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Abstract
In turbomachines, heat fluxes are generated during unilateral contact and frictional rotor–stator
interactions. Though they are expected to play a significant role in the overall dynamics of engines,
their precise influence in the dynamics is not well understood. This contribution proposes a blade–
casing reduced-order thermomechanical model involving unilateral contact and frictional terms
formulated as a Measure Differential Inclusion together with various numerical methods able to
properly capture the dynamics. Comparison with less advanced explicit time-marching schemes is
provided. It is shown that the MDI discretized via an implicit scheme is more robust. A sensitivity
analysis to the thermal coupling and model reduction is provided. It is found that the proposed
solution method sets a sound basis for efficient numerical simulations of thermomechanical rub
occurrences in turbomachinery.
Keywords
turbomachines, rotor–stator interaction, thermomechanics, unilateral contact, friction, nonsmooth
dynamics
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INTRODUCTION

Due to the need for more efficient aircraft and rotorcraft en-
gines, unilateral contact induced structural blade-to-casing
interactions due to minimal operating clearances are known
to be conceivable events. These rotor–stator contact inter-
actions have been investigated exclusively from the purely
mechanical standpoint where heat generation is neglected.
However, heat fluxes generated during the contact occur-
rences are believed to affect the dynamics to an important
degree.

Rotor–stator contact interactions are mathematically de-
scribed by unilateral constraints preventing penetration be-
tween the rotating blades and stationary casings. Such com-
plementarity conditions can be simply incorporated into the
model via regularization [1,2]. However, this introduces diffi-
culties such as numerical stiffness requiring artificially small
time steps in the time-marching solution method, low local
order of consistency, low global order of accuracy, as well
as stability issues [3]. Another possibility is to use Carpen-
ter’s numerical scheme [4] consisting in a prediction step to
detect interpenetration and a projection step to satisfy the
unilateral constraint when required. Though acceptable in
general, this method does not rely on a strong mathematical
ground and faces stability issues. For example, Carpenter’s
scheme is explicit while such schemes should be avoided
when solving the heat equation as they lead to stiff numeri-
cal problems [5] and therefore require very small time steps
in order to achieve numerical stability. Additionally, Car-
penter’s scheme hides the impact law, required in a space

semi-discrete setting, offering no control on it. The authors
have also experienced artificial energy increase due to the
projection step during contact phases.

This contribution investigates the dynamics of a simpli-
fied blade impacting a rigid body. The dynamics is described
by a Measure Differential Inclusion [3]. The scalability of this
approach to industrial problems involving a large number
of degrees-of-freedom is explored via a Craig-Bampton-like
model reduction technique. Both the full and the reduced-
order models are solved in the time domain using dedicated
nonsmooth numerical schemes [3]. The effect of thermome-
chanical coupling, the number of degrees-of-freedom of the
reduced model as well as numerical robustness are investi-
gated.

1. THERMOELASTICITY FORMULATION
The spring–mass system shown in Fig. 1 is considered. The
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Figure 1. Simplified blade–casing thermoelastic model.

presented methodology can be straightforwardly applied to
more complex systems including Finite Element models and
3D geometry, provided the mass matrix is lumped on the
contacting degree-of-freedom (dof). The nth mass, repre-
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senting the tip of the blade, undergoes a unilateral contact
condition corresponding to an obstacle, reflecting the casing.
Its time-dependent thermoelasic behaviour is described by{

u,tt − c2u,xx + θ = f

θ,t − θ,xx + u,xt = g

(1a)
(1b)

complemented with the contact conditions, where u is the
relative displacement around the resting position x, and θ
the temperature rise from an initial absolute temperature T .
In all this work, the following finite element discretization
of the aforementioned continuous problem is considered:{

M Üu + Cuu Ûu + Kuuu + Kuθθ = f u + fcontact

Cθθ Ûθ + Kθθθ = f θ + ftip

(2a)
(2b)

where u now denotes the vector of displacements, θ the vector
of temperatures, M , Cuu and Kuu are the mass, stiffness
and damping matrices, Cθθ and Kθθ are the heat capacity
and heat conductivity matrices, fcontact, f u and f θ are the
unilateral and frictional contact forces, external structural
loading and external heat loading, respectively. The coupling
between mechanical and thermal quantities is twofold:

• through the coupling matrix Kuθ , accounting for the
temperature-induced mechanical expansions;

• through the heat production at the blade tip ftip. In-
deed, when the blade and the casing are in contact,
friction generates heat. This is here incorporated via a
heat flux on the last node which is proportional to the
normal contact force : ftip = α fcontact.

Contact acts only on the last node which is unilaterally re-
stricted: fcontact = λe(n) where λ is the normal contact force
satisfying the Signorini conditions λ ≥ 0, d − u(n) ≥ 0 and
λ(u(n) − d) = 0 which reflect no sticking, no penetration
and no simultaneously vanishing normal contact force and
separating clearance. The vector e(n) is the nth vector of the
canonical basis (i.e. [0 . . . 0 1]⊤), superscripts •(n) denote the
nth component obtained from the inner product with e(n),
d is the initial gap between the two contacting bodies. A
Newton impact law is chosen: v(n)+ = −e · v(n)− where e is
the coefficient of restitution, v the vector of velocities (v = Ûu);
v(n)− and v(n)+ denote the pre- and post-impact velocities of
the contacting dof. Eq. (2) is to be understood in a weak sense,
as the velocity of mass n is discontinuous at impact times,
while λ and the heat flux involve Dirac impulses. The com-
plementarity conditions together with the impact law can
be rigorously expressed by means of a Measure Differential
Inclusion (MDI) [3]:

−λ ∈ ∂ψTR+ (d−u
(n))

(
−
v(n)+ + ev(n)−

1 + e

)
(3)

where ∂ψT+R (d−u(n)) is the subderivative of the indicator func-
tion of the tangent cone to R+ evaluated at d − u(n). This
concept and terminology can be confusing and a few expla-
nations to better grasp the underlying meaning of this MDI

are now given; more details can be found in [3]. The tangent
cone of R+ at d − u(n) is by definition [6]

TR+ (d − u(n)) =

{
R if d − u(n) > 0
R+ if d − u(n) = 0

(4a)
(4b)

and it can be shown that ∂ψTR+ (d−u
(n))(y) is equal to the fol-

lowing normal cone:

NTR+ (d−u
(n))(y) =


{0} if d − u(n) > 0,
{0} if d − u(n) = 0 and y > 0,
R− if d − u(n) = 0 and y ≤ 0.

(5a)
(5b)
(5c)

If contact is not activated, d − u(n) > 0 and from (3) and (5a),
λ ∈ {0}: there is no contact force and the velocity is con-
tinuous since λ = mn(v

(n)+ − v(n)−) = 0 by definition of the
differential measure [3]. During a contact phase, d − u(n) = 0
and y = −v(n) = 0 so λ ∈ R+: the contact force is such that
there is no sticking in the normal direction. At the end of
a contact phase, d − u(n) = 0 and y = −v(n) > 0 so λ ∈ {0}:
the contact force vanishes. The most interesting case is at
the beginning of a contact phase (impact): then d − u(n) = 0
and v(n)− > 0. The impulse is proportional to the velocity
discontinuity, the left-hand side (LHS) can be multiplied by
(mn(1+e))−1 in the inclusion because the left-hand side (RHS)
is a cone, and it follows from (3) and (4b) that

v(n)− − v(n)+

1 + e
= v(n)−−

v(n)+ + ev(n)−

1 + e
∈ ∂ψR+

(
−
v(n)+ + ev(n)−

1 + e

)
.

(6)

It can be shown through a case-by-case discussion that this
condition is satisfied if and only if

v(n)+ + ev(n)−

1 + e
= prox(R−, v(n)−) (7)

where by definition prox(K, y) = argminz∈K (∥z − y∥)2 with
K convex. At a gap closure time, v(n)− > 0 so the LHS is
zero and v(n)+ = −ev(n)− and the impact law is retrieved. To
summarize, Eq. (3) combines the unilateral contact conditions
with the impact law.

Altogether, the nonsmooth thermomechanical model is
expressed in a first-order form as:

A

Ûu
Ûv
Ûθ

 = B

u
v

θ

 +


0
f u + λe(n)

f θ + αλe(n)


−λ ∈ ∂ψTR+ (d−u

(n))

( v(n)+ + ev(n)−

1 + e
· e(n)

)
(8a)

(8b)

with

A =

I 0 0
0 M 0
0 0 Cθθ

 , B =


0 I 0
−Kuu −Cuu −Kuθ

0 −Cθu −Kθθ

 . (9)
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2. MODEL REDUCTION
Industrial Finite Element Models of turbomachines might
include thousands of degrees-of-freedom (dofs), leading to
high numerical costs. The objective of model reduction is to
approximate the dynamics with a “reasonable” accuracy us-
ing a reduced number of dofs. The present section describes
a first-order reduction of the thermomechanical model (8).

Various reduction methods are available [7–10]. The
Craig-Bampton incarnation [7] is recognized as a powerful
technique when dealing with unilateral constraints, as they
can be properly embedded in the reduced basis. In short,
this reduction method defines the contact nodes as boundary
nodes and projects the dynamics of the other interior nodes
on a small family of low-frequency mode shapes.

A variation of the Craig-Bampton reduction technique
devoted to thermoelasticity exists [11]. It merges the second-
order dynamics and the first-order1 heat equation into one
second-order equation, resulting in a singular generalized
mass matrix. Instead, the present work suggests a similar re-
duction however directly applied to the first order system (8).

Because of the contact conditions, the description of the
boundary is essential, therefore the boundary dofs of the
complete model u(n), v(n), θ(n) are kept as dofs in the reduced
basis. This distinction between boundary nodes and internal
nodes is reflected by rearranging the state vector X through
the permutation matrix P chosen such that:

X =

u
v

θ

 = P



ub
vb
θb
ui
vi
θi


(10)

where the subscripts •b and •i denote the boundary and the
interior, respectively.

The behaviour of the internal nodes is assumed to be
governed by a chosen number of shapes of two kinds:

• static shapes, describing the response of the internal
nodes to a prescribed unit displacement, velocity or
temperature applied to the boundary;

• dynamic shapes, describing the modal dynamics of the
internal nodes while keeping the boundary fixed in its
resting position.

The static shapes are obtained by successively computing the
static response Ψ to a unit prescribed displacement, velocity
and temperature at the boundary, is successively computed.
The equilibrium of the internal nodes yields:[

Bib Bii
] [ I
Ψ

]
=

[
0
]

(11)

where Bib and Bii are the blocks (2, 1) and (2, 2) of P−1BP. It
follows that Ψ = −B−1

ii Bib, which is easily computed from B
in (9).

1The heat equation being a parabolic PDE, its space discretization using
the Finite Element Method yields a first order time dependent ODE.

Then, the mechanical and thermal mode shapes, com-
puted on the clamped-boundary problem such as they should
not alter the behaviour of the boundary dofs, are first cal-
culated assuming the mechanical and thermal problems are
uncoupled. The reduction is operated by selecting only a
small number of such modes: the nuv = 2n − 2 mechanical
modes with the eigenvalue of lower modulus are selected;
similarly, the nθ = n − 1 thermal modes with eigenvalues of
the lower modulus are selected. Though not true in general,
one may notice that in a unidimensional problem such as
the one presently considered, mechanical and thermal mode
shapes are identical. In a second step, following [11], ther-
momechanical coupling is taken into account through a cor-
rection term Φuθ . The thermal-induced forces −Kuθ

ii Φ
θθ are

balanced with internal forces satisfying Kuu
ii Φ

uθ = −Kuθ
ii Φ

θθ

which yields the correction term Φuθ . Altogether, the full
model is approximated by:

ub
vb
θb
ui
vi
θi


≈ R


ub } 1
vb } 1
θb } 1
quv

} nuv
qθ

} nθ


B RX̄ (12)

where the 3n× (3+ nuv + nθ ) reduction matrix R is given by

R =
[
I3 0
Ψ Φ

]
with Φ =

[
Φuu Φuθ

0 Φθθ

]
. (13)

Instead of solving Eq. (8a) of the form A ÛX = BX+F , the goal
is to solve APR Û̄X = BPRX̄ + F + r where r is the residual
term stemming from the approximation. This equation is
then projected in a vector subspace orthogonal to the residual,
by multiplying to the left with a matrix R̃⊤P⊤. While in the
standard mechanical reduction process, the matrices A and
B are both symmetric and the projection and basis transfer
matrices R and R̃⊤ are equal, this no longer holds in the
thermoelastic case. The matrix R̃⊤ is chosen following the
empirical formula proposed in [11, Eq. (15)]. The projection
yields R̃⊤P⊤APR Û̄X ≈ R̃⊤P⊤BPRX̄ + R̃⊤P⊤F, that is:

Ā Û̄X = B̄X̄ + F̄ (14)

with Ā B R̃⊤P⊤APR, B̄ B R̃⊤P⊤BPR, F̄ B R̃⊤P⊤F. Both
Ā and B̄ are square matrices with 3 + nuv + nθ rows. Finally,
the reduced-order problem reads

Ā


Ûub
Ûvb
Ûθb
Ûquv

Ûqθ


= B̄


ub
vb
θb

quv

qθ


+


0

f u + λ
f θ + αλ

0
0


λ ∈ ∂ψTR+ (d−ub)

( v+b + ev−b
1 + e

)
.

(15a)

(15b)

For implementation purposes, it may be convenient to split
arbitrarily quv and rearrange the equations in a form similar
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to Eq. (8). The same algorithm can then be used to solve
the full and the reduced models. However, this may lead to
nonzero blocks A21 and A23.

3. TIME DISCRETIZATION OF THE MDI
We now proceed with the time discretization of Measure
Differential Inclusions of the form (8). The θ-method scheme
is chosen for the time discretization, with an integration
parameter γ = 0.5. This scheme is implicit, avoiding sta-
bility issues and numerical stiffness due to thermomechan-
ical coupling, and less dissipative than a simple Euler im-
plicit scheme. Introducing the time step h > 0, the time
domain is discretized with tk = kh such that Xk ≈ X(tk)with
Xk = [u⊤

k
v⊤
k
θ⊤
k
]⊤ and fk ≈ f (tk) with fk = [0 f u⊤

k
f θ⊤
k

]⊤.
We also introduce the vectors CNθ such that C⊤

N X = v(n) and
CNθ = [0 e(n)⊤ αe(n)⊤]⊤. The time discretization of Eq. (8)
then reads:

1
h

A(Xk+1 − Xk) = γ(BXk+1 + fk+1)

+ (1 − γ)(BXk + fk) + CNθλk+1 (16a)

and

−λk+1 ∈ ∂ψ
TR+ (d−u

(n)
k+1)

( v(n)
k+1 + ev(n)

k

1 + e

)
. (16b)

This can be reformulated under the form

Xk+1 − Xk+1,p = D−1CNθλk+1 (17)

where Xk+1,p = Xk + D−1h[BXk + γ fk+1 + (1 − γ) fk] is the
predicted state vector neglecting contact constraints, and
D = A − hγB is the state iteration matrix [3] supposedly
invertible.

Left-multiplying equation (17) byC⊤
N and solving for λk+1

yields

λk+1 = [C⊤
N D−1CNθ ]

−1 (v(n)
k+1 − v

(n)
k+1,p

)
. (18)

Since (16b) is a cone inclusion, λ can be multiplied by the
scalar C⊤

N D−1CNθ/(1 + e) without changing the RHS. Using
this property and the two following equalities:

1
1 + e

(v
(n)
k+1 − v

(n)
k

) =
v
(n)
k+1 + ev(n)

k

1 + e
− v

(n)
k
, (19)

v
(n)
k+1,p=v

(n)
k
+C⊤

N D−1h[BXk + γ fk+1 + (1 − γ) fk] (20)

together with Eq. (18), it finally comes that inclusion (16b)
can be written as

v
(n)
k+1 + ev(n)

k

1 + e
− bk ∈−∂ψTR+ (d−u

(n)
k+1)

( v(n)
k+1 + ev(n)

k

1 + e

)
(21)

for some bk . Using the property of the prox operator that
x−y ∈ −∂ψK (x) ⇐⇒ x = prox(K, y) [3, Eq. (1.36)], Eq. (21)
becomes

v
(n)
k+1 + ev(n)

k

1 + e
= prox

(
TR+ (d − u(n)

k+1),−bk
)
. (22)

The prox operator can be made explicit, using its definition
and Eq. (4):

prox
(
TR+ (u), v

)
=

{
v if u > 0
min(0, v) if u = 0.

(23)
(24)

Problem (8) can be solved iteratively from:


Eq. (16a) except row 2n

v
(n)
k+1 = −ev(n)

k
+ (1 + e)prox

(
TR+ (d − u(n)

k+1),−bk
)

λk+1 from Eq. (18)

(25a)

(25b)
(25c)

yielding 3n + 1 unknowns (uk+1, vk+1, θk+1, λk+1) for 3n + 1
equations. The normal force λk+1 can be eliminated from
(25a) using (25c), and the remaining can be solved in a semi-
smooth Newton loop, at each time step.

4. RESULTS
Model parameters are tuned to match a typical blade of com-
pressor2 using n = 20. The contacting node is subjected
to a periodic sinusoidal loading of amplitude 7 N, rotation
speed: 2000 rpm (rotations per minute) representing a cyclic
loading. The clearance at rest is chosen as 15 µm. Results are
presented with attention paid to the effect of thermal cou-
pling, on the model reduction and on the robustness of the
proposed model and simulation methods. Unless otherwise
specified, the time step is h = 10−4 s.

4.1 Effect of thermal coupling
The blade tip position, the temperature and the normal con-
tact force are depicted in Fig. 2 for two models: the one de-
scribed in Sec. 1withKuθ = βKuu and β = −4.5 × 10−7 m K−1,
and its uncoupled version obtained by setting Kθu = 0 in
Eq. (2a). In the uncoupled model, the positions and the
contact force are periodic in time; the temperature increases
at each contact due to ftip and does not have time to diffuse
at the considered time scale—the characteristic time of diffu-
sion is (l/n)2ρc/λth ∼ 3 min. In the coupled model, the heat
increase generates an expansion of the blade, which tends
to close the gap and increase the magnitude of the normal
contact force, increasing the heat flux, and so on: the cou-
pling leads to an instability. In a more realistic model, the
gap would open because of blade deflection for some level of
contact force; this is out of the scope of the present work.

The heat flux ftip = αλ at the blade tip reproduces the
heat created in a turbomachine when a blade interacts with
the surrounding casing. The coefficient α accounts for the
friction coefficient as well as the tangential contact velocity;
in the case of a Coulomb friction model, α is the product
of Coulomb’s friction coefficient and the tangential veloc-
ity. Three simulations are depicted in Fig. 3 with various

2Cross section A = 10−6 m2 – length L = 30 × 10−2 m – Young’s modu-
lus E = 110 × 109 Pa – mass density: 4500 kg m−3 – specific heat capacity
c = 585 J kg−1 K−1 – thermal conductivity λth = 3.35 W m−1 K−1. Total
mass m = 0.1 kg.
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Figure 2. Thermal coupling: coupled [ ] and uncoupled [ ]
models.
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Figure 3. Influence of the coefficient α in the heat flux ftip = αλ
created during contact phases. [ ] α = 1 m s−1. [ ] α = 3 m s−1.
[ ] α = 7 m s−1.

α. The above-described thermal instability is observed with
α = 7 m s−1: after 0.3 s, as a result of the thermomechani-
cal coupling, the contact remains closed while the normal

contact force and the temperature diverge, as expected. It
is worth mentioning this physical instability induces no nu-
merical issue or artefact.

Overall, the thermomechanical coupling is shown to have
a significant effect on the mechanical response of the model.

4.2 Model reduction
We now proceed with the comparison between the complete
coupled model and two reduced models, following the pro-
cedure described in Sec. 2. The first reduced model (RM1)
has nuv = 3 mechanical shapes and nθ = 12 thermal shapes.
The second reduced model (RM2) is even smaller in size with
nuv = 2 and nθ = 5. It is recalled that the full model corre-
sponds to nuv = 2n − 2 = 38 and nθ = n − 1 = 19, so the
size of the problem to solve is divided by approximatively
3 for RM1 and 6 for RM2. It is worth recalling that during
the reduction, some coupling terms appear in the matrix A,
making it hard to foresee how the computation times will be
reduced.
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Figure 4. Comparison between the complete model and the two
reduced models. [ ] Complete model. [ ] RM1. [ ] RM2.

The simulations using the three models are depicted in
Fig. 4. As long as the increase of temperature is limited, the
three models give similar positions and contact forces, mean-
ing that the dynamics is governed by a very limited number
of degrees-of-freedom, typically three here. After a few con-
tact phases, RM1 estimates the temperature pretty accurately
while RM2 significantly underestimates the increase of tem-
perature, leading to an underestimation of the contact force.
This indicates that about a dozen of thermal modes is needed
to accurately describe the solution of the problem. The num-
ber of thermal modes to ensure convergence exceeds the
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number of mechanical modes: this is presumably due to the
rapid changes of temperature compared to the characteristic
time of diffusion.

All in all it has been shown that the reduction technique
proposed in Sec. 2 is compatible with the nonsmooth ther-
momechanical contact problem developed in Sec. 1.

4.3 Sensitivity to numerical parameters
In Carpenter’s scheme [4], contact is dealt with by an explicit
numerical procedure inconveniently stiff for the heat equa-
tion. Small time steps are required for stability purposes and
with the set of parameters of the present work, the stability
condition corresponds approximately to h < 2 × 10−5 s. For
such time steps, results similar to the ones generated with the
nonsmooth model are observed, see Fig. 5. A close-up view of
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Figure 5. Comparison between Carpenter’s scheme and the pro-
posed scheme. The three curves cannot be distinguished. [ ]
Carpenter with h = 10−5 s. [ ] Proposed scheme with h = 10−5 s.
[ ] Proposed scheme with h = 10−6 s.

the first contact phase is provided in Fig. 6. At these space and
time scales, the proposed scheme with h = 10−6 s or 10−5 s
is still very similar to Carpenter’s scheme with h = 10−5 s.
Significant differences become visible with h = 10−4 s, how-
ever the predicted level of force and positions remain correct,
and these small-scale discrepancies does not significantly
alter the long-term behaviour of the forced system as seen
in Fig. 5. Another difference is visible in the position of the
contacting node. Carpenter’s scheme consists in projecting
the penetrating blade position u(n) on the contact interface:
this step might add superfluous potential energy. In contrast,
the nonsmooth model does not prevent penetration. This
is particularly visible in Fig 6 with curve corresponding to
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Figure 6. Close-up of the position of the blade tip and the contact
force during a contact phase for two different time steps. [ ] Car-
penter’s scheme with h = 10−5 s. [ ] Proposed scheme with
h = 10−5 s. [ ] Proposed scheme with h = 10−6 s. [ ] Pro-
posed scheme with h = 10−4 s. The first three curves are nearly
indistinguishable.

the largest time step. When penetration occurs, contact is
maintained at the exact same level as long as the normal
force is positive. This residual penetration directly depends
on h and Ûu(n), and can thus be easily controlled: it will never
exceed h Ûu(n). As soon as unilateral contact is activated, the
normal contact force becomes non-zero, see the first time
step after 4 ms, magenta curve. The simulation with the
smallest time step shows two Delta-like spikes near 4 and
5 ms: the height of the spikes multiplied by the time step
corresponds to the momentum of the contacting mass just
before impact (mn∆ Ûu(n) = λ∆t); the impulsive feature of λ
appears as ∆t decreases to 0, illustrating the non-smooth
character of contact.

The nonsmooth simulations rely on an implicit scheme,
unconditionally stable in the linear case. There is no regu-
larization parameter and the nonsmooth character can be
observed even with very coarse time steps, see Fig. 6, top. De-
spite the large time step (the first contact phase is covered by
about 65 steps with h = 10−4 s while around 650 for Carpen-
ter), the position of the last node and the normal contact force
are estimated with reasonable accuracy. On a larger scale, as
shown in Fig. 7, using a large time step (h = 5 × 10−4 s leads
to a slight underestimation of the contact force at the contact
interface. Still, the position is accurately described and the
qualitative behaviour is recovered.
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Figure 7. Influence of the time step in the proposed formulation.
[ ] h = 10−5 s. [ ] h = 10−4 s. [ ] h = 5 × 10−4 s. The first
two curves are indistinguishable.

5. CONCLUSION

Carpenter’s scheme can be used to simulate rotor–stator in-
teractions. However, it relies on an explicit numerical scheme
which is not suitable for thermomechanical models, as it
leads to constrained numerical stability. In this method, com-
plementarity conditions are dealt with by projecting any
predicted penetration on the contact interface. This strat-
egy hides an impact law and can lead to an increase of the
total energy. In this work, a sounder basis is proposed for
the investigation of thermomechanical effects in rotor–stator
contact interaction, through the use of nonsmooth methods.
A simple 20-dof blade impacting a fixed carter is considered
and modelled using a Measure Differential Inclusion account-
ing for thermomechanical coupling and friction-induced heat
fluxes at the blade tip. The numerical methods used to simu-
late the model are detailed.

As expected, thermal effects can significantly modify
the dynamics of the blade. While Carpenter’s scheme re-
quires time steps smaller than 2 × 10−5 s to achieve numer-
ical stability, the proposed nonsmooth solver is robust and
allows to perform faster simulations thanks to larger time
steps. No significant difference in the prediction of the con-
tact force, position and temperature was observed with time
steps of 5 × 10−4 s. For large time steps (approx. 5 × 10−3 s
and greater), the temperature and the normal contact force
is underestimated. This could be corrected by increasing
artificially the friction-induced heat flux to avoid the error
in temperature propagating to displacements on longer time

scales.
Industrial turbomachine models include thousands of

nodes, requiring model reduction. In this context, a first-
order Craig-Bampton-like reduction is adapted to linear ther-
moelastic systems. While the dynamics can be described with
a very small number of mechanical shapes (two or three),
due to the rapid changes of temperature induced by contact,
the number of thermal shapes cannot be reduced to the same
degree. In the end, in the presented results consisting in eight
successive contact phases, the positions, temperatures and
normal force were well estimated using about a third of the
full model size.

Altogether, the proposed methodology offers a sound
ground for nonsmooth thermomechanical simulations. Fu-
ture works include the simulation of more challenging mod-
els with intricate contact interfaces and the incorporation
of blade deflection and damage mechanisms to reflect the
presence of abradable coating on the casing.
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