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A discrete event traffic model explaining the traffic phases of the train
dynamics on a linear metro line with demand-dependent control

Florian Schanzenbicher'*, Nadir Farhi2, Fabien Leurent®, Gérard Gabriel*

Abstract—In this paper we present a mathematical model of
the train dynamics in a linear metro line system with demand-
dependent run and dwell times. On every segment of the line,
we consider two main constraints. The first constraint is on
the travel time, which is the sum of run and dwell time. The
second one is on the safe separation time, modeling the signaling
system, so that only one train can occupy a segment at a time.
The dwell and the run times are modeled dynamically, with two
control laws. The one on the dwell time makes sure that all the
passengers can debark from and embark into the train. The
one on the run time ensures train time-headway regularity in
the case where perturbations do not exceed a run time margin.

We use a Max-plus algebra approach which allows to derive
analytic formulas for the train time-headway and frequency
depending on the number of trains and on the passenger
demand. The analytic formulas, illustrated by 3D figures,
permit to understand the phases of the train dynamics of a
linear metro line being operated as a transport on demand
system.

I. INTRODUCTION AND LITERATURE REVIEW

Innovative public transportation systems are nowadays
more and more turned towards transport on demand systems.
Transport on demand signifies that the transportation offer is
adjusted in real-time to satisfy the passenger demand. This
features trains stopping at stations just as long as needed to
let passengers debark and embark. Irregularities on the train
time-headway shall be recovered quickly to avoid a cascade
effect, that is a longer headway causes a longer dwell time
because of the accumulation of passengers, which causes
an even longer headway. Therefore, transport on demand
systems necessitate an efficient control. The latter detects and
controls perturbations to offer a reliable service to costumers
with a constant train frequency that equalizes the passenger
charge over all trains.

Several approaches for control of mass transit metro
systems have been proposed. The authors of [6] have applied
a quadratic programming algorithm for optimal traffic control
to a circular metro line, taking into account a constant
passenger arrival rate at the platforms. In [11] an optimal
control strategy to gain on headway regularity for the traffic
on a mass transit railway line using a quadratic programming
algorithm has been proposed. This method has been extended
by [7] and [8], considering uncertain time-variant passenger
demand. Moreover, the authors of [12] have developed a
real-time control approach for a metro system which deals

1 RATP, Paris, France and Université Paris-Est, France.

2 Université Paris-Est, COSYS, GRETTIA, IFSTTAR, France.

3 LVMT, ENPC, France.

4 RATP, Paris, France.

* Corresponding author. florian.schanzenbacher@ratp.fr

with stochastic passenger demand on the one side, and opti-
mizes energy consumption, on the other side. However, the
models [6],[11],[7],[8],[12] allow to represent only one train
per inter-station [2], which limits their practical relevance,
especially in networks with longer inter-station distances.
The Max-plus approach features many advantages for the
control of discrete event systems, like metro lines, which are
discretized into segments. For more details on the Max-plus
algebra refer to [1].

Demand-dependent control of transportation systems mod-
eled in Max-plus algebra, has only recently begun to be
treated in scientific research. The authours of [4] have
presented a Max-plus model for a linear metro line with
constant dwell and run times. The authors of [5] have adopted
this model for a linear metro line with dynamic dwell times
depending on the passenger demand. Their model includes an
efficient control strategy which stabilizes the system in case
of perturbations on the train time-headway. In their approach,
longer headways are recovered by shortening dwell times
of retarded trains. This control strategy is efficient since,
in case of perturbations, trains running on schedule are not
retarded, but trains running behind schedule are accelerated
via shorter dwell times to recover delays and to harmonize
headways. However, retarded trains generally face higher
demand at the upcoming stops, because passengers have
been accumulating over a longer time interval. Consequently,
recovering perturbations by cutting down dwell times is
counterintuitive.

Therefore, in this paper we propose a mathematical Max-
plus model for a linear metro line with demand-dependent
dwell and run times. The dwell time takes into account
passenger upload and download rate as given by the vehicle
characteristics, as well as passenger demand emissions and
attractions of the platforms. Perturbations on the train time-
headway are recovered by shorter run times on the following
inter-stations to avoid the amplification of the perturbation
and a cascade effect. The here presented mathematical model
features a derivation of analytic formulas of the average train
time-headway and frequency depending on the number of
trains on the line and on the passenger demand.

In our future work, we will extend this model to cope
with the stochastic nature of the passenger demand. The
authors of [9] have published on model predictive control
for stochastic switching Max-plus linear systems.

II. REVIEW ON MAX-PLUS ALGEBRA

As having been said above, Max-plus algebra has several
advantages for modeling discrete event systems.



Max-plus algebra [1] is the idempotent commutative semi-
ring (R U {—o0},®, ®), where the addition and the mul-
tiplication of @, b is defined by: a ® b = max{a,b} and
a ®b = a+ b. This allows to model the dynamics of a
metro system in a matrix form which is highly advantageous
for deriving analytic formulas of the train dynamics, as the
average train time-headway and frequency, as well as for
real-time traffic control.

For more details on how to model the train dynamics on a
metro line in Max-plus algebra and how to technically derive
analytic formulas of the average train time-headway and the
frequency refer to [4]. The main Theorem we use here to
derive the analytic formulas for the average asymptotic train
time-headway and frequency is from [3] and has already been
applied in [4].

III. TRAIN DYNAMICS

This work is based on [4] where a discrete event traffic
model explaining the traffic phases of the train dynamics
on a linear metro line has been proposed. In [4], lower
bounds are imposed to the run and dwell times, independent
of the passenger travel demand. We extend here the model
presented by the authors of [4], accounting for the passenger
travel demand in the run and dwell time dynamics. As the
authors of [4], we consider a space discretization of the metro
line into n segments, as shown in Fig.
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Fig. 1. A linear metro line representation.

Let us use similar notations to those used in [4].

d¥  the k' departure time of trains on segment j.

a®  the k" arrival time of trains on segment j.

r;  the average running time of trains on segment j
(between nodes 7 — 1 and 7).

w? = d? — a¥ the k™ dwell time on node j.

J

tf =r;+ wjg the k™ travel time from node
j — 1 to node j.

g;? = a? - df_l the k" safe separation time

(or close-in time) at node j.
hk o =db —dht = gF 4wk the k™

departure time-headway at node j.
k _ k+by
i =Y T
b; €{0,1}. It is O (resp. 1) if there is no
train (resp. one train) at segment j.

b =1-b;.

Lower and upper bounds are written r;, w;,;, 9,0 h; and

wj,1;,gj, hj where w ;18 the minimum dwell time, regarding

the demand, and r; the minimum run time, given by the

fastest speed profile. The average on & and j of the quantities
above are denoted 7, w, t, g, h and s. We have the following
relationships [4].

g=r+s, (1
t=r+w, 2)
h=g+w=r+w+s=t+s. 3)

We replace now the static run and dwell times by a model
giving these two variables as a function of the demand and
the vehicle characteristics. Moreover, we suppose that the
demand for the next train is completely satisfied by this
train, that means all the passengers willing to debark will
get off and all the ones on the platform will board. This
assumption is necessary since, at this point, we do not
take into account the capacity of platforms and trains. It
will be done in a further step. Furthermore, the following
passenger demand model supposes an average demand for
each platform. We use the following additional notations.

Aij passenger travel demand from platform ¢ to
platform j, when ¢ and j denote platforms, and
Aij = 0if ¢ or 7 is not a platform node.

Ain =53 j Aij the average passenger arrival rate on
origin platform ¢ to any destination platform.

Ag‘" = >, \i; the average passenger arrival rate on
any origin platform to destination platform j.
mn y
o eras passenger downloud e on patorm .
aj;”‘ hj =37 Aijhi/ag"* time for passenger download
_ at platform j.
Al

% h;  time for passenger upload at platform j.
We define x; as a passenger demand parameter

/\qut )\ip
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such that x;h; represents the time needed for passenger
down- and upload at platform j.
The model presented in [4] considers two time constraints:

o A constraint on the travel time on every segment j.

k k—b;
dj > d;_y" +t;. (5)
o A constraint on the safe separation time at every seg-
ment j. -
k k—bj 41
dj >d; ;"7 + 4. (6)
In [4], t; in constraint @ Is written t; = 1; + w;

since running times r; are assumed to be constant over
time, and dwell times w; are lower bounded without any
dependence on the passenger travel demand. In the model
we present here, we modify constraint (5), whereas we keep
constraint (6) unchanged. We replace constraint (5) with the
following.

k—b; | Lk k—b;
df > d; ") 5 (hE xy) = di 77 4 (W @) +wl (R, ),
(N



In constraint r wj and thus 1&’C are functions of the
train time- headway h , and of the passenger demand. The
function tk(hk x;) 1s the control law which makes the
train dynamics adaptive with respect to train delays and to
passenger demand.

We pass here from static travel times, which are supposed
to respect lower bounds, to a travel time model which is a
function of the passenger demand.

Moreover, the dwell time, the first component of the travel
time, is a linear function of the train time-headway. The run
time, the second component of the travel time, is as well
a function of the train time-headway and will be used to
recover perturbations on the dwell time. We detail below the
two functions 7¥(h¥) and w’ (h¥).

A. The dwell time control law

Let us first recall that in [5], two dwell time models
depending on the passenger travel demand have been con-
sidered. The first model is of the form

K Nk
wj = o, h;. ®)
We can see that the dwell time takes into account the
needed upload time without taking into account the needed
download time. This model permits to adjust the dwell times
on platforms in function of the arrival demand. However, it
has been shown in [5] that the train dynamics is not stable
in this case. That means train delays are amplified over time
and propagate backwards through the metro line.

To deal with the latter problem, the authors of [5] have
proposed a second model for the train dwell times at plat-
forms. The model is of the form

A
wh = w; — Hjihf, )
J

with 0; being a control parameter to be fixed. The authors
have shown that the model (9) guarantees the stability of the
train dynamics, and that the dynamics admit an asymptotic
regime with an asymptotic average train time-headway. The
latter is derived by simulation in function of the number of
trains and of the level of the passenger demand. However,
with the control law of model (9), a delayed train at platform
7, which induces an accumulation of passengers at platform
7, will reduce the train dwell time at that platform, what is
absurd for passengers.

We propose here a model which resolves all those prob-
lems. The dwell time model is similar to the model (8)),
but it also takes into account the attraction term of the
travel demand. In order to deal with the instability issue, we
complete the dwell time model with a running time model
which cancels the terms that causes instability in the dwell
time model. More precisely, for a train delay at a platform j,
the dwell time model extends the dwell time at that platform
in order to satisfy the needed download and upload times.
The running time model will reduce the running time from
platform j to platform 7 + 1 in order to compensate in such
a way that the whole travel time (¢t = w + ) is stable.

The dwell time model is the following.

wf(hf, xj) = min(xjh.];, w;), (10)

where the k*" dwell time on platform j is the minimum
time for passenger up- and download on the platform, and a
maximum dwell time w; to avoid train congestion behind a
train stopping too long. The lower bounds on w; are fixed
as follows (upper bounds are fixed accordingly).

w; :'Tjhjv (11

where h; are derived from given 9 from the formula h =
g-+w of (3), and from the dwell time law (T0), as follows.
We have

Then we get
hy =1/ =) g, (13)
and then
w; = Xjg., (14)
where X; = z,/(1 — x;). Let us notice, that corre-

sponds to the minimum dwell time satisfying the demand.
The upper bounds are fixed similarly. From the point on we
observe a small perturbation on the train time-headway, the
following longer dwell time, modeled in equation (I0), will
make this perturbation growing, since longer headways result
in longer dwell times which results in even longer headways.
Our aim is to recover perturbations on the dwell time by a
dynamic running time model in order to stabilize the system.

B. The running time control law

We propose the following running time law.
k(pk - k
ri(hy,z;) 7y —aj (hf —hy)},

where 7; is the average (nominal) running time of trains on
segment j.

The model (I5) gives the running time as the maximum
between a given minimum running time r; and a term that
subtracts x; (hé€ — ﬁj) from the nominal running time. The
term x; (h;C — Qj) expresses a deviation of the upload and
download time, due to a deviation of the train time-headway.
We notice here that the term x7hf, appearing in the dwell
time law with a sign “+4”, appears in the running time
law (I5) with a sign “—".

Combining the dwell time law with the running time
law @]) we obtain the following train travel time law.

t5(xy) = ri (hY, x;) + wi (s, z;).
Let us use the notations.

Ahj = hj —hj, Agj = gj _gj’

Arj:=7; —

5)

= max {r;,

(16)

s,
with Bj being the longest headway observed. It is then easy
to check the following.

ij = LlijAhj = X]Ag],vj



Then we have the following result.

Theorem 1: 1f hi < hj = 1/(1 — x;) g;,¥j and Ar; >
Aw; = X;Ag;,Vy, then the dynamic system (6)-(7) is a
Max-plus linear system, and is equivalent to

df > di7) + 7 + Xig . (17)
d > d; 7+ s (18)

Proof: By induction, let us first show that (6)-(7) is equivalent
to (I7)-(18) for k = 1.
e On the one side, we have acjhjl» < xjfzj = wj.
Therefore, the first term realizes the minimum in @
That is, (I0) is equivalent to

wj(hj,x;) = x;h;. (19)
¢ On the other side, we have
7 —xj(h —h;) =75 = (b — hy)
=7; —Aw; >7; — Ary =1,
Therefore, the second term realizes the maximum

in (T3). That is, (I5) is equivalent to

ri(hj,z;) =75 — aj (hj — hy) . 20)
Consequently, (I6) gives
t;(;vj)zfj—i—xjﬁjzfj—i—ngj. (21)

Then (7) can be written

dj > &7y + 75+ X,g,

Let us now show, that if (6)-(7) is equivalent to (I7)-(I8)
for a given k, then it holds also for k£ + 1. Since it holds
for k, then a Max-plus linear dynamics (I7)-(I8) will be
applied for k. We notice by f the Max-plus map of the Max-
plus dynamics. We know that Max-plus linear maps are 1-
Lipschitz for the sup. norm. The assertion holds for £ means
that h¥ < h;,Vj. Then ||d* — d*~ || < h;. Hence

14t =¥ |og = [|£(d5) £ (") oo < [l ~d* " |oe < s

Therefore h?“ < h;,Vj. Then, we can easily show (as done
for k = 1) that (6)-(7) is equivalent to (I7)-(I8) for & + 1.
[ |

Let us interpret the two conditions of Theorem [I]

« Condition hj < hj = 1/(1 — x;) gj,Vj,k limits the
initial headway hl (1 e. the initial condition) to its upper
bound h], Wthh is given by the level of the passenger
travel demand x; at platform j, and by the upper bound
g; on the safe separation time at the same platform. We
notice here that a big value of hé? corresponds to a delay
of the k' train passing by platform j. Therefore, this
condition, tells that if all the delays expressed by h Vg
are limited to h] , V7, then the dynamic system is Max-
plus linear, and is then stable, and admits a stationary
regime. In other words, the train dynamics is stable
under small disturbances.

o Condition Ar; > Aw; = X;Ag;,V; limits the margin
on the train dwell times to the margin on the train

running times. Indeed, as explained above, the model
consists in responding to disturbances and train delays
by first extending the train dwell times so that the
passengers accumulated on the platforms have time to
embark, and second, by recovering the dwell time exten-
sion by reducing the train run times on the downstream
inter-stations. In order to ensure this recovering to be
possible, and then the dynamic system to be stable, we
need the margin on the running times to be at least equal
to the margin on the train dwell times at the platforms.

It is important to notice that fixing bounds on r and on g

will impose bounds on s, according to ().
gj =T + 5.

In , the travel time tk(xj) depends on the demand
X;, welghted by the minimum safe separation time 9, This
dependence is linear on X;. We notice also that, in general
we have

)\2“‘, )\‘J“ << a"‘“ aij“.

Therefore x; can be assumed to be close to 0. By consequent,
a linearity with respect to X; is a kind of exponential
relationship with respect to x;, since X; = z;/(1 — z;).
Condition Ar; > Aw; = X;Ag;,Vj of Theoremmakes a
link between two important parameters which are the margin
on the running time control Ar;, and the level of the travel
demand X ;. Finally, the dynamic modeling of the dwell and
run time allows to adjust the run time margin Ar; depending
on the demand. The system can be optimized with regard to
train frequency or stability.

In the following section, we give directly the analytic
formulas for the average asymptotic train time-headway h
and the average asymptotic frequency f for the three traffic
phases, which can be derived as in [4].

IV. THE TRAFFIC PHASES

The Max-plus theorem derived in ([4], Theorem 1) gives
the average asymptotic train time-headway on a linear metro
line as a function of the number of trains circulating on the
line. Let us consider the following notations.

m  the number of trains.
n  the number of segments on the line.
X the vector of demand parameters X, Vj.

Since the here presented model can, as the model with static
run and dwell times in [4], be written in Max-plus algebra,
we can directly replace ¢; in ([4], Theorem 2) by ti(z;).

- ,m?X(tj(Ij) +8j) =
(22)

By replacing t?(x]) using , we obtain the following
result.

Theorem 2: The average asymptotic train time-headway
of the linear Max-plus system with dynamic dwell and run
times depending on the demand is given by the average
asymptotic growth rate of the system. The average headway

) = | Z20052 2



depends on the number of trains m on the line and the
passenger travel demand for every station X;.

h(m7 X) — max man((ngj + fj) +§j)a

Z]‘ S5

n—m °

Proof: Under the conditions of Theorem [I} the system can
be written in Max-plus algebra. It has been shown in [4] that
in this case, the average asymptotic growth rate of the system
can be analytically derived and corresponds to the average
headway. We replace ¢; in the Max-plus theorem of [4] and
obtain demand-dependent headway equation. [ ]
We notice that i depends not only on the number of trains
m, but furthermore on a weighted mean of the demand
> j(Qij + 7;), and on the maximum of all the station
demands maxj((ngj +75) +55)-

We obtain the analytic formulas for the average train
frequency on the line directly from Theorem [2]

Corollary 1: The average frequency of the linear Max-
plus system with demand-dependent dwell and run times is
a function of the number of trains and the travel demand.

. 1
f(maX) = min rnaxj'((ngj-‘r’f'j)-‘réj)’
Z; s
Proof: Directly from Theorem [2| with f = 1/h. [ ]

Table [I] depicts the three headway phases derived in The-
orem 2] as well as the three frequency phases of Corollary
for a linear metro line with 18 stations from the RATP
network in Paris. The demand level has been assumed to be
equal for all the platforms. The graphs in the left column
are given in function of the average demand parameter
x = (AUt /Ut 4 \i" /o) | whereas the ones in the right
column depict the main results over X = z/(1 — x).

Let us interpret the first two graphs with the results of
Theorem The headway in the free flow traffic phase
depends on X and on m. For a fixed m, the headway is linear
in X. In the maximum frequency phase, the headway is given
by the maximum max; ((ngj +7j) + 8;). The headway
in the maximum frequency phase is here linear in X and
moreover independent of m. In the congested traffic phase,
the analytic formula shows that the headway is independent
of the demand. Furthermore, the headway increases with m.

On the left side, the headway is depicted over z. In the
free flow traffic phase, the headway is non linear, even for
a fixed m. Since X = x/(1 — x), the headway is non linear
in the maximum frequency phase. Finally, in the congested
traffic phase, the headway is independent of the demand and
increases with m.

Let us now look at the frequency, as given by Corollary
In the free flow traffic phase, for a fixed m, the frequency

is non linear in X, since the headway is linear here and
f =1/h. For a fixed X, the frequency is linear in m. The
same can be observed for the maximum frequency phase,
which is non linear in X, because the headway is linear in
X here. In the congested traffic phase, the frequency is linear
in m.

For the frequency given over z, the free flow traffic phase
in non linear for fixed m, but it is linear in m for a fixed x. In
the maximum frequency phase, the frequency is independent
of the number of trains m, and it is non linear in the demand
parameter z. Finally, as above, the frequency is linear in m
in the congested traffic phase, whereas it degrades linearly.

V. CONCLUSIONS

We have presented here a mathematical model which
describes the train dynamics of a linear metro line, and
proposes a traffic control strategy. The model considers
two control laws, one for the train dwell and one for the
run times, taking into account the passenger demand. It
is a discrete event traffic model. The approach is based
on the Max-plus algebra which has allowed us to derive
analytic formulas for the average asymptotic train time-
headway and frequency, in function of the number of trains
and of the passenger demand, with the characteristics of the
infrastructure and the vehicles being taken into account, too.

Our approach solves the problem that delayed trains facing
a higher demand on the upcoming stations, are more and
more delayed, which leads to a serious destabilization of
the system. The model detects such a possible cascade
effect. In case of a delayed train to a given platform, where
passengers have been accumulating, the train dwell time
is extended to respond to the passenger demand. To avoid
the amplification of the train delay, the running time is
reduced in the following inter-station to recover the dwell
time extension. Consequently, the train dynamics responds
to the passenger demand, and remains stable.

Theorem [I| has shown that dwell times can only be
extended up to the margin on the running time in the
following inter station. However, as given in Theorem [2] the
average asymptotic headway increases with the margin on
the run time. That means, a compromise has to be found to
satisfy both a high frequency service on the one side, and to
guarantee system stability, on the other side.

In our future work, we will apply this approach to a metro
line with a junction. Moreover, we will propose a model for
the passenger stock at the platforms and in the trains. In
an ultimate version, we will finally handle the uncertainties
in the system, due to the stochastic nature of the passenger
demand.
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