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Physical Models and Control of the Train Dynamics
in a Metro Line Without Junction

Nadir Farhi

Abstract— We propose a traffic flow and control model for
the train dynamics in a linear metro line without junction. The
model takes into account time constraints such as minimum inter-
station running times, minimum train dwell times at platforms,
and minimum safe separation times between successive trains.
Moreover, it includes a control law that sets the train dwell times
at platforms based on the feedback of the train time-headways
and of the passenger arrival rates at platforms. We show that the
dynamic system converges to a stable stationary regime with a
unique average growth rate, and derive, by numerical simulation,
the traffic phases of the train dynamics. We compare the obtained
traffic phases with the ones derived with an existing max-plus
algebra traffic model, and derive the effect of the passenger travel
demand on the train dynamics. Finally, we draw some conclusions
and discuss perspectives of the proposed approach.

Index Terms— Physics of traffic, railway traffic, traffic control,
traffic modeling.

I. INTRODUCTION

COLLECTIVE transport by metro is one of the high-
capacity passenger transport systems in urban areas.

Often grade separated, and operating on an exclusive right-
of-way, metro systems allow the realization of high train fre-
quencies. However, as well known, natural instability appears
when a metro line is exploited at high frequencies, where the
capacity margins are reduced (see [25]). Indeed, the reduction
of the capacity margins amplifies train delays and eases their
propagation in space and in time.

Automatic train regulation (ATR) can maintain the schedule
and headway adherence against disturbances caused by minor
delays (less than 3 min) [19]. The main control variables of
ATR are the train running and dwell times. In fixed block
systems, the preallocation of buffer slack or supplement in
the time headway permits to guarantee system reliability
by absorbing primary and associated secondary delays, even
though this may cause a loss in capacity utilization. In moving
block systems, system-wide responsive traffic regulators can
substantially improve capacity and recovery capability from
the local delay. The main performance indicators of the traffic
in a metro line are capacity utilization, reliability, and punc-
tuality. An important parameter that affects these indicators
is the traffic stability, in particular, the robustness against
disturbances.
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Here, we propose a real-time traffic control model, where
we assume that the trains follow predefined speed profiles
without the possibility of control of the their interstation
running times. The main control variable we consider here
is the train dwell times at platforms, which are submit-
ted to constraints on the passenger boarding and alighting
times. The relationship between the train dynamics and the
passenger ones is mutual. Indeed, high levels of passenger
densities on platforms and/or in trains incite train dwell times
to increase, while delayed trains cause the accumulation of
passengers at platforms. This cyclic dependence favors ampli-
fication and propagation of traffic disturbances in time and in
space.

Numerous approaches of real-time control have been
adopted for railway traffic management, including optimiza-
tion, simulation, expert system, and so on. An overview
of recovery models and algorithms for real-time railway
disturbance and disruption management can be found for
example in [2].

The traffic in metro lines, including the train as well as
the passenger flow dynamics, is not yet well understood.
Train dynamics, passenger flowing, driver behavior, and many
decision levels are combined in the transport system. While
the train dynamics can be described with discrete event sys-
tems, the passenger flows are rather modeled with continuous
processes, including a source of uncertainty. In nonautomated
metro lines, other sources of uncertainty are due to the train
driver decisions. The decision levels are many, including
tactical, operational, and strategic ones. Tactical level decisions
include train departure and dwell times, train speed profiles,
and so on. Operational level decisions include mainly the
optimization of train time tables. The strategic level decisions
include all the higher level ones taking into account the
passenger demand, up to planning decisions.

Due to the complexity of the traffic dynamics in metro line
systems, most of the traffic control approaches are based on
optimization and operations research. We cite below some of
the existing works in this direction. Cury et al. [4] proposed
an analytical traffic model with a multilevel hierarchical opti-
mization method. Goodman and Murata [17] used nonlinear
optimization with constraints, where the objective function
takes into account passenger flows. The authors investigated
the optimization approaches for metro traffic regulation, which
focus on the customer perceptions of the service quality.
The approach consists in penalizing excess waiting and travel
times, as well as congestion. It is illustrated by means of
data based on the Hong Kong Island line, and is compared
to existing control algorithms. Assis and Milani [1] solved the
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train scheduling problem in metro lines by a predictive control
method. Engelhardt-Funke and Kolonko [5] have proposed a
stochastic model for the propagation of the train delays across
the network, where the waiting time for passengers changing
lines is minimized. Sun et al. [24] developed a mathematical
programming approach to minimize waiting time, where the
Lagrangian duality theory is used to solve the problem. Train
schedules that take into account passenger exchanges on
platforms have been generated.

One of the first traffic models that point out the
nature of traffic instability in metro lines is due to
Van Breusegem et al. [25]. Van Breusegem et al. [25] pro-
posed a linear quadratic (LQ) control approach to deal with
the instability. The approach is based on the discrete-event
traffic and control models. Control algorithms assuring system
stability are proposed and the approach has been illustrated
by simulations. Since then, several improvements have been
proposed to the model. Lin and Shu [20] basing on the model
of Van Breusegem et al. [25], proposed an algorithm that
approximates an LQ regulator by learning traffic data with arti-
ficial neural networks. The algorithm is based on a critic-actor
architecture of reinforcement learning. The main advantage of
this approach is that the traffic regulator is not biased by the
traffic modeling errors. The authors illustrate the approach and
verify it in a simulated system with traffic data acquired from
the Taipei Metro System. Recently, Schanzenbächer et al. [21]
applied the approach of [25] on a stretch of the RER A line
of Paris.

Although we are interested in traffic control and optimiza-
tion, we here adopt the approach of Farhi et al. [12]–[14],
which permits the understanding of the physics of traffic in a
metro line, and in particular the effect of the passenger demand
on the traffic phases of the train dynamics. Fundamental
traffic diagrams similar to the ones derived in the road traffic
(see [6]–[11]) are derived in [12]–[14]. As mentioned earlier,
we propose a control law for the train dwell times as functions
of the passenger arrival rates onto the platforms, and derive
the effect of the passenger demand on the physics of traffic.

The outline of this brief is as follows. In Section II, we give
a short review on the dynamic programming systems. In
Section III, we present the model of the train dynamics with a
traffic control law that sets the train dwell times on the feed-
back of both the train time-headway and the passenger arrivals.
The model guarantees the stability of the train dynamics,
interpreted, in this case, as a dynamic programming system.
The traffic phase diagrams for the train dynamics are derived
by simulation. The effect of the passenger arrivals on the
traffic phases is shown. Finally, conclusions and perspectives
are given in Section IV.

II. SHORT REVIEW ON DYNAMIC

PROGRAMMING SYSTEMS

The traffic models we discuss in this brief have the form of
dynamic programming systems, for which we provide a short
review in this section.

A map f : R
n → R

n is said to be additive 1-homogeneous
if it satisfies: ∀x ∈ R

n,∀a ∈ R, f(a1 + x) = a1 + f(x), where

1
def= t (1, 1, . . . , 1). It is said to be monotone if it satisfies

∀x, y ∈ R
n, x ≤ y ⇒ f(x) ≤ f(y), where x ≤ y means xi ≤

yi∀i, 1 ≤ i ≤ n. If f is 1-homogeneous and monotone, then it
is nonexpansive (or 1-Lipschitz) for the supremum norm [3],
i.e., ∀x, y ∈ R

n, ||f(x) − f(y)||∞ ≤ ||x − y||∞. In this case,
a directed graph G(f) is associated with f .

The directed graph G(f) associated with f : R
n → R

n [16]
is defined by the set of nodes {1, 2, . . . , n} and by a set of
arcs such that there exists an arc from a node i to a node j
if limη→∞ fi (ηe j ) = ∞, where e j is the j th vector of the
canonical basis of R

n . We review below an important result
on the existence of additive eigenvalues of 1-homogeneous
monotone maps.

Theorem 1 [15], [18]: If f : R
n → R

n is 1-homogeneous
and monotone and if G(f) is strongly connected then f admits
an (additive) eigenvalue, i.e., ∃μ ∈ R, ∃x ∈ R

n : f(x) =
μ+ x . Moreover, we have χ(f) = μ1, where χ(f) denotes the
asymptotic average growth rates vector of the dynamic system
x(k + 1) = f(x(k)), defined by: χ(f) = limk→∞ fk(x)/k.

For simplicity, we use in this brief, for all the dynamic
systems, the notation xk instead of x(k). We give in the
following a natural extension of Theorem 1, which will
permit us to consider dynamic systems of the form xk =
f(xk, xk−1, . . . , xk−m+1). For that, let us consider f : R

m×n →
R

n associating for (x0, x1, . . . , xm−1), where xi are vectors in
R

n , a column vector in R
n

f : R
m×n → R

n

(x0, x1, . . . , xm−1) 	→ f(x).

We denote by fi , i = 0, 1, . . . , m − 1, the following maps:

fi : R
n → R

n

x 	→ fi (x) = f(−∞, . . . ,−∞, x,−∞, . . . ,−∞)

↑
i thcomponent

and by f̃ , the following map:

f̃ : R
n → R

n

x 	→ f̃(x) = f(x, x, . . . , x).

Theorem 2: If f̃ is additive 1-homogeneous and monotone,
and if G(f̃) is strongly connected and G(f0) is acyclic, then
f admits a unique generalized additive eigenvalue μ > −∞
and an additive eigenvector v > −∞, such that f(v, v − μ,
v − 2μ, . . . , v − (m − 1)μ) = v. Moreover, χ(f) = μ1.

Proof: The proof consists in showing that the dynamic
system xk = f(xk, xk−1, . . . , xk−m+1) is equivalent to another
dynamic system zk = h(zk−1), where h is built from f ,
such that h satisfies additive 1-homogeneity, monotonicity, and
connectivity properties needed by Theorem 1. The whole proof
is available in [12]. �

III. TRAFFIC MODEL

Here, we propose a traffic model for the train dynamics
in a metro line. The model is based on the max-plus linear
model of [13]. More precisely, it extends it in order to take
into account the passenger arrivals and their effects on the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FARHI: PHYSICAL MODELS AND CONTROL OF THE TRAIN DYNAMICS IN A METRO LINE WITHOUT JUNCTION 3

Fig. 1. Representation of a linear metro line.

train dwell times and on the train dynamics, in general. We
notice that the model presented in [14] proposed such an
extension, but with an assumption of unlimited train capacity
in terms of the maximum number of passengers. The model we
present here improves the one of [14] by considering passenger
capacity limits of the trains, which is more realistic. This new
modeling modifies consequently the traffic control law as well
as the derived traffic phases.

The model writes the train departure times under two
constraints on the interstation travel time (running time +
dwell time), and on the safety time between successive trains.
Moreover, it describes the train dynamics by applying a control
of the train dwell times on platforms, based on the feedback of
the passenger travel demand. We do not consider, in this brief,
a dynamic model for the number of passengers at platforms.
Therefore, we assume that the dwell times at platforms depend
directly on the passenger arrival rates.

Let us consider a linear metro line of N platforms without
junction, as shown in Fig. 1. In order to model the train dynam-
ics on the whole line, including the dynamics on interstations,
we discretize the interstation spaces, and thus the whole line,
on segments (or sections or blocks). The length of every
segment must be larger than the length of a train. In case of
a fixed block signaling system, the discretization in segments
we make here reflects the fixed blocks. In case of a moving
block system, our discretization permits the approximation of
the train dynamics. Let us consider the following notations.

n Number of all segments of the line.
m Number of running trains.
L Length of the whole line.
b j ∈ {0, 1}: boolean number of trains being on

segment j at time zero.
b̄ j 1 − b j ∈ {0, 1}.
dk

j Instant of the kth departure from node j .
Notice that k do not index trains, but count the
number of departures from segment j .

ak
j Instant of the kth arrival to node j .

r j The running time of a train on segment j , i.e., from
node j − 1 to node j .

wk
j dk

j − ak
j : train dwell time corresponding to

the kth arrival to- and departure from node j .
tk

j r j + wk
j : train travel time from node j − 1 to

node j , corresponding to the kth arrival to- and
departure from node j .

gk
j ak

j −dk−1
j : node- (or station-) safe separation

time (also known as close-in time), corresponding
to the kth arrival to- and (k − 1)st departure
from node j .

hk
j dk

j − dk−1
j = gk

j + wk
j : departure time headway at

node j , associated with the (k − 1)st and kth
departures from node j .

sk
j g

k+b j
j − rk

j : a kind of node safe separation time
which does not take into account the running time.

We also use underlined and overlined notations to denote
the maximum and minimum bounds of the corresponding
variables, respectively. Then, r̄ j , t̄ j , w̄ j , ḡ, h̄ j , and s̄ j and,
respectively, r j , t j , w j , g, h j , and s j denote the maximum and
minimum running, travel, dwell, safe separation, headway, and
s times, respectively.

The average on j and on k (asymptotic) of those vari-
ables are denoted without any subscript or superscript. Then
r, t, w, g, h, and s denote the average running, travel, dwell,
safe separation, headway, and s times, respectively.

It is easy to check the following relationships:

g = r + s (1)

t = r + w (2)

h = g + w = t + s = n

m
t = n

n − m
s. (3)

Indeed, (1) comes from the definition of sk
j and (2) comes

from the definition of tk
j . For (3):

1) h = g + w comes from the definition of hk
j ;

2) h = t + s comes from the definition of tk
j and sk

j and
from h = g + w;

3) h = nt/m average train time-headway is given by the
travel time of the whole line (nt) divided by the number
of trains;

4) h = ns/(n − m) can be derived from h = t + s and
h = nt/m.

The running times r j of trains on every segment j are
assumed to be constant. They can be calculated from given
interstation speed profiles, depending on the characteristics
of the line and of the trains running on it. We then have
t j = r j + w j and t̄ j = r j + w̄ j for every j .

An important remark here is that the variables wk
j denote

dwell times at all the nodes j ∈ {1, . . . , n} including non-
platform nodes. The lower bounds w j should be zero for the
nonplatform nodes j , and they should be strictly positive for
platform nodes (we assume that all the trains stop at all the
platforms). Therefore, the asymptotic average dwell time w at
all the nodes is different from (it is lower than) the asymptotic
average dwell time at platform nodes, which we denote w∗.

In our model, we consider constant running times on
segments and on interstations. Therefore, every train decel-
eration or stop at the level of an interstation, generally caused
by an interaction with the train ahead, is modeled here by a
dwell time extension at one of the nodes of the considered
interstation. The interstation train running times can also be
considered as control variables, in addition to train dwell times
at platforms. In such modeling, shortened interstation train
running times can compensate extended train dwell times at
platforms, while extended running times can be considered for
eco-driving and optimization of energy consumption. We shall
consider this extended modeling in our future research.
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The model is built on the three time constraints as follows.

1) A constraint on the travel time on every segment j

dk
j ≥ d

k−b j
j−1 + t j . (4)

Constraint (4) tells us first that the kth departure from
node j corresponds to the kth departure from node
( j − 1) in case where there is no train at segment j
at time zero (b j = 0), and corresponds to the (k − 1)st
departure from node ( j − 1) in case where there is a
train at segment j at time zero. Constraint (4) tells us
in addition that the departure from node j cannot be
realized before the corresponding departure from node
( j −1) plus the minimum travel (run + dwell) time from
node j − 1 to node j .

2) A constraint on the safe separation time at every
segment j

dk
j − d

k−b̄ j+1
j+1 = a

k+b j+1
j+1 − r j+1 − d

k−b̄ j+1
j+1

= g
k+b j+1
j+1 − r j+1

≥ g
j+1

− r j+1 = s j+1.

That is,

dk
j ≥ d

k−b̄ j+1
j+1 + s j+1. (5)

Constraint (5) tells us first that, in term of safety, the kth
departure from node j is constrained by the (k − 1)st
departure from node ( j + 1) in case where there is
no train at segment ( j + 1) at time zero, and it is
constrained by the kth departure from node ( j + 1) in
case where there is a train at segment ( j+1) at time zero.
Constraint (5) tells us in addition that the kth departure
from node j cannot be realized before the departure
constraining it from node ( j + 1) plus the minimum
safety time at node ( j + 1).

3) A constraint on the train dwell time at every platform
taking into account the passenger arrivals

wk
j ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w j − θ k
j

(
αk

j − λk
j

)

λk
j

gk
j

if j indexes a platform

0 otherwise

(6)

where α j is the average passenger upload rate from
platform j onto the trains (during train dwell time), if j
indexes a platform; and α j is zero otherwise; and λ j is
the average rate of the total arrival flow of passengers
to platform j , if j indexes a platform; and λ j is zero
otherwise

λ j =
⎧
⎨

⎩

∑

i

λ j i if j indexes a platform

0 otherwise

where λ j i denote here the origin-destination arrival
rates of passengers to platform j , with platform i as
destination. w j (maximum dwell time on node j ) and
θ k

j are control parameters to be fixed.

Let us notice that the control law (6) is equivalent to

wk
j ≥

⎧
⎪⎨

⎪⎩

w j − θ k
j αk

j

λk
j

hk
j if j indexes a platform

0 otherwise

(7)

which is implicit since hk
j = gk

j + wk
j . We also notice that we

have in general α j − λ j > 0, otherwise, the passenger flows
can never be served.

It has already been noticed in [12], [13], and [25] that
the train dwell times tend to have the natural (uncontrolled)
behavior

wk
j ≥ (

λk
j /α

k
j

)
hk

j if j indexes a platform (8)

where only the effect of the boarding time of passengers into
the trains, on the train dwell time, is considered, without
considering the alighting time effect. The behavior (8) causes
instability of the train dynamics [12], [13], [25]. In (7),
we reversed [with respect to (8)], the sign of the relationship
between the dwell time wk

j and the train time headway hk
j ,

without reversing the relationship between the dwell time wk
j

and the ratio λk
j /α

k
j .

Combining the constraints (4)–(6), the train dynamics are
written, for nodes j indexing platforms, as follows:

dk
j = max

⎧
⎪⎪⎨

⎪⎪⎩

d
k−b j
j−1 + r j + w j

(
1 − δk

j

)
d

k−b j
j−1 + δk

j d
k−1
j +(

1−δk
j

)
r j +w j

d
k−b̄ j+1
j+1 + s j+1

(9)

where δk
j = θ k

j (α
k
j −λk

j )/λ
k
j ,∀ j, k and the index j is taken with

modulo n. For nonplatform nodes, the dynamics combines
only the constraints (4) and (5). Here, we recall that the max-
plus algebra model of [13] is obtained by the combination of
(only) two constraints (4) and (5) for all the nodes (platform
and nonplatform nodes)

dk
j = max

{
d

k−b j
j−1 + t j , d

k−b̄ j+1
j+1 + s j+1

}
. ∀ j. (10)

If δk
j are independent of k for every j , then the dynamic

system (9) can be written in the following form:

dk
j = max

u∈U
[
(Mudk−1) j + (Nudk) j + cu

j

]
(11)

where Mu and Nu are square matrices and cu are column
vectors, for u ∈ U . The matrices Nu , u ∈ U express implicit
terms. If m = 0 or m = n, then the system (9) is fully implicit,
and admits an asymptotic regime with a unique asymptotic
average growth rates vector, interpreted here as the train time-
headways at the nodes h j = +∞,∀ j (no train movement
is possible). If 0 < m < n, then the dynamic system (9) is
triangular. In this case, and if δk

j are independent of k for
every j , and 0 ≤ δ j ≤ 1,∀ j , then for the dynamic system (9),
written under the form (11), Mu and Nu are substochastic
matrices, i.e., satisfying Mu

ij ≥ 0, Nu
i j ≥ 0,

∑
j (Mu

ij ) ≤ 1, and
∑

j (Nu
i j ) ≤ 1. Moreover, we have

∑
j (Mu

ij + Nu
i j ) = 1,∀i, u.

In this case, (9) is a dynamic programming system of an
optimal control problem of a Markov chain, whose transition
matrices can be calculated from Mu, u ∈ U and Nu , u ∈ U
[they are the matrices corresponding to the equivalent explicit
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dynamic system obtained by solving the implicit terms of (9)];
and whose reward vectors are cu, u ∈ U . Here, we assume
that δk

j are independent of k, which means practically that λk
j

are time-independent. Therefore, the model is to be applied
separately on each time-period of stable passenger arrival rates.

Theorem 3: If δk
j are independent of k for every j , and

if 0 ≤ δ j ≤ 1,∀ j , then the dynamic system (9) admits a
stationary regime with a unique additive eigenvalue h, which
coincides with all the components of the asymptotic average
growth rates vector of the system, independent of the initial
state vector d0.

Proof: The proof uses Theorem 2 (see [12]). �
We do not yet have an analytic formula for the asymptotic

train time-headway (which we know that it coincides with
eigenvalue h), but Theorem 3 guarantees its existence and
its uniqueness. Therefore, by iterating the dynamics (9), one
can approximate, for any fixed train density ρ, the associated
asymptotic average train time-headway h(ρ) as follows:

h(ρ) ≈ d K
j /K ∀ j, for a large K . (12)

Let us define the asymptotic variances (in time) Var j of the
growth rates of the system at each node j , as follows:

Var j := lim
T →+∞

1

T

T∑

k=1

(
hk

j − h
)2 ∀ j. (13)

We know that many additive eigenvectors may be associated
with the unique additive eigenvalue h of the dynamic sys-
tem (9). Although all the components of the average growth
rates vector of the system converge to h, the state vector dk ,
depending on the initial state vector d0, can converge (up to
an additive constant) to one of the additive eigenvectors of the
system (asymptotic stability), in which case Var j = 0,∀ j ; or
attain a periodic regime around one of the additive eigenvec-
tors of the system (asymptotic orbital stability), in which case
∃ j, Var j > 0. An extension of the model in order to guarantee
Var j = 0,∀ j independent of the initial state vector d0, will
be considered in our future research.

The dynamic system converges (up to an additive constant)
to one (or to an orbit) of the additive eigenvectors, for
every initial state. The convergence is then global. Therefore,
every time-limited perturbation is resorbed, because the state
vector of the system at the end of the perturbation can be
considered as a new initial state, and then we know that the
dynamic system converges to a stationary regime with a unique
asymptotic average growth rate. In order to go further and
analyze the response to repeated perturbations, we need to
study the transient regime of the dynamic system, its rate of
convergence, and so on. We shall treat these questions in our
future works.

In the following, we give a result (Theorem 4) which tells
us under which conditions on the control parameters w̄ j and
θ j (or equivalently δ j ), the dynamic system (9) is a max-plus
linear system. We will use this result in Section III-A, in order
to derive a general approach for fixing the control parameters
w̄ j and δ j in such a way that the effect of passenger arrivals
on the train dynamics will be well modeled.

Theorem 4: Let h̃ be the asymptotic average growth rate of
the max-plus linear system (10). The dynamic programming
system (9) with parameters w̄ j = h̃,∀ j and δ j = 1,∀ j , is
a max-plus linear system, whose asymptotic average growth
rate (time-headway) coincides with h̃.

Proof: The proof is available in [12]. �

A. How to Fix the Control Parameters w̄ j and δ j ?

Theorem 4 tells us that if we fix in (9) (w̄ j , δ
k
j ) = (h̃(ρ), 1),

then, we obtain a max-plus linear dynamic system. We know
that in this case, the train dynamics do not take into account
the passenger demand.

We assume here that αk
j , λ

k
j , θ

k
j and then δk

j are indepen-
dent of k, and then denote α j , λ j , θ j and δ j , respectively.
Let us consider the metro line as a server of passengers.
We assume that the average arrival of passengers to a platform
j is λ j , while the average service rate at the level of a
platform j is min(α j , κ/h), where κ denotes the train capacity
(maximum number of passengers in a train). Under the max-
plus linear model (10) for the train dynamics, the asymptotic
average service rate depends on the number m of trains, or
equivalently on the train density ρ (see [13]). It is given
by min(α j , κ/h̃(ρ)). Therefore, the metro line as a server
operating under the max-plus linear model is stable under the
condition λ j < min(α j , κ/h̃(ρ)),∀ j . Let use the following
notation:

λ̃ j (ρ) := min(α j , κ/h̃(ρ)). (14)

The stability condition of the server means that if λ j ≤
λ̃ j (ρ),∀ j , then the server operating under the max-plus model
can serve the passengers without adapting the train dwell
times to the passenger arrival rates. Basing on this remark,
we propose here a way of fixing the parameters w̄ j and δ j in
function of the passenger arrivals, in such a way as follows.

1) If λ j ≤ λ̃ j (ρ),∀ j , then the dynamic system behaves as
a max-plus linear one. That is, the train dwell times are
not constrained by the arrival rates of passengers.

2) If ∃ j, λ j > λ̃ j (ρ), then the system switches to a
dynamic programming one, where the train dwell times
are constrained by the arrival rates of passengers.

Let us fix the parameters w̄ j and δ j as follows:

w̄ j (ρ) := h̃(ρ),∀ρ, j (15)

δ j (ρ) := λ̃ j (ρ)

max(λ j , λ̃ j (ρ))
∀ρ, j. (16)

Fixing δ j (ρ) as in (16) is equivalent to fixing θ j (ρ) as follows:

θ j (ρ) := λ̃ j (ρ)

max(λ j , λ̃ j (ρ))

λ j

(α j − λ j )
∀ρ, j (17)

where in case α j = λ j , the term (α j − λ j ) in (17) eliminates
the one in (6) without evaluation.

We then have 0 ≤ δ j (ρ) ≤ 1 by definition, and:

1) if λ j ≤ λ̃ j (ρ),∀ j , then δ j (ρ) = 1,∀ j , and the dynamic
system is a max-plus linear one, where the dwell times
are not constrained by the arrival rates of passengers and
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2) if ∃ j, λ j > λ̃ j (ρ), then ∃ j, δ j(ρ) < 1, and the system
switches to a dynamic programming one where the dwell
times are constrained by the arrival rates of passengers.

Let us recall that we do not have here a dynamic model for
the stock of passengers at platforms. Therefore, the number of
passengers who failed to get onto the trains at the kth departure
is not memorized for the (k + 1)st departure. We summarize
the latter findings in the following result.

Theorem 5: For any fixed value of the train density ρ on
the metro line, the dynamic system (9) with parameters w̄ j

and δ j fixed dependent on ρ as in (15) and (16) , respectively,
admits a stationary regime with a unique additive eigenvalue
h(ρ), which coincides with the asymptotic average growth rate
of the system, independent of the initial state d0. We have
h(ρ) ≥ h̃(ρ).

Proof: The proof follows from Theorem 3 and from all
the arguments given earlier in this section, in particular from
0 ≤ δ j (ρ) ≤ 1,∀ρ, j . �

B. How Many Trains to Retrieve the Max-Plus Dynamics

From Theorem 4, we know that for δ j = 1,∀ j , the max-plus
dynamics are retrieved, in which case, the passenger arrivals
do not have any effect on the train dynamics. From (16),
we deduce that this is realized as long as λ̃ j (ρ) ≥ λ j ,∀ j ,
that is under the condition

min(α, κ/h̃(ρ)) ≥ λ j ∀ j

or equivalently

α ≥ λ j ∀ j (18)

and

κ/h̃(ρ) ≥ λ j ∀ j. (19)

Condition (18) is independent of ρ, then if (18) is not
satisfied, then the max-plus dynamics cannot be attained for
any train density ρ. However, condition (18) is in general
largely satisfied. Indeed, as fixed in Table I below, α is
about 30 passengers/s, while λ j exceeds rarely 10 passen-
gers/s. Here, we assume that (18) is satisfied. Therefore,
the condition such that the max-plus dynamics will be attained
is (19), or equivalently f̃ (ρ) ≥ λ j /κ , where f̃ (ρ) = 1/h̃(ρ)
is the asymptotic average train frequency under the max-plus
train dynamics derived in [13].

f̃ (ρ) = min{vρ, fmax, w
′(ρ̄ − ρ)} (20)

where v is the free (or maximum) train-speed on the metro
line, fmax = 1/ max j (t j + s j ) is the train capacity (maximum
train frequency), w′ is the backward wave-speed for the train
dynamics, and ρ̄ is the maximum train density in the metro
line (see [13]). Hence, from (20), the conditions under which
the max-plus dynamics are attained, are

λ j ≤ κ fmax ∀ j (21)

and

λ j

vκ
≤ ρ ≤ ρ̄ − λ j

w′κ
∀ j. (22)

TABLE I

PARAMETERS OF THE LINE CONSIDERED

Condition (21) tells us that if for any j , the passenger arrival
rate λ j is higher than κ fmax, then, the max-plus train dynamics
cannot be retrieved, whatever the number of trains we made
in the metro line. Under the condition (21), condition (22)
gives the number of trains to run on the metro line in order
that the train dynamics behaves as the max-plus one. Here,
we notice that the first inequality [ρ ≥ λ j /(vκ),∀ j ] in (22) is
more important than the second one (ρ ≤ ρ̄ − λ j /(w

′κ),∀ j ),
because the latter concerns high number of running trains,
and corresponds to the congestion traffic phase of the train
dynamics, which is better to avoid (see [13]). We summarize
the findings of this section in the following proposition.

Proposition 6: If λ j ≤ min(α j , κ fmax),∀ j , then there
exists a condition on the number m of trains to run on the
metro line in such a way that the train dynamics (9) behaves
as a max-plus linear one; where the passenger arrivals do not
have any effect on the train dynamics. The condition on m is

Lλ̄

vκ
≤ m ≤ n − Lλ̄

w′κ
where λ̄ = max j λ j .

Proof: It follows directly from (18), (19), (21),
and (22). �

Example 7: With the parameters taken in Table I, we have
fmax = 50 train/h, κ = 500 passengers, v = 41.18 km/h,
w′ = 26.61 km/h, and L = 17.294 km. Let us notice here that
vrun given in Table I corresponds to the free train speed during
the intersegment running times without including dwell times,
while v = L/

∑
j t j introduced in [13] corresponds to the free

speed during the whole travel time in the line, including train
dwell times. The condition λ j ≤ min(α j , κ fmax),∀ j under
which the max-plus linear dynamics can be retrieved, gives
λ̄ ≤ 6.94 passengers/s. Under that condition, the number m
of trains has to satisfy 3λ̄ ≤ m ≤ 78 − 4.68λ̄, in order that
the max-plus train dynamics will be attained. For example,
we have

1) λ̄ = 1 ⇒ no passenger effect with 3 ≤ m ≤ 73;
2) λ̄ = 3 ⇒ no passenger effect with 9 ≤ m ≤ 63;
3) λ̄ = 5 ⇒ no passenger effect with 15 ≤ m ≤ 54;
4) λ̄ = 8 ⇒ ∀m there is a passenger effect, since λ̄ > 6.94.

Numerical simulations of Section III-D confirm our findings.

C. Derivation of the Asymptotic Average Dwell Times
w and Safe Separation Times g at All Nodes

From (2), we have w = t − r . From (3), we have t =
(m/n)h. Then, we obtain w = (m/n)h − r . Therefore, if we
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TABLE II

ASYMPTOTIC AVERAGE TRAIN TIME-HEADWAY, FREQUENCY, DWELL TIME AT ALL NODES AND DWELL TIME AT PLATFORMS; AS FUNCTIONS OF THE
NUMBER OF RUNNING TRAINS. THE AVERAGE PASSENGER ARRIVALS TO PLATFORMS ARE GIVEN IN THE FIGURES (DENOTED BY c)

have h(ρ) by simulation [by means of (12)], we deduce w(ρ)
as follows:

w(ρ) = (ρ/ρ̄) h(ρ) − r. (23)

Similarly, from (1), we have g = r + s. From (3), we have
s = ((n − m)/n)h. Then, we obtain g = r + ((n − m)/n)h.
Therefore, from (12), we obtain

g(ρ) = r + (1 − ρ/ρ̄) h(ρ). (24)

D. Numerical Results

In this section, we present some numerical results. We con-
sider the symmetric arrival passenger case where the passenger
arrival rates are the same to all the platforms. The rate is then
varied in order to derive its effect on the train dynamics and on
the physics of traffic. The results are given in Table II. In the
top left (respectively, top right) of Table II, we see the increase

of the train time-headways (respectively, degradation of the
train frequencies) due to increases of the passenger arrival
rates. In the second row of Table II, we see the increase of
the average dwell times w at all the nodes, and w∗ at platforms
due to increases of the passenger arrival rates.

As shown in Theorem 5, the control law proposed here
guarantees train dynamic stability, for every level of passenger
demand. For a passenger arrival rate less than or equal to
the maximum supply (maximum passenger flow that can be
served by the line), the control law guarantees the existence
of a number of trains, from which the train frequency is
not affected by the passenger demand. We have shown in
Example 7 that for a passenger arrival rate equal to 3 (respec-
tively, 5) passengers/s at every platform, we need (at least)
9 (respectively, 15) trains in order that the train frequency
coincides with the one obtained by the max-plus dynamics,
with no passenger effect. The figures of Table II illustrate
this remark. Indeed, we can see on those figures that, starting
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from a number of 9 (respectively, 15) running trains on the
metro line, the curves of the asymptotic average time headway
(h), frequency ( f ), and dwell time at all the nodes (w)
corresponding to a passenger arrival rate of 3 (respectively, 5)
passengers/s [the red (respectively, blue) dashed lines] join the
curves of the asymptotic average time headway (h), frequency
( f ), and dwell time at all the nodes (w) corresponding to a
passenger arrival rate of zero passengers (the black continuous
line).

For passenger demand levels higher than the maximal
supply of the line, the control law guarantees train dynamic
stability, but the train frequency is degraded. We have shown
in Example 7 that for a passenger arrival rate higher than
6.94 passengers/s, the passenger demand does have an effect
on the train frequency whatever the number of trains run-
ning on the line. Thus, we can see on Table II that for
passenger arrival rates of 8, 11,15, 20, and 30, the curves
of the time-headway, frequency, and dwell time at all nodes
never join the ones corresponding to rate zero of passenger
arrival.

E. Practical Implementability of the Control Law

Let us first notice that buffer times can be included in our
model, in order to resorb eventual disturbances. This can be
done, for example, by extending the minimum train dwell
times w j at platforms, in particular at the level of the two
terminal platforms. All the results obtained here remain valid
since w j are parameters of the model. The use of buffer
times induces in general train-frequency losses. However,
the margins on the train dwell times can be used for a rapid
recovery, which enhances robustness.

The control of the train dynamics necessitates a combination
of offline calculus and real-time control.

1) Offline Steps:

a) Consider the max-plus linear dynamics (10) and
derive analytically h̃(ρ),∀ρ (independent of the
travel demand).

b) Deduce λ̃(ρ),∀ρ by (14) and then the parameters
w̄ j (ρ),∀ j, ρ by (15) and δ j (ρ),∀ j, ρ by (16).

c) Simulate the dynamics (9) for every ρ and for
varied travel demand level and derive the figures of
Table II.

d) For the time period of interest (e.g., peak hour),
determine the optimal number of trains to run in
order to maximize the train frequency, by means
of the figures of Table II.

2) Real-Time Steps (for Fixed m and λ j ,∀ j ):

a) Retrieve dk
j in real time (observation).

b) Iterate (9) with w̄ j and δ j given by (15) and (16).

IV. CONCLUSION

We proposed a dynamic programming-based approach for
modeling and control of the train dynamics in metro lines.
Basing on the conclusions of the max-plus linear model,
we proposed an extension to a stochastic dynamic program-
ming model, where the passenger arrivals are taken into

account. The models permit the understanding of the effect
of the passenger arrivals on the train dwell times at plat-
forms, and by that on the whole dynamics of the trains.
The perspectives in this direction of research are numerous.
First, the derivation of analytic formulas for the asymptotic
average train frequency, dwell time, and safe separation time
would bring a better understanding of the traffic control model
proposed here. Second, the passenger demand is modeled here
through average passenger arrival rates. A dynamic model
of the stock of passengers on the platforms would improve
the traffic dynamics, particularly by taking into account the
capacity limits of the platforms. Another direction of research
is to extend the approach to metro lines with junctions (first
results have already been obtained in [22]). Finally, other
control parameters such as the train running times (speed
profiles) can be considered in addition to the train dwell times
at platforms (first results have already been obtained in [23]).
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