical matrix: 

     2  
 

T

i i i i ip - c A p - c A p - c        (8) 

Then, 

 / 2i -1

i ip -c A u          (9) 

By using (5) one deduces: 

 2 /i i  T -1

iu A u          (10) 

With 1i    

As u is the outward-pointing normal to E1, 1 1    and 2 1    

Finally, one deduces that: 

     
-1 -1 -1 -1

1 2 1 Ψ 2 Ψ
12 2 1 1 2

T -1 T -1 T T -1 T T -1

1 2 Ψ 1 Ψ Ψ 2 Ψ

A u A u A R i A R i
c c - c b + b

u A u u A u i R A R i i R A R i
 (11) 

 

2.3 Calculation of the parameters of the two-ellipsoids set 

Let us consider two objects with the inertia tensors iI  and mass im  (i=1,2), each one 

evaluated about its own center of mass iC .  

The inertia tensor of an ellipsoid, located at the reference position ( , ,a x b y c z ), has 

the diagonal form: 



2 2

2 2

2 2

0 0

0 0
5

0 0

b c
m

a c

a b

 
 

  
  

ED        (12) 

Or 

  
5

m
Tr -1 -1

E E ED A U A         (13) 

Tr() is the trace of the matrix. U is the unit matrix. 

With the notations (sub-section 2.1), the inertia tensor of each rotated ellipsoid (i=1,2) 

obeys the relation: 

T

i Θi E,i Θ,iI =R D R           (14) 

The inertia tensor evaluated at another point P (
ia  is the line segment from P to Ci) 

becomes [12]: 

 ' im  2

i i i i iI I a U a a          (15) 

As a consequence, the inertia tensor of the object resulting from the collision of two 

smaller ellipsoids with the centers of mass separated by 
12c  obeys the equation: 

  1 2 1 2/m m m m    2

12 1 2 12 12 12I I I c U c c       (16) 

The principal moments of inertia of the resulting object are obtained from the 

diagonalization of the tensor 12I ; the corresponding diagonalized tensor is denoted by 

I,12D . If the eigenvalues of 12I are denoted by  1 2 3 1 2 3, ,       , the equivalent 

ellipsoid with demi-axes  12 12 12 12 12 12, ,a b c a b c   is such as : 

   

   

   

2

1 2 12 2 3 1

2

1 2 12 1 3 2

2

1 2 12 1 2 3

5

2

5

2

5

2

m m c

m m b

m m a

  

  

  

   

   

   

        (17)

     



In sum, one replaces the two colliding, i.e attached, ellipsoids by the equivalent ellipsoid 

having the same principal moments of inertia; their values depend on the contact point, i.e. 

12c , and on the orientations of the two ellipsoids. 

 

2.4 Aggregation kernel  

The assumptions of the collision model are the same as in our previous papers [7, 13]: 

- The ellipsoids have no preferred orientation in a shear flow just before collision and, 

as a rough approximation, the orientation angle distribution of a single ellipsoid is 

uniform. This assumption has been discussed in [7]. 

- The hydrodynamic resistance [14-15] is neglected.  

12K  will be the notation for the collision kernel, i.e. the collision rate constant. The shear 

rate is denoted by . 

One considers a fixed orientation  1 2,   for each ellipsoid. 12dk  is then the contribution 

of an infinitesimal interception or collision area to the kernel. One performs the sum 12k of 

all the contributions over the whole collision area. This area, that depends on the 

orientations of the two particles, is denoted by  1 2,  . As a consequence, the kernel 

obeys the relation: 

 1 2
12 12 ,

K k
 

           (18) 

 1 2

12 12

,

k dk
 




           (19) 

The average 
 1 2, 

 is performed over all the orientations of the two ellipsoids. 

More precisely, 

 

 
1 2

/ 2

12 12 2, 1,

0 / 2,

2 sup 0,

y z

y y pk dk c c dS

 

  


  

  


        (20) 



where 2, 1,y yc c  is the component of 
12c along y-axis, pdS  is the element of area swept by 

the orthogonal projection along z of C2 in the plane xOy. pdS obeys the equation: 

p y z

y z

dS d d 
 

  
      

12 12c c
k        (21) 

or 

2

, 1

p y z

l m y z

dS d d 
 

  
      
 l mb b

k        (22) 

with 

 
3/ 2

1

2q






-1 -1l
l q l

T -1

l

b
A D A u

u A u
        (23) 

where the two matrices y zD , D are functions of   and detailed in annex 1. 

 

2.5 Average resulting ellipsoid 

In practice, aggregation involves a large number of particles; a sub-set of particles has the 

same morphological characteristics, but with different orientations. Accordingly, the 

description of a collision between two objects with different morphological parameters 

needs the average over all the possible orientations of the two objects. Therefore 

I,12D must be firstly calculated for each pair of orientations. Moreover, the relative 

position 
12c of the centers of mass at impact depends both on the orientations of the two 

objects and on the mechanism of collision: a 12c probability density could be introduced. 

The figure 2 includes some possible events. In the case of shear aggregation, the 

probability of encounter is all the higher as the two particles are offset to the side in the 

shear flow. A frontal impact is unlikely. In fact, the corresponding probability density is 

proportional to dk12. This quantity was preferred to 12c probability density. 



Keeping in mind that the orientations of two colliding objects are assumed non-correlated, 

i.e. the hydrodynamic resistance between two particles moving towards each other is not 

taken into account, and that the orientation angle distribution of a particle in a fluid is 

assumed to be uniform, one may write: 

   1 2
1 2

12 12

,
,

/dk K
  

 

 I,12 I,12D D        (24) 

The mean quantities 
i
are performed over all the orientations. The semi-axis lengths of 

the average equivalent ellipsoid are easily deduced from I,12D (Eqs.17 and 24). 

The software corresponding to section 2 will be provided upon request.  

 

 

3. Monte Carlo Simulations for two bodies colliding under shear flow 

The collision of two objects has been also simulated by a Monte Carlo method with Nr 

runs, each one having the following steps: 

One considers a cube with the edge a at the center of which is located the Cartesian 

coordinate system. The a value is taken equal to  1 24 max ,a a . 

i. The particle 1 is located at the center of the coordinate system. Its orientation 

given by the Tait-Bryan angles 1  (three random numbers) is randomly 

selected.  

ii. The particle 2, the orientation of which is randomly chosen too ( using three 

random numbers corresponding to the Tait-Bryan angles 2 ), is located 

inside the cube. Given four random numbers A1, A2, A3 et A4 within the 

[0 ;1] range, the coordinates of the center of the particle 2 are:  



 

 

2 3

1
2 2

1

2 4

2 1 / 2

2 1
/ 2

2 1

2 1 / 2

X A a

A
Y A a

A

Z A a

 






 

       (25) 

The expression for the y-coordinate of the particle 2 satisfies the likelihood 

of relative position between particles 1 and 2 in a shear flow [16].  

iii. The particle shapes are projected onto the xOy plane perpendicularly to Oz. 

The figures generated by the projection are ellipses. Any intersection 

between the projections of particles 1 and 2 is searched. The collision will 

be effective if the two projections overlap and if 
2 2 0Y Z  . The latter 

condition means that the particle 2 is catching up with the particle 1 or is 

being caught up by particle 1: 2 20 0Y Z   or 2 20 0Y Z  . The 

considered particle pairs require to perform the calculation of the 

intersection between two ellipses. This leads to the search of zeros of a 

quartic polynomial, for which the procedure of Rees has been used [17]. 

iv. The search of the contact point is performed as follows: in case of effective 

collision (see step iii)) and assuming the particle 2 located far upstream 

from the particle 1, one considers the intersection between a line parallel to 

k and the two ellipsoids. The line is randomly chosen while intersecting the 

intersection area of the two overlapping ellipses. The line successively 

intersects the particle 2 at points P2, Q2 and the particle 1 at points P1, Q1. 

The distance between Q2 and P1 is calculated. Then, one search among a 

line beam the specific line having the minimum distance between Q2 and 

P1. The coordinates of the contact point and the components of 
12c  are 

easily deduced. Finally, the diagonalized inertia tensor I,12D  is calculated 

as in §2.3 (Eq.16). 

Only the first three steps are required for calculating the collision rate constant. By 

repeating these steps Nr times, one may express the collision rate constant as: 

    3 3

12

1

/ / 2 / / 2
Nr

i r c r

i

K N a N N a


 
  
 
       (26) 

with 1           



In case of collision 1i  , if not 0i  . NC is the number of effective collisions. Nr is 

taken equal to 106, but may be modified in order to obtain the required accuracy (see 

below).  

On the other hand, in order to calculate the diagonalized inertia tensor, which defines the 

equivalent ellipsoid of the two-ellipsoids set, the fourth step is needed. Then, the 

diagonalized inertia tensor of the average equivalent ellipsoid will be obtained from these 

ones got from each MC run (Eq. 27): 

 
1,

2,

1

3,

0 0

/ 0 0

0 0

iNr

i c i

i

i

N



 




 
 

  
 
 

I,12D  with 1, 2, 3,i i i       (27) 

As mentioned in the introduction, a cluster of sphere-like primary particles can be roughly 

represented by its equivalent ellipsoid. In order to compare the dynamics of two colliding 

clusters and their equivalent ellipsoids, the collision of sphere clusters has been also 

studied by means of Monte Carlo simulations. The procedure for clusters uses the same 

steps i) and ii) as for ellipsoids. Step iii) considers the projection (onto xOy) of all spheres 

belonging to the two clusters. If a pair of spheres exists (one allocated to the cluster 1, the 

other one to the cluster 2) such as the distance between the centers of their projection is 

smaller than the sphere diameter, then collision may occur and 1i  ; if not, 0i  . 

Several pairs of spheres can lead to a bonding (bonding pair). The step iv) corresponds to 

the search of the contact point. One considers the two orientated clusters with the centers 

of mass located at the origin; one calculates the inter-center distance between each 

bonding pair of spheres. We select the bonding pair with the largest distance. Therefore, 

the two original clusters will meet and make contact when the spheres of this specific pair 

hit each other.   

The software corresponding to section 3 will be provided upon request. 

 



4. Results 

We will examine successively the collision rate constant K12 between two ellipsoids and 

the parameters of the equivalent ellipsoid of the resulting body.  

4.1 kernel for ellipsoids collision 

The two calculation methods (§2 and §3) have been applied to a set of two colliding 

ellipsoids. Ellipsoids 1 and 2 are such as:   

1 1 1 1 1 1 11 / /a b a S c a S c b     

 2 2 2 2 2 2 21,2,5,10,15,20 / /a b a S c a S c b     

With  0.01;0.1;0.2;0.5;0.9S   

The lengths are made dimensionless by the largest semi-axis of the smaller ellipsoid 

(a1=1). 

Accordingly, we have considered N=1350 ellipsoid pairs, each ellipsoid may be 

rounded, elongated or flat in shape. K12 values range between 0.7 and 104. 

Figure 3 compares the K12 values based on Eqs. (§2) and denoted by K12 pv with the 

K12 values based on MC simulations (§3) and denoted by K12 proj. It can be observed 

that the agreement between the two methods is very good. The relative standard 

deviation defined as  
1/ 2

2

12 12

1

/ 1 /
N

i i

proj pv

i

K K N


 
  
 
 is equal to 0.035. 

In a previous paper [13] we established an empirical expression for the collision rate 

constant valid for particles having a simple shape: bodies with high symmetry as 

sphere, spheroids, needles, discs. The collision rate constant may be expressed as: 

   
3

12 1 2 12, 1 24 / 3 ,NK X X K X X  
 

      (28a) 

with 
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/ /i i i i i ik b a l c a    

The model contains three parameters: n, m and p. The optimal values of the exponents 

m, p and n are taken equal to 0.36, 3 and 1.30.  0 1 2 3, , ,P P P P  and  0 1 2 3, , ,Q Q Q Q  

vector values can be found in [13]. 

Figure 4 compares the K12 values based on Eqs. (§2) and denoted by K12 pv with the 

K12 values based on Eqs.28a-f and denoted by K12 approx. The agreement between the 

two methods is very good. The relative standard deviation defined as 

 
1/ 2

2

12 12

1

/ 1 /
N

i i

approx pv

i

K K N


 
  
 
 is equal to 0.045. 

 

    

4.2 inertia tensor of the resulting two-ellipsoid set 

For each collision event one may calculate the inertia tensor of the resulting body. 

After diagonalization, the semi-axes ( 12 12 12; ;a a b b c c   ; a b c  ) of the 

equivalent ellipsoid are deduced. Hence, we get a data set about all the equivalent 

ellipsoids corresponding to two given ellipsoids colliding under shear flow. What are 

the relevant ellipsoid parameters if we are interested in the statistics from the data set? 

In our opinion, elongation or flattening is the most relevant: they may be defined as 



b/a and c/a. Other asphericity parameters can be used [18,19]. An additional parameter 

characterizing the overall shape could be the semi-axis a or the gyration radius Rg. In 

this section, we have selected the triplet (a, b/a, c/a), which seems visually to be the 

most significant. Figure 5a,b,c shows the probability density function (pdf) for these 

parameters corresponding to all the collision events between two identical prolate 

spheroids    , , 1,0.2,0.2i i ia b c  having the same mass. The two methods developed 

in §2 and §3 are compared. It can be observed, that the agreement between them is 

very good in spite of the complex shape of pdf’s. 

In order to better understand the link between the colliding ellipsoids and the resulting 

equivalent ellipsoid, we have studied the collision between identical spheroids (prolate 

or oblate). The used method is as described in §3.  

Figure 6a,b,c represents the pdf of the largest semi-axis length, elongations b/a and c/a 

of the equivalent ellipsoid for colliding prolate spheroids  1 1 11, ,a b b  with 

 1 0.01;0.1;0.2;0.5;0.9b S  . Two colliding spheres  1,1,1 lead to a prolate 

spheroid  2.445,1,1 . In this case, the pdf’s of a and b/a are simply Dirac functions: 

the corresponding elongation value is 0.4085. For the colliding prolate spheroids, the 

pdf’s for a and b/a seem not to be dependent on the elongation b1/a1 of spheroids if the 

latter value is smaller than 0.2. It is not the case for c/a where the corresponding mean 

value follows the elongation value of the spheroids. The three pdf’s are wide. 

Figure 7a,b,c represents the pdf of the largest semi-axis length, elongations b/a and c/a 

of the equivalent ellipsoid for colliding oblate spheroids  1 11,1,a b  with 

 1 0.01;0.1;0.2;0.5;0.9b S  . The pdf’s for a, b/a and c/a seem not to be dependent 

on the elongation of spheroids if the latter value is smaller than 0.2. b/a pdf for prolate 

spheroid and c/a pdf for oblate spheroid look alike. 



Figure 8 represents the elongation parameters of the average equivalent ellipsoid 

against these of colliding identical spheroids. This shows that b/a is relatively 

insensitive to the elongation parameters of the constitutive particles whereas c/a values 

strongly depend on the colliding particle shapes. b/a value is close to the one of a 

bisphere (=0.409). 

Then, we have searched for an estimate of the three semi-axis lengths of the average 

equivalent ellipsoid, as already achieved for the collision rate constant (sub-section 

4.1). The same set of colliding ellipsoids has been selected. The effect of the internal 

density of the ellipsoids has also been considered. For this purpose, the density 1 of 

the ellipsoid 1 is taken equal to 1 whereas the density 2 of ellipsoid 2 is taken within 

the range W: 

 2 0.02;0.1;0.2;0.5;1;2;5;10;20W    

Taking the value one for a1 means that all the semi-axis lengths of the average 

equivalent ellipsoid will be made dimensionless by a1. Taking the value one for 1  

has no effect on the length parameters of the average equivalent ellipsoid. Only the 

density ratio 2 1/   is relevant. Accordingly, 12150 different pairs of colliding 

ellipsoids have been studied.  

First, the effect of the MC run number Nr on the accuracy of ellipsoid parameters has 

been studied. Considering two extreme Nr values (Nr=2 104 and 106), the relative 

deviations between the calculated ellipsoid parameters are 1.8% for a, 2.9% for b, 

3.8% for c. Therefore, a correct estimate of the ellipsoid parameters can be obtained 

by strongly reducing the MC run number while also reducing the computation time. 

However, it must be underlined that the calculation fails for a few pairs (0.25% of the 

total pair number); The reason is simply that, for certain pair, no collision occurs 

within 2 104 random possible events.  



The data file corresponding to the 12150 pairs of colliding ellipsoids (with Nr=2 104) 

will be provided upon request. 

The approximate expressions for the ellipsoid parameters must obey the following 

requirements: 

- symmetrical with respect to the two colliding ellipsoids 

- give the parameters of the ellipsoid with the largest mass if the collision happens 

between two ellipsoids with very different mass values 

- match the analytical expressions available for certain ellipsoid pairs, e.g. for sphere 

pairs 

To be compatible with the physics of the collision, we start from an expression containing 

the diagonalized inertia tensor: 

    1 2 1 2/m m m m   E,12 E,1 E,2D D D 12f       (29) 

or 
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     (30a,b,c) 

with  1 2/i im m m   . , ,bc ac abf f f  are to be determined. In the case of sphere pairs, we 

have: 

 
2

1 20,bc ac abf f f R R            (31) 

We have assumed that , ,bc ac abf f f  have a quadratic form in six variables: 

   1 2 3 4 5 6 1 1 1 2 2 2, , , , , , , , , ,u u u u u u a b c a b c u  

i.e.  
T

bcf  bcuF u           (32) 

The 6x6 matrix bcF is symmetrical. Then, considering the invariance of fbc by exchanging 

some variables, we obtain the reduced form: 



   
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1 2 1 2 1 3 2 3 2 4 5 4 6 5 6 ,

1 1 3
4 6

2 2 2bc i i j i j

i i
j

f C u C u u u u u u C u u u u u u C u u
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 

          (33) 

This is also valid for fac and fab, but with different values for 1 2 ,, , i jC C C . 

For two unlike spheres, i.e.  1 1 1 2 2 2, , , , ,R R R R R Ru , we have: 

  2 2

1 2 1 2 1 2 , 1 2

1 3
4 6

: 3 6 2 0 ,bc i j

i
j

f R R C C R R C R R
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 
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As a consequence, 1 2 ,

1 3
4 6

3 6 ; i j

i
j

C C C 
 
 

    with =0 for fbc (=f0) and =1 for fac (=f1) 

and fab (=f1). 

Finally, we have to determine 9 unknown parameters for each of three f: 
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An optimization procedure has been used for determining the C-parameters: optimization 

calculations were performed by considering the ratio between the elements of the 

diagonalized inertia tensor coming from approximation and those issued from Monte-Carlo 

simulations. Table 1 contains the optimized parameters in Eq.36.  

Then, from the diagonal elements of approximate DE,12 (Eq. 29) the parameters a,b,c of the 

average equivalent ellipsoid have been calculated. The relative standard deviation between the 

values from approximate expression and the MC calculation was found to be equal to 0.015, 

0.148, 0.197 for a, b and c, respectively. Excluding collisions between ellipsoids with the 

smallest b/a and c/a parameters (=0.01) leads to the following relative standard deviation: 



0.013, 0.054, 0.12 for a, b and c, respectively. However this reduced ellipsoid set includes the 

expected equivalent ellipsoid formed during aggregation, making the approximation suitable 

for this application.     

  

4.3 kernel for collision between two sphere clusters 

We consider two types of clusters:  

i) ordered clusters consisting of chains of (2, 10, 50) identical spheres (with 

radius value equal to 1), square (2x2, 4x4, 7x7, 4x7) of touching spheres, 

parallelepiped (2x2x2, 4x4x4, 5x5x2) of spheres. These packed clusters are 

dense and have edges and corners. 

ii) random clusters coming from the simulation of the shear aggregation between 

smaller aggregates using a Monte Carlo method. These clusters must represent 

more realistically the aggregates during the aggregation of spheres. Ten 

clusters with the sphere number within the range [7; 52] were selected. These 

clusters are loose and have a solid volume fraction higher than 0.1. 

Then we have considered the collision between any pair of ordered clusters and 

between any pair of random clusters. We have calculated the collision rate constant 

(one hundred values for ordered clusters and one hundred values for random clusters) 

for all these pairs. Nr is taken equal to 105. The K12 range for ordered clusters is within 

[30; 20000], whereas the K12 range for random clusters is narrower, i.e. [300; 6000]. 

Each (structured or random) collider is characterized either by the coordinates of the 

constituting spheres or by the (a, b, c) parameters of the equivalent ellipsoid or more 

simply by the gyration radius. According to the geometrical parameters depicting the 

collider, K12 values are calculated by MCS for sphere clusters (see §3), by MCS for 



ellipsoids (§3), and by considering their gyration radius into the Smoluchowski’s 

equation: 

 
3

3

12, ,1 ,2

4

3
S g gK R R           (37) 

The  coefficient is chosen so that gR R   for a sphere with the radius R, i.e 

5 / 3  . 

The figure 9 represents the K12 (named K12,EE) values calculated for equivalent 

ellipsoids and from Smoluchowski equation (named K12,S)  versus K12 values for 

sphere clusters ( named K12,CC). It can be observed that the correlation between K12,EE 

and K12,CC is good over all the K12 range for structured and random clusters, whereas 

this correlation fits less well with Smoluchowski’s approximation for the two types of 

clusters, and especially badly for the large K12 values of ordered clusters. This last 

discrepancy strictly corresponds to the collision of the largest sphere chains with other 

clusters. Finally, we may write: 

12, 12,/ 1.27 0.16EE CCK K           (38) 

The collision rate constant calculated from the equivalent ellipsoid is always a little 

larger than the one derived from cluster. This will be discussed below. 

 

4.4 pdf of geometrical parameters for cluster collision 

The pdf of geometrical parameters for the resulting cluster after each cluster collision 

event have been determined. We have considered the collision of two sphere clusters 

and alternatively the collision of their equivalent ellipsoids. After 107 MC runs, the pdf 

of a,b,c parameters of the resulting body have been calculated. These simulations have 

been performed for several pairs of ordered and random clusters. For instance, the 

figure 10a represents the pdf’s for a,b,c for the collision of two random clusters (see 



figure 10c), whereas the pdf’s for b/a and c/a for the same collision events are 

presented on figure 10b. It can be observed that the collisions of sphere clusters and 

their equivalent ellipsoids lead to the nearby pdf’s of parameters of the resulting body. 

A finer analysis shows that b,c pdf’s are very close while a pdf’s are slightly offset. 

The a pdf of the resulting body coming from ellipsoids collision is shifted to the large 

size values. These results are valid for all sphere cluster pairs studied. It may be 

confirmed by calculating the a,b,c parameters of the average equivalent ellipsoid for 

EE collisions and CC collisions: 

    12, 12, 12, 12, 12, 12,/ 1.09 0.03 / 1 0.01 / 1 0.01EE CC EE CC EE CCa a b b c c       (39a) 

And 

 
12, 12,

/ 1.075 0.02g gEE CC
R R          (39b) 

At this level two comments may be made: 

- The result concerning the parameters of the average equivalent ellipsoid is conform 

with this for the collision rate constant (Eq.38) as the collision rate constant is roughly 

proportional to the cubic gyration radius.  

- We may state that the collision between two sphere clusters is well represented by the 

collision of their equivalent ellipsoids. As a consequence of the previous point, the fit 

will be improved if the largest semi-axis of the average equivalent ellipsoid of the 

resulting body is reduced by a factor 1.09 independently of the pair of colliding 

clusters.  This point will be particularly significant when studying the whole 

aggregation process of primary particles, since a small deviation of the geometrical 

parameters will be amplified during the reiteration of the collision act.    

 

5. Conclusion 



In this paper we have presented two methods of calculating the parameters corresponding 

to the collision and aggregation of two ellipsoids. These two methods produce very close 

results and therefore ensure the reliability of the generated data. The collision rate 

constant and the statistics concerning the geometrical parameters of the equivalent 

ellipsoid of the aggregate have been determined and checked. On the other hand, we have 

shown that replacing sphere clusters by their equivalent ellipsoids leads to a good 

representation of the collision events. Empirical expressions have been proposed for the 

collision rate constant and the a,b,c parameters of the average equivalent ellipsoid. 

However, it must be noted that the smallest parameter, i.e. c, may be poorly valued by our 

approximation for a few colliding ellipsoid set. These expressions make much faster the 

use of the basic aggregation act if the particles are depicted by their mass content and the 

a,b,c parameters. They could therefore be used in a multivariate population balance 

modelling for particle aggregation. 
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Annex 1: calculation of / q b  with q=y,z 

Starting from the definition of the b vector: 


-1

T -1

A u
b

u A u
 

Its derivation leads to: 
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Let us first remark that, given two matrices M and N and three vectors a,b and c: 

    T TMa b Nc M ab Nc          A-2 

abT is the outer or dyadic product of a and b vectors. 

As 
EA is a diagonal matrix, -1

A is symmetrical and 
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T

-1 T -1
A u u A           A-3 

As the product of matrices commutes with the multiplication by a scalar and using (A-2): 
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As the transpose of a scalar is itself and as -1
A is symmetrical: 
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So that: 
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With 
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Considering the definition of u and the rotation matrix: 
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A simple but rather cumbersome calculation yields: 
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Figure 1: orthonormal system and velocity gradient 
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Figure 2: collision between two objects: the object 1 with a given orientation collides with the 

object 2 at two different points. 
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Figure 3: K12 proj/K12 pv ratio versus K12 pv  
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Figure 4: K12 approx/K12 pv ratio versus K12 pv  
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Figure 5a: pdf corresponding to the largest semi-axis of the equivalent ellipsoid. Collision 

between  1,0.2,0.2 and  1,0.2,0.2 . o, red: issued from method §2; *, black: issued from 

method §3
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Figure 5b: pdf corresponding to the largest elongation b/a. Collision between  1,0.2,0.2 and 

 1,0.2,0.2 . o, red: issued from method §2; *, black: issued from method §3
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Figure 5c: pdf corresponding to the smallest elongation c/a. Collision between  1,0.2,0.2 and 

 1,0.2,0.2 . o, red: issued from method §2; *, black: issued from method §3 
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Figure 6a, b, c: Collision of two identical prolate spheroids (1,b1,b1,m1=1) with 

 1 0.01;0.1;0.2;0.5;0.9b S   ; b1=0.9  - black ; b1=0.5 + green; b1=0.2 o red; b1=0.1 * blue; 

b1=0.01 x magenta 

 

Figure 6a: pdf for a   
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Figure 6b: pdf for b/a 
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Figure 6c: pdf for c/a 



 

Figure 7a, b, c: Collision of two identical oblate spheroids (1,1,b1, m1=1) with 

 1 0.01;0.1;0.2;0.5;0.9b S   ; b1=0.9  - black ; b1=0.5 + green; b1=0.2 o red; b1=0.1 * blue; 

b1=0.01 x magenta 

1 1.5 2 2.5
0

1

2

3

4

5

6

7

a

n
(a

)

 

Figure 7a: pdf for a 
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Figure 7b: pdf for b/a 
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Figure 7c: pdf for c/a 
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Figure 8: Collision of two identical prolate or oblate spheroids: elongation parameters of the 

average equivalent ellipsoid 

Spheroids (1,1,b1, m1=1) solid line; (1,b1,b1, m1=1) dashed line with 

 1 0.01;0.1;0.2;0.5;0.9b S    

Average equivalent ellipsoids: black curve: b/a; red curve: c/a 
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Figure 9: K12,EE (+)and K12, S (o) versus K12,CC . Black marker corresponds to ordered clusters; 

red marker corresponds to random clusters. The solid line corresponds to y=1.27x 
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Figure 10a: pdf n for a,b,c parameters of equivalent ellipsoid for the collision of two random 

sphere clusters (A and B). a: solid line; b: dashed line; c: dash-dot line. 

Statistics from collisions between sphere clusters: red; Statistics from collisions between 

equivalent ellipsoids of clusters: black.    
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Figure 10b: pdf n for b/a and c/a parameters of equivalent ellipsoid for the collision of two 

random sphere clusters (A and B). b/a: dashed line ; c/a: solid line. 

Statistics from collisions between sphere clusters: red; Statistics from collisions between 

equivalent ellipsoids of clusters.    

 



 

Figure 10c: Sphere cluster A (N=52) left sphere cluster B (N=17) right  

 



 

 C1 C1,5 C1,6 C2,4 C2,5 C2,6 C3,4 C3,5 C3,6 

fbc   -0.006     0.432     0.616     0.018    -0.166    -0.232 0.026     0.0014    -0.814     

fac 0.458     0.467     0.232     0.584    -0.063     0.078 0.227    -0.131     0.89     

fab 0.457     0.1864     0.4724     0.2575    -0.087     0.1807 0.4448    -0.021     0.4845     

 

Table 1: optimized parameters for Eq.36 

 

 

 

 

 


