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Lorenzo Piroli

SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy

Pasquale Calabrese

SISSA and INFN, via Bonomea 265, 34136 Trieste, Italy

International Centre for Theoretical Physics (ICTP), I-34151, Trieste, Italy

Abstract. The large-scale properties of homogeneous states after quantum quenches

in integrable systems have been successfully described by a semiclassical picture of

moving quasiparticles. Here we consider the generalisation for the entanglement

evolution after an inhomogeneous quench in noninteracting systems in the framework

of generalised hydrodynamics. We focus on the protocol where two semi-infinite

halves are initially prepared in different states and then joined together, showing

that a proper generalisation of the quasiparticle picture leads to exact quantitative

predictions. If the system is initially prepared in a quasistationary state, we find

that the entanglement entropy is additive and it can be computed by means of

generalised hydrodynamics. Conversely, additivity is lost when the initial state is not

quasistationary; yet the entanglement entropy in the large-scale limit can be exactly

predicted in the quasiparticle picture, provided that the initial state is low entangled.
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1. Introduction

The puzzle about the emergence of statistical mechanics and thermodynamics from

a microscopic quantum theory has recently found a natural basis in the context of

bipartite entanglement. Indeed, it has been established that non-equilibrium isolated

pure systems may relax locally to thermodynamic ensembles (see e.g. the reviews [1–4]).

Thus, given a subsystem A and a non-equilibrium pure state |ψ〉, with reduced density

matrix ρA ≡ TrĀ |ψ〉〈ψ|, the corresponding entanglement entropy

SA ≡ −TrρA lnρA , (1.1)

does not only measure quantum correlations [5], but also provides a direct bridge

between the microscopic quantum world and thermodynamics. From this point of

view, the entanglement entropy SA represents the natural candidate for a definition

of a thermodynamic entropy in the limit of large times after a quantum quench [6–11]

(see also [12–15] for some alternative definitions of entropy).

Practically, qualitative and quantitative predictions for the spreading of bipartite

entanglement can be obtained within the semiclassical picture introduced in [16]. This

picture leads to exact results for the time evolution of the entanglement entropy

in homogeneous settings, which have been tested in many analytical and numerical

computations [10, 11, 16–33]. Now, thanks to the recent development of generalised

hydrodynamics (GHD) [34, 35], it is finally possible to study whether and how the

semiclassical picture can be modified to incorporate inhomogeneities. Generalised

hydrodynamics is an integrability-based approach to analytically investigate time

evolution in the presence of inhomogeneities, even for interacting systems. The

paradigmatic example of a non-trivial situation described by GHD is the junction of

two semi-infinite systems prepared in macroscopically different states. At late times t,

the system becomes locally quasistationary and the expectation values of observables at

distance x from the junction are functions only of the ratio ζ = x/t [36], not of x and t

separately.

Following Refs. [34, 35], several studies have focused on the behavior of local

observables and the spreading of correlations [37–50], while little attention has been

devoted to the entanglement dynamics, with only few exceptions [51–55]. In this

work we make a step forward in this direction and study the leading behaviour of

the entanglement entropy of a single interval A = [x1, x2] as a function of the time

in the asymptotic limit of large lengths of the subsystems. We consider the protocol

where two semi-infinite systems, initially prepared in different macrostates ΩL and ΩR,

are suddenly joined together at their boundary and left to evolve with a translationally

invariant Hamiltonian, see Fig. 1. We focus on two prototypical examples: (a) ΩL and

ΩR are two different stationary states of H; (b) ΩL and ΩR are two nonstationary low

entangled states. The first situation can be realised by joining together two halves

prepared in equilibrium at different temperatures. The second situation typically arises

when one has a Hamiltonian H(h), depending on a global parameter h, and the two



Entanglement evolution and generalised hydrodynamics: noninteracting systems 3
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Figure 1. Two semi-infinite chains are prepared in different states and then suddenly

joined together. We study the entanglement between an interval A = [x1, x2] and the

rest of the system.

halves are initially prepared in the ground state of H(h) but with different values of h

(an inhomogeneous global quench [35,56]).

We focus on systems of noninteracting fermions, i.e. systems whose Hamiltonian

can be (effectively) written as a sum of independent modes

H =
∑
k

ε(k)b†kbk =
∑
k

ε(k)n̂k . (1.2)

Here b†k, bk are fermionic creation and annihilation operators, n̂k ≡ b†kbk is the number

operator, and ε(k) is the dispersion relation. To simplify the discussion, we assume

reflection symmetry (ε(k) = ε(−k)) and the absence of additional “hidden symmetries”

(this excludes super-integrable systems like the XY model in zero magnetic field, see

Ref. [37]). In the thermodynamic limit, the sum over k becomes an integral defined

on [−π, π] for lattice models and on the real line for continuous systems. Our general

results will be tested against exact numerical data in the paradigmatic example of the

quantum Ising chain

H = −
L/2−1∑

j=−L/2+1

σx
`σ

x
`+1 − h

L/2∑
j=−L/2+1

σz
` , (1.3)

where {σα
` }α=x,y,z are Pauli matrices, h is the transverse field, and we adopted

open boundary conditions. This Hamiltonian can be written in the form (1.2)

with ε(k) = 2
√

1 + h2 − 2h cos k‡. Numerical results for the time evolution of the

entanglement entropy may be obtained by standard methods based on the Wick’s

theorem [16,19,57,58]; a short summary is given in Appendix A.

Note that, in general, one needs a non-local transformation (known as Jordan-

Wigner transformation) to map the Hamiltonian of the specific spin chain considered

to the form (1.2). The non-locality of such transformation does not affect the bipartite

entanglement as long as the initial state is Gaussian and the subsystem is a block

‡ Note that, in the thermodynamic limit, the bound state for |h| < 1 is sent to infinity.
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of contiguous spins. If the subsystem consists of disjoint spin blocks, the fermion

entanglement is not equivalent to the spin entanglement, but the effect is expected

to be subleading [59].

2. The stationary state

In a uniform setting, at large times after a quantum quench, the stationary entanglement

entropy of a large subsystem A = [0, `] must have the same density as the

thermodynamic entropy of the statistical ensemble which the system locally relaxes

to [6–10, 13, 16, 22, 23]. Accordingly, in the specific case of noninteracting fermions, the

entanglement entropy behaves asymptotically as

S[0,`]

`
=
SY Y [n]

L
+ o(`) . (2.1)

Here n(p) = 〈ψ|n̂p|ψ〉 is the conserved momentum distribution function and the

functional SY Y [n] is the Yang-Yang entropy (i.e. the thermodynamic entropy of the

statistical ensemble characterised by n(p))

SY Y [n] ≡ L

∫
dp sYY [n(p)] , (2.2)

where

2πsYY[n] = −n lnn− (1− n) ln(1− n) , (2.3)

is the standard entropy of a fermionic mode which is occupied with probability n and

empty with probability 1− n.

3. Junction of two stationary states

The knowledge of the entanglement in a uniform stationary state (2.2) is all we need to

describe the entire dynamics (in the scaling regime) after the junction of two stationary

states. More generically, the following reasoning applies to all quasistationary initial

states, namely those in which the reduced density matrix of an arbitrary subsystem

commutes with the Hamiltonian, up to boundary terms. In the framework of GHD,

such states, in the scaling limit, can be (almost) completely characterised [45] by a

space and time dependent momentum distribution function nx,t(p) which evolves in

time according to the continuity equation [34,35]

∂tnx,t(p) + v(p)∂xnx,t(p) = 0 . (3.1)

This setup is very close to the classical concept of local equilibrium, where the entropy

is additive. It is then natural to assume additivity. We can obtain the entanglement

entropy of a finite region by slicing it and summing the contribution (2.2) of every slice;

this gives

S[x1,x2](t) =

∫ x2

x1

dx

∫
dp sYY [nx,t(p)] . (3.2)
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Figure 2. Entanglement entropy after an inhomogeneous quench in the transverse

field Ising chain (1.3) with h = 3. The initial state is obtained by joining together

two thermal states at different temperatures TL = 1 and TR = 2. Points are the

result of exact numerics for a system of size L = 4500, while the lines represent our

analytical prediction (3.2). (a): S[x1,x2](t)/(x2 − x1) versus t/(x2 − x1) The numerical

data approach the prediction in the limit x2 →∞ for fixed x1/x2. (b): S[tζ1,tζ2](t) as

function of t. Here we consider ζ1 = −0.5 and ζ2 = 1 (vmax = 2 with our conventions).

Note the presence of a small constant offset in the data due to O(t0) terms.

The additivity hypothesis can be proven using the exact formalism of Ref. [45]. In

particular, one can check that additivity holds at the first order in the inhomogeneity.

We leave a rigorous derivation of (3.2) to future (more technical) investigations. Here

we rely on the physical assumption of additivity and check the prediction against exact

numerical data. Note that the formalism of Ref. [45] allows for a controlled expansion in

the inhomogeneity of the state, and can also be used to compute the leading corrections.

We tested the validity of Eq. (3.2) against exact numerical computations in the

Ising chain prepared in the initial state obtained by joining together two thermal states

at different temperatures. Our prediction is in excellent agreement with numerical

simulations, as shown in Fig. 2. The entropy remains constant until the fastest

quasiparticles coming from the junction reach one boundary of the subsystem (cf. Fig. 2

(a)); this is a simple example of light-cone effect in the entanglement propagation [16].
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4. Bipartite entanglement in homogeneous settings

We summarise here the quasiparticle approach of Ref. [16] for the entanglement entropy

dynamics of a one-dimensional model initialised in a homogeneous low-entangled (i.e.

subextensive) non-equilibrium state. This is not an ab initio calculation but rather a

simplified view that captures the physical pith. Within this picture the initial state

is interpreted as a collection of pairs of semiclassical quasiparticle excitations, namely

entangled particles with definite momentum and position and which follow classical

linear trajectories. Because of the subextensive initial entanglement, one assumes

that only pairs of particles emitted from the same point at t = 0 are entangled. The

quasiparticles move ballistically, and, in the scaling limit t ∼ `, the entanglement entropy

is obtained by summing the contributions of the pairs with one quasiparticle in A and

the other in the complement. The resulting entropy has the following form [16]

S[0,`](t) =

∫
dpmin(`, 2|v(p)|t)f(p) , (4.1)

where v(p) = ε′(p) is the group velocity of the quasiparticles with momentum p. We

point out that this expression is not yet predictive, as it depends on the unknown

function f(p), associated with the entropy density carried by the pair (p,−p). In few

cases, it was determined from ab-initio calculations, as e.g. done for the Ising chain

in [19].

It has been pointed out in [10] that the function f(p) may be read out from the

property that the entanglement entropy (4.1) for t→∞ reduces to (2.2), so that

f(p) = sYY [n(p)] . (4.2)

The crucial assumptions behind (4.1) (with (4.2)) are that entangled quasiparticles

are produced in pairs and from the same spatial point. Indeed, within the same

assumptions in [10] a similar conjecture has been proposed and tested for the case of

generic interacting integrable models. For free systems, there are only a few examples

where these assumptions have been weakened. In [60,61], the case of initial states with

extensive entanglement entropy has been considered, while, in [62], the initial states

produce n-plets of correlated excitations with n > 2. In these generalised cases the

semiclassical picture is still applicable, but Eq. (4.1) must be modified in order to catch

the more complicated quasiparticle structure of the initial state. As the most important

difference, the thermodynamic entropy of the stationary state (which is always of the

form (2.3)) is not enough to fix the entanglement entropy.

5. Revisiting the semiclassical picture

The main idea of Ref. [10] was to reconstruct the entanglement entropy going back

in time from its asymptotic value at t = ∞. This idea hardly adapts to the case of

inhomogeneous quenches where more information about the initial state is necessary.

We propose here an alternative approach which, going forward in time, allows us to
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have the entire time evolution for any structure of correlated quasiparticles. Moreover,

it is easily adapted to the inhomogeneous case.

Let us explain this approach for the well known case of an initial pure state which

can be expressed in terms of pairs of excitations of opposite momenta. Such initial state

may be written (ignoring all unimportant factors/phases/etc) as

|Ψ0〉 =
∏
k

(√
1− n(k) + i

√
n(k)b†kb

†
−k

)
|0〉, (5.1)

corresponding to the density matrix ρ0 =
⊗

k ρk,−k, where we introduced

ρk,−k ≡ (1− n(k))bkb
†
kb−kb

†
−k + n(k)b†kbkb

†
−kb−k + i

√
n(k)(1− n(k))(b†kb

†
−k − b−kbk).(5.2)

Incidentally, in Refs [63, 64] these have been identified as “integrable initial states”.

Eq. (5.1) encodes all the quantum information about the state, but now we want

to understand it semiclassically, i.e. in terms of pairs of quasiparticles with definite

positions and momenta. Since we are dealing with a homogeneous quench, the pairs of

quasiparticles must be uniformly distributed in the system. Furthermore, the state is

factorised in momentum space and all the entanglement must be only between particles

of opposite momenta. The reduced density matrix of the particle of momentum (say)

+k, after having integrating over the one with −k is

ρk = Tr−k[ρk,−k] = 1− n̂k + n(k)(2n̂k − 1) , (5.3)

and hence the entanglement entropy between the two particles is −Tr[ρk logρk] =

2πsYY[n(k)]. The crucial assumption of the semiclassical picture is that, for t > 0,

quasiparticles move along straight lines with no interaction and no entanglement

generation in momentum space. The entanglement growth in real space is entirely due

to the spreading of pairs that, moving ballistically, entangle regions farther and farther

apart. Thus, we conjecture that the reduced density matrix of one interval of length `

coincides with the reduced density matrix of the quasiparticles that at a given time are

within such interval. Such reduced density matrix is obtained by means of the following

heuristic argument. First, we subdivide the system in cells of size ∆, sufficiently larger

than any microscopical length scale (such as the lattice spacing) so that semiclassical

trajectories are well defined, but still smaller than the macroscopical scales ` and 2v(k)t.

Then, we can suggestively write the semiclassical initial density matrix as

ρsc(0) =

L/∆⊗
i=1

⊗
k̃

ρ̃k̃,−k̃ , (5.4)

where ρ̃k,−k = ρk,−k (cf. Eq. (5.2)) and the momenta k̃ are defined in the cell. The

semiclassical reduced density matrix of A = [0, `] at time t is obtained following the

motion of the quasiparticles; it is given by

ρsc
A(t) =

⊗
k̃

ρ
⊗min(2|v(k̃)|t,`)/∆
k̃

⊗ ρpure . (5.5)

Here
⊗

k̃ ρ
⊗min(2|v(k̃)|t,`)/∆
k̃

comes from all pairs of quasi-particles with one particle inside

A and the other outside, while ρpure comes from the pairs of quasiparticles within A.



Entanglement evolution and generalised hydrodynamics: noninteracting systems 8

Since the latter is the density matrix of a pure state, it gives zero contribution to the

entropy. To write (5.5) we used the form (5.4) of the initial state and the fact that

a quasiparticle with momentum k̃ follows a linear trajectory with velocity v(k̃): this

implies that at time t only min(2|v(k̃)|t, `)/∆ pairs with momenta {k̃,−k̃} have one

and only one quasiparticle in the subsystem.

Using (5.5) and taking the thermodynamic limit we find

S[0,`](t) = −Tr[ρsc
A(t) logρsc

A(t)] ' −
∫

dp

2π
min(2|v(p)|t, `) Tr[ρp logρp] , (5.6)

where the last equality becomes exact in the scaling limit L� `, v(p)t� ∆� 1. After

replacing −Tr[ρp logρp] with its value 2πsYY[n(p)], this equation reproduces (4.1) with

(4.2).

The advantage of this interpretation compared to [10] is that it is easily adapted to

the inhomogeneous case. Indeed an inhomogeneous pure initial state can be thought of

as being of the form (5.4) with a position-dependent ρ̃k,−k, so the entanglement entropy

can be accessed in non-uniform settings simply by performing an integral over the spatial

profile of the initial density of pairs, as we shall soon see. Furthermore, it can also be

applied to the case of n-plets of entangled quasiparticles considered in [62]: in essence

one has just to replace ρk,−k with the more complicated density matrix of the correlated

n-plet.

6. Junction of two non-stationary states

We now move our attention to the case of an initial state being the junction of two

different low-entangled states with the pair structure (5.1). As long as the initial entropy

is subextensive, the picture above can straightforwardly be applied. We can again write

the initial state as in (5.4), the “local” density matrix ρ̃k,−k is again of the form (5.2)

but the momentum distribution appearing will be nR(k) if the cell is on the right of

the junction and nL(k) if the cell is on the left of the junction. In other words, the

contribution to the entanglement of each quasiparticle pair now depends on whether

the pair is originated on the left or on the right of the junction, see Fig. 3.

Computing the reduced density matrix of the particles in the system as above, we

find the following expression for the entanglement entropy in the thermodynamic limit

S[x1,x2](t) =

∫
dpΘ(−v(p))

∫ x2

max(x2+2v(p)t,x1)]

dx fx−v(p)t(p) +

∫
dpΘ(v(p))

∫ min(x1+2v(p)t,x2)

x1

dx fx−v(p)t(p) , (6.1)

where we introduced a position-dependent entropy density in momentum space

fx(k) = Θ(x)sYY[nR(k)] + Θ(−x)sYY[nL(k)] . (6.2)

The two terms on the r.h.s. of (6.1) are the contributions to the entanglement entropy

given by pairs with one quasiparticle in the subsystem and the other outside, on its

right and on its left respectively.
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t

x1 x2

−k1 k1k4−k4

−k2 k2

k3−k3

A

nL(k) nR(k)

Figure 3. Pictorial representation of the motion of the entangled pairs of

quasiparticles after the sudden junction of two non-stationary states. The

quasiparticles within the subsystem are represented by dashed lines while those out

of the system by full lines. Only the pairs with a single particle in the subsystem

contribute to the entanglement.

Since the Yang-Yang entropy satisfies a continuity equation of the form (3.1), we

find

fx−v(k)t = Θ(x− v(k)t)sY Y [nR(k)] + Θ(v(k)t− x)sY Y [nL(k)]

= sY Y [Θ(x− v(k)t)nR(k) + Θ(v(k)t− x)nL(k)] = sY Y [nx,t(k)], (6.3)

and, in turn,

S[x1,x2](t) =

∫
dpΘ(−v(p))

∫ x2

max(x2+2v(p)t,x1)

dx sYY [nx,t(p)] +

∫
dpΘ(v(p))

∫ min(x1+2v(p)t,x2)

x1

dx sYY [nx,t(p)] . (6.4)

As a check, we note that this expression recovers the results obtained in the conformal

case [55]. Moreover, we tested it against exact numerics for systems up to L = 4500

finding a good agreement, cf. Fig. 4. The example shown in Fig. 4 (a) is worth a

comment. We see that the entanglement entropy is not a monotonous function of time.

This situation can not be realised in the homogeneous case, as one can readily infer from

(4.1) and (4.2). On the contrary, this can happen after the junction of two different

states when the subsystem is deep on the side with larger Yang-Yang entropy. In this

case the initial growth of S[x1,x2](t) is due to pairs coming from the high-entropy side,
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Figure 4. Entanglement entropy after an inhomogeneous quench in the transverse

field Ising chain. The initial state is obtained by joining together two ground states of

the TFIC Hamiltonian (1.3) for different values of the magnetic field; specifically on

the right we have h = 3.5, on the left h = 0.9, and the time evolution is performed

with the same Hamiltonian for h = 3. Points are the result of exact numerics for a

system of size L = 4500, while the lines are obtained using our analytical prediction

(6.4). (a): S[x1,x2](t)/(x2 − x1) versus t/(x2 − x1). The numerical data approach the

prediction in the limit x2 →∞ at fixed x1/x2.(b): S[tζ1,tζ2](t) versus t with ζ1 = −0.5

and ζ2 = 1 (vmax = 2 with our conventions). There is a subleading constant offset in

the data due to O(t0) terms.

while the arrival of quasiparticles coming from the other side lowers the entanglement.

7. Conclusions

We have studied the evolution of the entanglement entropy after inhomogeneous

quenches in generic systems of free fermions. We focused on the protocol where

two semi-infinite systems, initially prepared in different macrostates, are suddenly

joined together and left to evolve unitarily. We computed the entanglement between

an arbitrary interval and the rest of the system, obtaining analytic formulae in two

prototypical examples: (i) the two initial macrostates are stationary; (ii) the two initial

macrostates are non-stationary pure states producing only pairs of quasiparticles. Our

formulae display a number of interesting features: most prominently, we find that the

entanglement dynamics is not uniquely specified by the thermodynamic information

given by the generalised hydrodynamic approach. To make quantitative predictions one
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needs a larger amount of microscopic information about the structure of the initial state.

Although the semi-classical picture employed to derive our results is non-rigorous,

we expect our formulae to become exact in the limit of infinite time: on the one hand,

we tested our findings to extremely high numerical precision; on the other hand, we

believe that a rigorous proof of the latter should be possible (even though non-trivial)

by employing a combination of the techniques used in [19] and [45].

All our results can directly be adapted to bosonic noninteracting models by

replacing the Yang-Yang entropy with the appropriate bosonic analogue, as in the

homogeneous case [10, 31]. Furthermore, for free models the same arguments lead to

exact formulae also for the Rényi entanglement entropy of arbitrary order, but this

ceases to be the case for interacting systems [65].

Having established the validity of the quasiparticle picture for the computation

of entanglement from inhomogeneous settings in the free case, it is natural to wonder

whether generalisation to the interacting integrable case is possible; this issue is currently

under investigation [66].
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Appendix A. Numerical Method

The time evolution of the entanglement entropy of one block of contiguous sites in free

fermionic systems (or systems mappable to free fermions) evolving from gaussian states

can be computed exactly using an efficient numerical procedure which we now describe.

The Hamiltonian of such systems can be (effectively) written in the following quadratic

form

H =
J

4

L∑
n,l=1

(
ax
n−L

2

ay
n−L

2

)
Hn,l

(
ax
l−L

2

ay
l−L

2

)
, (A.1)

where J sets the relevant energy scale, {Hn,l} are 2× 2 matrices, and the Majorana

fermions axn, a
y
l satisfy {aαn, aβl } = 2δnlδαβ. For definiteness we considered a system

defined on a lattice of L sites.

As Wick’s theorem applies at all times, the entanglement entropy of the subsystem

A = {x1, . . . , x2} with respect to the rest of the chain is completely specified by the

two-point correlations of Majorana fermions as follows [16,19,57,58]

SA(t) = −Tr

[(
I2|A| − ΓA(t)

2

)
ln

(
I2|A| − ΓA(t)

2

)]
. (A.2)
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Here In is the n-by-n identity, and ΓA(t) = PAΓ(t)P t
A, where PA is the 2|A|-by-2L matrix

with [PA]`,n = δ`+2x1,n and the correlation matrix Γ(t) reads as

Γ(t) =

 [Γ2(t)]1,1 . . . [Γ2(t)]1,L
...

. . .
...

[Γ2(t)]L,1 . . . [Γ2(t)]L,L

 , (A.3)

with

[Γ2(t)]n,m = δn,mI2 −
(

Tr[ρta
x
n−L

2

ax
m−L

2

] Tr[ρta
x
n−L

2

ay
m−L

2

]

Tr[ρta
y

n−L
2

ax
m−L

2

] Tr[ρta
y

n−L
2

ay
m−L

2

]

)
. (A.4)

Here ρt is the state of the system at time t.

Using the algebra of the Majorana fermions, it is evident that the 2L× 2L matrix

H, formed placing the blocks Hn,l as in (A.3), can be chosen to be skewsymmetric, so

that the correlation matrix Γ(t) can be written in terms of Γ(0) as follows (see Ref. [37]

for further details)

Γ(t) = e−iHtΓ(0)eiHt . (A.5)

The time evolution of the entanglement entropy is determined in three steps. (i) Define

the initial correlation matrix Γ(0). To do that, it is convenient to introduce a smoothened

version of the initial state that interpolates between the states on the two sides of the

junction over a finite length-scale λ = O(t0); we use such state in Eq. (A.4) for t = 0 to

produce the initial correlation matrix. (ii) Evolve Γ(0) using (A.5) for a set of discrete

times {ti}i=1,...,N . (iii) For each ti, diagonalise ΓA(ti) numerically and evaluate (A.2).

This procedure works efficiently for very large systems L ∼ 5000 up to very large times

Jtmax ∼ 800 and can be implemented to arbitrary precision.
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[52] J. Dubail, J.-M. Stéphan, J. Viti, and P. Calabrese, SciPost Phys. 2, 2 (2017);
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