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Abstract

The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39
very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19
sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14
of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-
ray emission in the 1 TeV–30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with
2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the
selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the
search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula,
SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady
sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric
Cherenkov telescopes. However, the VERITAS fluxes for SNRG54.1+0.3, DA 495, and TeV J2032+4130 are
lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is
likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.

Key words: gamma rays: general

1. Introduction

Gamma-ray astronomy can be performed using a variety of
techniques, each with different strengths and weaknesses. Direct
detection of gamma rays is possible with satellite-based
instrumentation, such as the Large Area Telescope (LAT) on
board the Fermi Gamma-Ray Space Telescope(Atwood et al.
2009). This provides low-background observations over a wide
field of view, covering about 20% of the sky at any given time
and scanning the whole sky every three hours. However, due to
the physical size limitations imposed upon satellite-based
instruments, the effective area is generally smaller than 1 m2,
leading to a sensitivity that peaks at a few gigaelectronvolts
(GeV). Above 100 GeV, ground-based observatories are best
suited to studying the emission, thanks to their large effective
collection area when compared to space experiments. Ground-
based imaging atmospheric Cherenkov telescope (IACT) arrays,
such as VERITAS(Weekes et al. 2002), observe the Cherenkov
light generated by particle showers in the atmosphere, while air
shower arrays, such as the High Altitude Water Cherenkov
(HAWC) observatory(Abeysekara et al. 2013), sample the air
shower particles at ground level. IACTs offer the best
instantaneous sensitivity thanks to their large effective collection

area (∼105 m2) and excellent rejection of the cosmic-ray
background. However, observations require clear, dark skies,
limiting the duty cycle to 20%, and gamma-ray sources must
be contained within the field of view of the telescope, which
is at present 5° diameter. Air shower arrays for gamma-ray
observations provide lower instantaneous sensitivity than IACTs,
but they can operate continuously with an instantaneous field of
view of the telescope covering ∼15% of the sky. Sensitive,
unbiased surveys for a large portion of the sky can be conducted
over the lifetime of air shower arrays.
The angular and energy resolution of each of the three

techniques, which allow one to study and to understand
astrophysical gamma-ray sources in detail, are complementary.
For example, the good angular resolution of IACTs allows us
to resolve the detailed morphology of spatially extended
sources and to identify the counterparts of sources in complex
regions. The limited field of view, however, restricts the size of
the emission region that can be studied. Compared to this,
satellite-based instruments and air shower arrays can provide
good measurements of highly extended sources. Satellite-based
instruments provide energy resolution better than 15% for
gamma rays with energies above several hundreds of mega-
electronvolts up to around 1 TeV. Above 1 TeV, IACTs
provide the best energy resolution (generally about 20%).
Combined with their large effective areas and sensitivities,

109 Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of
Education, University and Research (MIUR).
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IACTs thus can measure detailed features of the spectral energy
distribution (SED) of sources. The energy resolution of air
shower arrays is worse than that of IACTs. The large and
relatively uniform exposure time of air shower array measure-
ments, however, can provide good high-energy measurements
above tens of teraelectronvolts (TeV) for a large portion of the
sky, increasing the dynamic range of the measurements and
allowing the study of spectral changes at the highest energies.
The most powerful approach, therefore, is to combine
observations from all three methods. Only a few examples of
this exist (Aliu et al. 2014a, 2014b) due to limited overlapping
source catalogs.

In this paper, we describe the results of observations
of newly discovered HAWC sources with the VERITAS
IACT array and the LAT on board the Fermi Gamma-Ray
Space Telescope. Fully completed in 2015 March, HAWC
has recently released a catalog, 2HWC (Abeysekara et al.
2017a). Compared to the previous very high energy (VHE;
>100 GeV) surveys performed by Milagro (Abdo et al. 2007)
and ARGO-YBJ (Bartoli et al. 2013), HAWC provides more
than an order of magnitude better sensitivity (Abeysekara
et al. 2017b). The 2HWC catalog contains 39 sources, 20 of
which are associated with known astrophysical objects,
including active galactic nuclei, pulsar wind nebulae
(PWNs), and supernova remnants (SNRs). The remaining
19 sources in the catalog have not previously been identified
as TeV gamma-ray emitters, providing promising new targets
for follow-up observations with IACTs and space-based
gamma-ray observatories.

2. Target Selection and Observations

2.1. HAWC and the 2HWC Catalog

HAWC is an air shower array in operation in central Mexico,
consisting of 300 water-filled, light-tight tanks, each instru-
mented with four photomultiplier tubes (PMTs). The PMTs in
each tank detect the Cherenkov light emitted by particles from
the air showers. Relative timing between PMTs allows the
reconstruction of the direction of the shower plane, and hence
of the primary particle. HAWC operates 24 hr per day with an
instantaneous field of view of ∼2 sr. The Earth’s rotation
enables HAWC to observe two-thirds of the sky every day.
HAWC was inaugurated on 2015 March 20, but its modular
design allowed partial operation before then. HAWC is
sensitive to gamma rays from 100 GeV to 100 TeV, with a
one-year survey sensitivity to detect sources with an average
flux corresponding to 5%–10% of the flux of the Crab Nebula
across most of the northern sky. The data presented here were
collected between 2014 November 26 and 2016 June 2,
amounting to a live time of 507 days.

Details of the HAWC analysis techniques, including a study
of systematic uncertainties, are described in Abeysekara et al.
(2017b). Data analysis is performed in bins, i, i=1K9,
which correspond to the fraction of PMTs, fhit, reporting a
signal for a given event. The energy of the primary gamma ray
is correlated with fhit, so bin i is used as an energy proxy.
Gamma rays are discriminated from the cosmic-ray background
using the variance of the charge distribution detected in each air
shower, with cuts optimized for each bin . The angular
resolution, defined as a radius that contains 68% of the flux
from a point source, depends strongly on the analysis bin, from
1°.0 for 1 to 0°.18 for 9. A maximum-likelihood method was

used to reconstruct the spectrum. It takes into account the
point-spread function (PSF) for each i and compares the
expected number of events, given the experimentally measured
background, to a given spectral hypothesis.
In the 507-day operation data set, sources were identified in

four all-sky maps. One map was optimized for point sources,
while the remaining three maps were optimized for extended
sources of diameters 0°.5, 1°, and 2°. A top hat distribution
with the given diameter was used to smooth the sky map for
each extended-source search. For each map, a test statistic
(TS) value was calculated based on the ratio of the likelihood
with a single-source model and with a pure background
model. The 2HWC analysis required the TS value of a source
to be higher than 25. The expected number of false detections
for this analysis is 0.5. The analysis for the 2HWC catalog
was carried out for all of the sources based on a hypothesis of
a simple power-law spectral distribution, = g-dN dE N E0 ,
where N0 is a normalization factor and γ is a spectral index.
Spectral fits were performed assuming a point-source morph-
ology for all sources identified in the point-source all-sky
map. For sources identified in the extended maps, a top hat
morphology was assumed with a size matching the map in
which the extended source or candidate was found to be most
significant. Of the 39 HAWC sources, 19 are located more
than 0°.5 away from previously known TeV sources,
presenting a group of newly detected TeV sources. These
sources generally have low TS values compared to other
2HWC sources that are associated with known TeV sources.
The average value of the spectral indices is 2.6, with the
spectral indices ranging from 1.5 to 3.3. We use Fermi-LAT
and VERITAS data to look for the counterparts of these
HAWC sources that do not have clear associations with
previous detected TeV sources.110

2.2. Observations

We searched VERITAS archival data collected from 2007 to
2015 for the 19 2HWC sources without known counterparts
and selected data taken with the pointing of the telescopes
offset by less than 1°.5 from the locations of the HAWC
sources. Of these 19 HAWC sources, 11 locations had been
observed by VERITAS prior to 2015 with a total exposure time
of 134 hr. In addition to the archival data, VERITAS observed
a subset of the HAWC sources during the 2015–2016 and
2016–2017 seasons. Combining the archival and new data sets,
VERITAS observed a total of 14 out of 19 new sources
reported by HAWC. After data quality selections, a total of 218
hr of data was analyzed for the study. Detailed information
about the sources is shown in Table 1. For each source listed in
this table, the 2HWC identifier is provided, along with the map
in which it was identified (PS for point source, 0°.5 or 1° for
extended source) and J2000 Right Ascension (R.A.) and
declination (decl.). The 1σ statistical uncertainty of the source
position is shown as “Unc.” Sources marked with an asterisk
(*) were identified as local maxima in the TS maps but are not
as clearly separated from neighboring sources. The table also
shows the power-law index and differential flux at 7 TeV, F7,
reported by HAWC. The flux is reported at 7 TeV because this
energy results in the least correlation between spectral index
and flux. If the source was identified in an extended-source
map, then the fit result with an integration radius used for the

110 http://tevcat.uchicago.edu
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extended-source search is shown. In addition to the catalog
values, we present the minimum energy and maximum energy
of the central interval that contributes 75% of the TS for a given
source as E12.5 and E87.5. The exact values of E12.5 and E87.5

depend on both source declination and spectral index and are
determined individually for each source. If E87.5 exceeds
100 TeV, we only report a lower bound, as the data analysis
techniques used for the 2HWC catalog are unable to measure
energies higher than approximately this value. The exposure
time of VERITAS for each source varies from 1.3 to 72 hr, as
shown in Table 2. We analyzed 8.5 years of Fermi-LAT data
from 2008 August to 2017 February for the study.

3. Follow-up Instruments and Analyses

3.1. VERITAS

VERITAS is an array of four IACTs located at the Fred
Lawrence Whipple Observatory in southern Arizona (Weekes
et al. 2002). Each telescope has a tessellated 12 m diameter
reflector that is used to collect the Cherenkov light generated by
gamma-ray-initiated particle cascades (or air showers) in the
Earth’s atmosphere. A camera composed of 499 PMTs is
installed at the focal plane of each reflector and used to record
an image of the cascades. VERITAS is designed to detect
gamma rays from an energy of 85 GeV to energies higher than
30 TeV, over a field of view with a diameter of 3°.5. Since the
beginning of full array operations in 2007, the sensitivity of
VERITAS has been improved by two major upgrades (Park,
N. for the VERITAS Collaboration 2015): the relocation of one
telescope in 2009 (Perkins & Maier, G. for the VERITAS
Collaboration 2009) and the upgrade of the camera with high-
quantum-efficiency PMTs in 2012 (D.B. Kieda for the
VERITAS Collaboration 2013). With its current configuration,
VERITAS can detect a point source with 1% of the flux from
the Crab Nebula within 25 hr and has an angular resolution
better than 0°.1 at 1 TeV.

The VERITAS analysis begins with standard calibration and
image-cleaning procedures, after which each image is para-
meterized geometrically. A standard Hillas moment parameter-
ization is used for this study (Hillas 1985); a detailed
description of the VERITAS data analysis procedure can be

found in Daniel, M.K. for the VERITAS Collaboration (2007).
Selection cuts are then applied to the data in order to
discriminate gamma-ray-initiated events from the otherwise
overwhelming background of cosmic-ray-initiated cascades.
The choice of the optimum gamma-ray selection cuts depends
upon the assumed properties of the source candidate, provided
by HAWC in this case. The peak sensitivity of HAWC is
located in the multi-TeV energy range. For source regions on
which the VERITAS exposure is larger than 10 hr, we apply
strict gamma-ray selection cuts that are optimized for objects
with a hard spectral index and with a weak signal (∼1% of the
steady Crab Nebula flux). These cuts provide the best
sensitivity for gamma rays with energies higher than ∼1 TeV
(Park, N. for the VERITAS Collaboration 2015) while still
providing good sensitivity down to 300–600 GeV. For
exposures shorter than 10 hr, we chose a less strict set of cuts
suitable for stronger sources (3% Crab), which retain more
gamma rays at the expense of higher background. This is
justified by the fact that a weaker source would be below the
sensitivity of VERITAS in such a short exposure. Additional
gamma-ray discrimination is achieved by cutting on θ, the
angular distance between a test position on the sky and the
shower arrival direction. The angular extension of the 2HWC
sources is not well defined. Also, a source that appears point-
like to HAWC may be an extended source for VERITAS
because of its smaller PSF. We therefore applied two sets of
angular cuts to the VERITAS search: one for a point-like
source (θ<0°.1) and the other for a source with moderately
large angular extent (θ<0°.3 for 2HWC J1953+294 and
θ<0°.23 for the rest of the sources). The results described here
have been confirmed by two independent analysis chains
(Cogan, P. for the VERITAS Collaboration 2007; Maier &
Holder 2017).

3.2. Fermi-LAT

The LAT is a high-energy gamma-ray telescope that detects
photons from 20MeV to higher than 500 GeV(Atwood
et al. 2009). Since the launch of the spacecraft in 2008 June,
the event-level analysis has been improved based on our
increased knowledge of the detectors. The latest version,
dubbed Pass 8(Atwood et al. 2013), offers a greater acceptance

Table 1
List of HAWC Sources for the Fermi-VERITAS Follow-up Study

Name Id TS R.A. Decl. Unc. Index F7 E12.5 E87.5

(°) (°) (°) (10−15 cm−2 s−1 TeV−1) (TeV) (TeV)

2HWC J0700+143 1 29 105.12 14.32 0.80 2.17±0.16 13.8±4.2 2.3 >100
2HWC J0819+157 0.5 30.7 124.98 15.79 0.17 1.50±0.67 1.6±3.1 25 >100
2HWC J1040+308 0.5 26.3 160.22 30.87 0.22 2.08±0.25 6.6±3.5 6 >100
2HWC J1852+013* PS 71.4 283.01 1.38 0.13 2.90±0.10 18.2±2.3 0.4 50
2HWC J1902+048* PS 31.7 285.51 4.86 0.18 3.22±0.16 8.3±2.4 0.3 11
2HWC J1907+084* PS 33.1 286.79 8.50 0.27 3.25±0.18 7.3±2.5 0.18 10
2HWC J1914+117* PS 33 288.68 11.72 0.13 2.83±0.15 8.5±1.6 0.5 42
2HWC J1928+177 PS 65.7 292.15 17.78 0.07 2.56±0.14 10.0±1.7 0.9 86
2HWC J1938+238 PS 30.5 294.74 23.81 0.13 2.96±0.15 7.4±1.6 0.3 29
2HWC J1949+244 1 34.9 297.42 24.46 0.71 2.38±0.16 19.4±4.2 1.1 >100
2HWC J1953+294 PS 30.1 298.26 29.48 0.24 2.78±0.15 8.3±1.6 0.6 55
2HWC J1955+285 PS 25.4 298.83 28.59 0.14 2.40±0.24 5.7±2.1 1.6 >100
2HWC J2006+341 PS 36.9 301.55 34.18 0.13 2.64±0.14 9.6±1.9 1.0 86
2HWC J2024+417* PS 28.4 306.04 41.76 0.20 2.74±0.17 12.4±2.6 1.0 100

Note. Data for individual sources are taken from the 2HWC catalog (Abeysekara et al. 2017a), with the exception of E12.5 and E87.5. Detailed description is in
Section 2.2.
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compared to previous LAT data and an improved PSF (with a
68% containment radius less than 0°.2 above 10 GeV that is
nearly constant with increasing energy). Together, these two
factors significantly improve the detection of sources at

energies above 10 GeV. To search for a counterpart of HAWC
sources with Fermi-LAT data, we decided to focus on these
high-energy events. By limiting the analysis to high energies,
we reduce contamination from diffuse Galactic emission. All

Table 2
Sources Not Detected by VERITAS and Fermi-LAT

Fermi-LAT VERITAS HAWC
Point source Test Extended source Exposure Ethr Point source Extended source Integrated

Source name Index upper limit radius upper limit time upper limit upper limit fluxa

(10−11 cm−2 s−1) (°) (10−11 cm−2 s−1) (hr) (GeV) (10−12 cm−2 s−1) (10−12 cm−2 s−1) (10−12 cm−2 s−1)

2HWC
J0700+143

2.0 4.1 1.0 6.1 5.6 290 L 6.8 3.9±1.9

2.17 4.0 6.2 260 L 7.7
3.0 3.4 5.7 240 L 9.0

2HWC
J0819+157

2.0 1.8 0.5 2.3 4.5 220 2.4 2.7 0.11±0.25

1.5 1.6 1.9 240 3.1 2.5
3.0 2.0 2.7 200 3.0 3.3

2HWC
J1040+308

2.0 1.7 0.5 2.0 3.1 220 5.7 10 1.8±1.5

2.08 1.7 2.0 L L L
3.0 1.6 2.0 200 7.9 13

2HWC
J1852+013*

2.0 2.9 0.23 3.8 10 660 0.41 1.1 7.1±1.6

2.9 3.0 4.2 L L L
3.0 3.0 4.2 420 0.84 2.3

2HWC
J1902+048*

2.0 3.3 0.23 4.57 20 550 0.79 1.6 11±5.1

3.22 4.9 6.6 460 0.99 1.6
3.0 4.7 6.3 500 0.83 1.6

2HWC
J1907+084*

2.0 2.3 0.23 3.1 4.9 290 5.1 7.1 45±28

3.25 2.5 3.5 240 7.7 10
3.0 2.5 3.5 260 6.3 10

2HWC
J1914+117*

2.0 3.4 0.23 3.9 2.2 260 3.0 4.4 13±6.0

2.83 3.7 4.5 260 3.5 4.7
3.0 3.7 4.5 260 3.6 4.8

2HWC
J1928+177

2.0 4.9 0.23 6.5 44 500 0.63 2.0 3.2±1.1

2.56 5.3 6.9 460 0.68 2.2
3.0 5.4 7.0 320 1.3 4.2

2HWC
J1938+238

2.0 3.4 0.23 4.6 2.9 320 1.3 4.5 14±6.2

2.96 3.3 4.5 290 1.5 5.3
3.0 3.3 4.5 260 1.8 6.4

2HWC
J1949+244

2.0 3.5 1.0 12 1.8 220 5.0 24 11±5.6

2.38 3.4 12 220 5.6 27
3.0 3.4 10 200 7.6 36

2HWC
J1955+285

2.0 2.7 0.23 3.4 46 320 0.61 2.7 2.2±1.5

2.40 2.7 3.5 320 0.63 2.8
3.0 2.7 3.4 320 0.62 2.7

2HWC
J2006+341

2.0 3.4 0.23 48 7.0 290 0.61 5.8 9.1±3.9

2.64 3.4 47 260 0.80 7.5
3.0 3.4 46 240 0.84 7.9

2HWC
J2024+417*

2.0 2.8 0.23 5.9 40 720 0.41 0.8 4.2±1.7

2.74 3.2 6.59 550 0.69 1.2
3.0 3.3 6.54 550 0.73 1.5

Note.
a The integrated flux shown here for HAWC is calculated by using the spectral shape provided by HAWC’s measurement over the energy range provided by
VERITAS’s analysis for each source.
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but three of the HAWC sources investigated here lie within 2°.5
of the Galactic plane (the sources outside the plane lie at a right
ascension of less than 11 hr). The LAT energy selection also
limits confusion from gamma-ray pulsars in the Galactic plane
because gamma-ray pulsar spectra typically roll over in the
few-GeV energy range. For energies lower than 10 GeV, we
utilized publicly available information from the Fermi-LAT
Third Source Catalog (3FGL; Acero et al. 2015).

As the starting point for our analysis, we used a model based
on the Third Catalog of Hard Fermi-LAT Sources(3FHL;
Ajello et al. 2017) and the Fermi Galactic Extended Source
(FGES) catalog(Ackermann et al. 2017). The 3FHL catalog
contains sources detected between 10 GeV and 2 TeV using
7 years of Pass 8 data, while the FGES catalog focuses on the
study of extended sources discovered in the same energy range
using 6 years of Pass 8 data. For the unassociated HAWC
sources discussed here, there are no spatially coincident LAT
sources detected in either catalog. To search for new LAT
counterparts and to place upper limits at the position of these
new HAWC sources, we analyzed 8.5 years of LAT data from
2008 August to 2017 February using Pass 8 SOURCE photons
with reconstructed energies in the 10 GeV–0.9 TeV range. To
limit contamination from Earth limb photons, we excluded
photons at zenith angles larger than 105°. The Fermi Science
Tools v10r01p01, the instrument response functions (IRFs)
P8R2 SOURCE V6, and the fermipy v0.13 analysis package
(Wood et al. 2017) were used for this analysis. To model
the diffuse backgrounds, we used the standard templates for
isotropic and Galactic interstellar emission111 developed by the
LAT collaboration.

The analysis proceeded as follows. A 10° square region
centered around each HAWC source is fit using a binned
likelihood formalism. We first place a point source at the
location of the HAWC source. The source is modeled by a
power-law energy spectrum with freely fit index and

normalization throughout the fit. Using fermipy, we attempt
to localize any putative gamma-ray source around the HAWC
position. A source is considered detected if it has a TS greater
than 25, defined as = - ( )L LTS 2 ln max,0 max,1 , where Lmax,0 is
the maximum-likelihood value for a model without an
additional source (the “null hypothesis”), and Lmax,1 is the
maximum-likelihood value for a model with the additional
source at a specified location. We repeat this procedure with a
uniformly illuminated disk with an initial radius of 0°.2. The
localization and extension of the disk are both fit to search for a
possible spatially extended LAT counterpart.
In the event that no significant point-like or extended source

is detected, integral upper limits are computed at the 99%
confidence level using a semi-Bayesian method provided in the
Fermi Science Tools. We compute these upper limits for three
different power-law spectral indices: 2.0, 3.0, and the index
reported in 2HWC. A pivot energy of 20 GeV is assumed for
the conversion to a differential flux limit as the LAT has a
decreasing sensitivity with increasing energy above 10 GeV.
We compute upper limits assuming either a point-source model
or an extended source. For the extended-source model, we
choose an extension equal to that estimated in 2HWC or the
approximate localization of a point source by HAWC (∼0°.2).

4. Results

The energy ranges of Fermi-LAT, VERITAS, and HAWC
for this study are shown in Figure 1. The Fermi-LAT energy
ranges are determined by event selections, and they are the
same for all of the selected sources. The VERITAS energy
range varies from source to source due to different gamma-ray
selection cuts used for the analyses and different observational
conditions. The energy threshold value of the analysis sets the
minimum energy range, while the maximum energy range is set
to 30 TeV to choose events reconstructed with energy bias
smaller than 10%. For HAWC, the energy ranges correspond to
the central 75% of energies contributing to the TS for the
source.

Figure 1. Energy range comparisons between the three instruments. The energy coverage for each instrument is shown as the green block for Fermi-LAT, red block
for VERITAS, and blue block for HAWC.

111 Galactic IEM: gll_iem_v06.fits, Isotropic: iso_P8R2_SOURCE_
V6_v06.txt. Please see http://fermi.gsfc.nasa.gov/ssc/data/access/lat/
BackgroundModels.html.
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Fermi-LAT did not detect counterparts for any of the 14
HAWC sources considered in this study, in either the point-
source or extended-source searches. Only one gamma-ray
source was detected by VERITAS out of 14 selected sources.
The detected gamma-ray source was found in the region of
2HWC J1953+294.

4.1. Sources Not Detected by Fermi-LAT and VERITAS

For sources that are not detected by Fermi-LAT and
VERITAS, upper limits are calculated at the 99% confidence
level by using three spectral indices: 2.0, 3.0, and the spectral
index reported by HAWC. Spectral indices of 2.0 and 3.0 are
selected to consider possible spectral changes from HAWC’s
energy range to the lower energy band. Upper limits from
Fermi-LAT and VERITAS for the nondetected 13 sources are
shown in Table 2. The upper limits for Fermi-LAT and
VERITAS are calculated at the location of each HAWC source
over energy ranges shown in Figure 1.

To compare the VERITAS upper limits with the flux
measurement of HAWC, we calculate the integrated flux from
each source in the VERITAS energy range, using the spectral
information measured by HAWC. The result is shown in
Figure 2. Error bars for the HAWC flux estimates were derived
with error propagation using the statistical errors of the flux
normalization factors at 7 TeV and the indices. The systematic
errors of the HAWC flux shown as brackets were calculated
with a flux normalization error of 50% and an index error of
0.2(Abeysekara et al. 2017b).

For the point-source search, the VERITAS upper limits are
lower than the expected flux estimated by using HAWC’s
spectral information by more than 1σ for most of the sources
except three: 2HWC J0819+157, 2HWC J1040+308, and
2HWC J1949+244. For the extended-source search, there are
three sources, 2HWC J1852+013*, 2HWC J1902+048*, and
2HWC J2024+417*, for which the VERITAS upper limits
using the integration radius of 0°.23 are lower than the flux

estimated by HAWC by more than 1σ. The upper limits of the
other 10 sources are consistent with the HAWC flux estimation
within 1σ. VERITAS detected gamma-ray emission from
2HWC J1953+294, but there is a discrepancy in the flux
estimation between VERITAS and HAWC (discussed in
Section 4.3).
We also compared the upper limits of Fermi-LAT with the

extrapolation of HAWC’s spectra to Fermi-LAT energy ranges.
Because the Fermi-LAT energy range is much lower than
HAWC’s energy range, the extrapolation has larger uncertain-
ties. In this study, we found that both point- and extended-
source upper limits calculated with Fermi-LAT are lower than
HAWC’s flux extrapolation by more than 1σ for five sources:
2HWC J1852+013*, 2HWC J1914+117*, 2HWC J1928+177,
2HWC J1938+238, and 2HWC J1953+294. For 2HWC J2006
+341, only the point-source upper limit is lower than HAWC’s
flux estimation.
Individual SEDs of selected 2HWC sources are shown in the

Appendix together with the upper limits from Fermi-LAT and
VERITAS.

4.2. SNR G54.1+0.3 Region

The first region that we discuss in detail contains two
HAWC sources: 2HWC J1930+188 and 2HWC J1928+177.
2HWC J1930+188 is coincident with a TeV source pre-
viously identified by VERITAS, VER J1930+188(Acciari
et al. 2010), while 2HWC J1928+177 is newly identified by
HAWC. The VERITAS excess counts map of this region is
shown in Figure 3.

4.2.1. SNR G54.1+0.3

VERITAS detected a point-like source of TeV gamma-ray
emission, VER J1930+188, coincident with SNR G54.1+0.3
in this region(Acciari et al. 2010). H.E.S.S. also recently
reported a detection of the source, HESS J1930+188, in their
Galactic plane survey(H.E.S.S. Collaboration et al. 2018). The

Figure 2. Integrated photon flux comparison between HAWC and VERITAS. For the comparison, the energy range of the VERITAS analysis shown with red blocks
in Figure 1 was used. The error bars for the HAWC flux are statistical errors derived from the propagation of statistical errors on the normalization factors and indices.
The systematic error of the HAWC flux is shown with blue horizontal ticks. VERITAS flux upper limits are calculated assuming a power-law distribution with
HAWC’s spectral index for each source.
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centroid and integral flux measured by H.E.S.S. agree with
VERITAS within statistical and systematic errors. The
VERITAS source is associated with SNR G54.1+0.3, a PWN
surrounding a radio/X-ray pulsar, PSR J1930+1852.

Fermi-LAT analysis of this region detected a point source
coincident with VER J1930+188 with a TS value of 26. The
centroid of the point source is R.A., decl. (J2000)=19h30m16 8,
18°55′48 0 with an uncertainty of 1 8. As shown in Figure 4, the
flux measured by LAT is consistent with VERITAS measure-
ments. The nondetection of SNRG54.1+0.3 in the 3FGL catalog
indicates the possible existence of a low-energy spectral cutoff in
the Fermi energy range, but the source is too faint to measure the
cutoff in this study.

We also explored different possible spatial morphologies for
this new Fermi-LAT gamma-ray source. The results of these
tests are recorded in Table 3. Here the figures of merit are the
change in TS and the number of degrees of freedom, Ndof,
where TS is equal to twice the difference between the log
likelihoods of the null hypothesis and the tested spatial model.
We first tested an extended model assuming a uniformly
illuminated disk-shaped source at the location of SNR G54.1
+0.3 with an initial radius of 0°.2. The best-fit extension was
found to be a radius of 0°.4±0°.1. The change in TS between
the point-source hypothesis and the tested spatial model is
referred to as TSext. The uniform disk gives a TSext of 22
with one additional degree of freedom. Past LAT analyses
and simulations of spatially extended sources find that a
TSext�16 corresponds to a formal 4σ significance(Lande
et al. 2012). Following Ackermann et al. (2017), a source is
considered to be extended only if TSext>TS2pts, where

TS2pts=2ln(L2pts/Lps) is the improvement when adding a
second point source, L2pts is the likelihood of the model with
two point sources, and Lps is the likelihood of the model with a
single point source. In the case of 2HWC J1930+188, the
extended LAT source did not meet this criterion, so it was
replaced by two point sources located at the best positions
found by our localization algorithm. The centroids of the two
point sources are plotted as black diamonds in Figure 3. The
additional point source is located 0°.3 away from SNRG54.1
+0.3 and has a TS of 17. The addition of the second source
also caused the TS of the point source that is spatially
coincident with SNRG54.1+0.3 to decrease from 26 to 23. In

Figure 3. VERITAS gamma-ray counts map of the SNR G54.1+0.3 region
with point-source search cuts. The θ cut used for the study, θ<0°. 1, is shown
as a white dashed circle. The extension of the radio emission from SNR G54.1
+0.3 (Lang et al. 2010) is shown with a cyan ellipse. A zoomed-in 0°. 36 by
0°. 36 view around SNR G54.1+0.3 is shown on the right inset within the black
box. The centroid of a known TeV source, VER J1930+188, measured by
VERITAS, is shown with a yellow circle in the right inset. The centroid of the
source measured by H.E.S.S. is shown with a pink circle in the inset. In the
region around VER J1930+188, Fermi-LAT data are best described with a
model with two point sources whose locations are indicated with black
diamonds. The point source coinciding with the VERITAS source has a TS
value of 23, while the other source has a TS value of 17. The four dark green
crosses are the locations of 3FGL sources, with dark green ellipses showing the
1σ uncertainty of the location. The two blue “x” marks indicate the centroids of
two HAWC sources in the region with 1σ uncertainty of the position marked
with blue circles. Four pulsars with a spin-down luminosity higher than
1035 erg s−1 are marked with red boxes. White contours are HAWC’s
significance contours of 5, 6, 7, and 8σ.

Figure 4. SEDs for sources in the SNR G54.1+0.3 region. The upper panel
shows the SED of SNR G54.1+0.3, and the lower panel shows the existing
models for SNR G54.1+0.3 together with the SED. The blue contours show
the 1σ confidence interval of HAWC’s spectrum measurements for a single
power-law distribution (solid) and for a power law with a cutoff (open). Red
points and upper limits are the VERITAS measurements. Green rectangles and
upper limits are the measurements of the newly detected Fermi source in the
SNR G54.1+0.3 region. The green solid area shows the 1σ confidence interval
estimated by using the statistical errors of the Fermi spectral analysis. The
black dotted line shows the best-fit leptonic model from Li et al. (2010), and the
light blue short-dashed line shows the lepton-hadron model from Tanaka &
Takahara (2011). The orange dot-dashed line and the magenta solid line show
models from Torres et al. (2014) and Gelfand et al. (2015).

Table 3
Spatial Models for LAT Analysis in the Vicinity of SNR G54.1+0.3

Spatial model TS Ndof

Null hypothesis L L
Point source 26 4
Uniform disk 48 5
Two point sources 55 8
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summary, there are not yet sufficient data to establish the
spatial morphology of the LAT counterpart to SNR G54.1+0.3,
and we therefore prefer a single LAT point source.

With 16 hr of additional data taken in the 2015–2016 observing
season, we studied a total of 46 hr of VERITAS exposure in this
region. VER J1930+188 is a point-like source for VERITAS.
The updated spectrum now extends down to 120 GeV with
an index of 2.18±0.20stat. This is in agreement with the
previous result, 2.39±0.23stat, within 1σ(Acciari et al. 2010).
The updated normalization value at 1 TeV is  ´( )6.6 1.3stat

-10 13 TeV−1 cm−2 s−1. For energies higher than 4.9 TeV, the
99% upper limit is 1.07×10−14 cm−2 s−1 TeV−1 at 7.08 TeV
assuming a spectral index of 2.18.

The HAWC source 2HWC J1930+188, coincident with
VER J1930+188, was detected in the point-source search. The
centroid of 2HWC J1930+188 is shown in Figure 3 and agrees
with both the VERITAS and Fermi centroid positions. As shown
in Figure 4, the spectral index of the HAWC source,
2.74±0.12stat, is softer than that measured by VERITAS. The
significance of the difference is 2.4σ considering the statistical
errors, and 1.5σ considering both systematic (∼0.2) and
statistical errors. Extrapolation of the HAWC spectrum to the
VERITAS energy range yields an integrated flux that is seven
times larger than the VERITAS flux. Although this is still in
agreement with the VERITAS measurement within 2σ statistical
uncertainties, we tested whether the HAWC data favor a power-
law distribution with a cutoff. To reduce the number of degrees
of freedom, we fixed the index of the power law with a cutoff
scenario to the index value measured by VERITAS. The results
are plotted in Figure 4. As summarized in Table 4, the HAWC
result can be explained with either a single power law or a power
law with a cutoff. The extrapolation of the power law with a
cutoff to VERITAS energies produces an integral flux that is
only ∼50% larger than the VERITAS flux, within the 1σ
statistical error, providing better agreement. While all three
measurements were estimated for a point-like source, HAWC
would estimate flux from a larger area than VERITAS due to
their larger PSF. Because HAWC modeled a single source in the
likelihood analysis for this study, the flux estimation may be
influenced by emission from other sources in the region.

The likely astrophysical counterpart for both the newly detected
Fermi point source, VER J1930+188, and 2HWC J1930+188 is
SNRG54.1+0.3, a PWN at a distance of ∼6.5 kpc hosting a
young, energetic pulsar, PSR J1930+1852, with a spin-down
luminosity of 1.2×1037 erg s−1 and a characteristic age of
2900 years (Camilo et al. 2002). The pulsar powers a PWN, which
is observed in radio and X-rays. The gamma-ray emission from the
PWN can be explained as resulting from inverse Compton

scattering of electrons accelerated at the PWN termination shock
on ambient photon fields.
In the X-ray band, a torus structure with a size of 5 7 by 3 7

is detected with a jet (Lu et al. 2002; Temim et al. 2010), while
the diffuse emission covers a larger area with a size of 2 0 by
1 3 (Temim et al. 2010). The extension of the diffuse emission
is similar in the radio (Lang et al. 2010) and X-ray bands
(Temim et al. 2010). Even including the diffuse emission, the
PWN is a point-like source for LAT, VERITAS, and HAWC.
The SED of SNR G54.1+0.3 has been subjected to detailed

study, and a number of authors have attempted to construct
models of the system based on the observed emission from the
radio band up to the gamma-ray band (Li et al. 2010; Tanaka &
Takahara 2011; Torres et al. 2014; Gelfand et al. 2015). The
lower panel of Figure 4 shows the existing models together
with the gamma-ray SED of the PWN emission. All of the
models assume a spatially uniform magnetic field strength and
particle density and include the effect of the time-dependent
evolution of the PWN assuming a broken power law
distribution of electron energies. Although their assumptions
about the environment of the PWN and particle diffusion are
slightly different, the estimated gamma-ray emission is similar
for all models except in the case of the lepton-hadron model
suggested by Li et al. (2010). Li et al. (2010) argued for the
lepton-hadron model because the low magnetic field strength of
∼10 μG required for the pure leptonic model is inconsistent
with the ∼38 μG estimated by Lang et al. (2010) based on the
radio luminosity. Li et al. (2010) also commented that the
lepton-hadron model reproduced the reported VERITAS
measurement (Acciari et al. 2010) better than the pure leptonic
model.Some other authors (Tanaka & Takahara 2011; Torres
et al. 2014) pointed out that the value derived from the
observation is based on an assumption that the energy of the
pulsar wind is equally divided between the magnetic field and
the particle energies. However, all other models favor a very
small contribution of the wind energy to the magnetic field,
ranging from 0.04% to 0.5%, indicating that the PWN is a
particle-dominated nebula. The lepton-hadron model is also
disfavored by the Fermi-LAT flux measured in this study, as
shown in Figure 4. The gamma-ray emission from 3 GeV up to
100 TeV generally agrees well with the other models (Tanaka
& Takahara 2011; Torres et al. 2014; Gelfand et al. 2015).
However, the soft spectral index of HAWC at energies above
1 TeV under the single power law assumption, or the low cutoff
energy of 21±15 TeV under the power law with an
exponential cutoff assumption, indicate that the maximum
electron energy may be smaller than the 90% confidence
interval of 0.96–2700 PeV reported by Gelfand et al. (2015).

4.2.2. 2HWC J1928+177

The other HAWC source in the region is 2HWC J1928+177.
HAWC reported similar values of flux and index for this source
as for 2HWC J1930+188. The HAWC analysis shows that
2HWC J1928+177 is brighter than 2HWC J1930+188 for
energies higher than 10 TeV (Lopez-Coto et al. 2017). How-
ever, VERITAS did not detect emission from this source with
either the point-source search or the extended-source search.
The angular distance between 2HWC J1930+188 and
2HWC J1928+177 is 1°.18, which is larger than the PSF of
HAWC for energies larger than 1 TeV. Since 2HWC J1930
+188 is point-like for TeV gamma-ray instruments, it is
therefore likely that any contamination from it would result in

Table 4
Spectrum for 2HWC J1930+188 with Two Different Spectral Models

PL PL+cutoff
E12.5–E87.5 (TeV) 0.9–86 1.4–30

Index 2.74±0.12 2.18 (fixed)
Norm at 7 TeV 9.8±1.5 19.6±9.0
(10−15 TeV−1 cm−2 s−1)
Cutoff energy N/A 21±15
(TeV)
TS 54 52
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only a slight overestimation of the flux from 2HWC J1928
+177 as measured by HAWC. The lack of a VERITAS
detection indicates that the HAWC source has a larger angular
extent than the radius of 0°.1 at the confidence level of 98% and
the radius of 0°.23 at the confidence level of 82%.

The position of a nearby Fermi source, 3FGL J1928.9+1739,
coincides with the position of 2HWC J1928+177 within 2σ. Both
sources are coincident with PSR J1928+1746, which at an age of
8.2×104 years and a spin-down luminosity of 1.6×1036 erg s−1

is both older and less energetic than PSR J1930+1852 (Cordes
et al. 2006). The flux of 3FGL J1928.9+1739 follows a log
parabola shape, and its extrapolation to energies larger than 1 TeV
lies far below the flux of 2HWC J1928+177, as shown in
Figure 5. If the nature of both sources is tied to PSR J1928+1746,
then it is possible that 3FGL J1928.9+1739 corresponds to the
pulsed emission of PSR J1928+1746, while 2HWC J1928+177
may originate from a PWN. However, no pulsation is reported for
3FGL J1928.9+1749. Also, no PWN has been observed for
PSR J1928+1746 in any other wavelength.

4.2.3. Other Gamma-Ray Emission in the Region

Although there are only two HAWC sources reported in this
region, the extension of HAWC’s 5σ contours covers a larger
area than these two sources, as shown in Figure 3. It is possible
that there are other weak, and possibly extended, TeV gamma-
ray emitting sources yet to be identified in this region.

HAWC’s 5σ contours contain four 3FGL sources. These
include 3FGL J1928.9+1739, which has been described in the
previous section; 3FGL J1932.2+1916, a LAT pulsar; and
two unassociated LAT sources, 3FGL J1928.4+1838 and
3FGL J1925.4+1727. 3FGL J1925.4+1727 is located near a
young pulsar, PSR J1925+1720, which has a spin-down
luminosity of 1036 erg s−1 (Lyne et al. 2017). Similar to
3FGL J1928.9+1739, the extrapolation of the SEDs of these
two unassociated LAT sources to energies higher than 1 TeV
yields less than 1% of the Crab PWN flux. Thus, this source

likely does not directly correspond to what HAWC measured in
the region.
Future observations with longer exposure from HAWC and

follow-up from IACTs will be necessary to study the nature of
the gamma-ray emission in the region and the connections with
these unassociated Fermi-LAT sources.

4.3. DA 495 Region

The second area we discuss in detail is a region around
PWNDA 495 (SNRG065.7+01.2). HAWC detected two
point-like sources in this region: 2HWC J1953+294 and
2HWC J1955+285.
Analysis of Fermi-LAT data for the energy range from 10 to

900 GeV did not detect gamma-ray emission in either the point-
source search or the extended-source search.

4.3.1. PWN DA 495

After 37 hr of observation, VERITAS reported a confirma-
tion of weak gamma-ray emission coincident with 2HWC
J1953+294 (Holder et al. 2016) with an extended-source
analysis (θ<0°.3). After this initial report, VERITAS
continued observing the source and accumulated a total of 72
hr of data on the field of view by summer 2017. With a
maximum significance of 5.2σ, VERITAS detected emission
near 2HWC J1953+294. The emission observed by VERITAS
is centered at R.A. 19h52m15s±9stat

s , decl. 29°23′±01′stat,
assuming that the spatial distribution of the emission follows a
simple 2D-Gaussian distribution; hence, we assign the name
VER J1952+293. The best-fit sigma value of the 2D-Gaussian
is   0 .14 0 .02stat. The distribution of gamma-ray emission in
the region observed by VERITAS is shown in Figure 6.
The upper panel of Figure 7 shows the SEDs of gamma-ray

emission measured around 2HWC J1953+294. The VERITAS
flux was calculated by integrating gamma rays within a 0°.3
radius around the centroid, while the HAWC flux was
estimated based on a point-like assumption. The flux measured
by VERITAS is well described by a power-law distribution
with an index of 2.65±0.49stat, which is in good agreement
with the index measured by HAWC, 2.78±0.15stat. But the
flux normalization value at 1 TeV measured by VERITAS is

 ´ -( )2.84 0.54 10stat
13 cm−2 s−1 TeV−1, about seven times

lower than the extrapolated flux value of HAWC’s measure-
ment to 1 TeV, 1.86×10−12 cm−2 s−1 TeV−1. The difference
between the two measurements is significant at the level of
2.4σ when considering only statistical errors. Because
VERITAS’s analysis is using 0°.3 as an integration radius
while HAWC assumes it to be a point-like source, potentially
the flux disagreement can be larger. Unlike the discrepancy
shown in SNR G54.1+0.3, the index measurements by the two
instruments are in good agreement, and the energy ranges of
both measurements are very similar. This suggests that a
change of spectral index may not be the reason for the
discrepancy of the flux estimations.
We checked the details of both VERITAS and HAWC

analyses for potential causes of the discrepancy. For the
background estimation, VERITAS excluded events falling
within 0°.3 of 2HWC J1955+285 and two bright stars in the
field of view. The same exclusion radius was used for the
pulsars PSR J1954+2836 and PSR J1958+2846, while an
exclusion region of radius 0°.34 was used for 2HWC J1953
+294 in order to cover the extension of the radio PWN. The

Figure 5. SED of 2HWC J1928+177. The blue solid area shows the 1σ
confidence interval of HAWC’s spectrum measurements. The solid red lines
show the VERITAS upper limits from the point-source search, assuming either
the spectral index measured by HAWC or a spectral index of 2. The dashed red
lines show the VERITAS upper limits from the extended-source search for the
same spectral indices. The corresponding Fermi-LAT upper limits are shown as
teal dot-dashed lines for the point-source search and teal dashed lines for the
extended-source search. The green triangle points and dashed line show the
flux of the nearby 3FGL source, 3FGL J1928.9+1739.

11

The Astrophysical Journal, 866:24 (18pp), 2018 October 10 Abeysekara et al.



background distribution after these exclusions was reasonable.
If there is diffuse emission covering a very large area and weak
enough not to be detected by the extended analysis of HAWC,
this kind of discrepancy is possible. This is because the

standard analysis of VERITAS obtains its background regions
from the same field of view, while HAWC’s flux estimation
would include both source and diffuse emission. For the
HAWC analysis, we re-estimated the HAWC flux after adding
a uniform, diffuse source to the model for the emission,
which reduced HAWC’s flux for 2HWC J1953+294 only by
10%–15%. The flux reported in the 2HWC catalog can also be
overestimated if there is a nearby source, because HAWC’s
analysis performed for the 2HWC catalog assumes a single
source for their likelihood analysis. We re-estimated the flux of
2HWC J1953+294 after removing the contribution from the
nearby source, 2HWC J1955+285, assuming it to be a point-
like source. The result shows only ∼3% smaller flux for
2HWC J1953+294 compared to what was reported in the
2HWC catalog. It is possible that the nearby 2HWC J1955
+285 is extended, in which case the flux of DA 495 reported
by HAWC may be overestimated due to contamination from
this source. A scenario in which 2HWC J1955+285 is
extended could also better explain the VERITAS nondetection
of this source.
Drawing firm conclusions about the discrepancy between the

VERITAS and HAWC observations in this field of view is
challenging because of the relatively weak signals (TS of
25–30) of the sources reported in the 2HWC catalog. Further
detailed study with larger HAWC exposure and advanced
analysis including multisource likelihood analysis will be
necessary to understand the discrepancy.
We did not detect gamma-ray emission from 2HWC J1953

+294 with the Fermi-LAT analysis. The upper limit was obtained
by assuming the source extension to be similar to the extension of
radio emission from DA495, which is ∼25′(Kothes et al. 2008).
The upper limit at the 99% confidence level is 8.17×
10−11 cm−2 s−1 with an assumption of spectral index of 2.78, and
8.00×10−11 cm−2 s−1 with an assumption of spectral index of 2.
Assuming that the spectral index measured by HAWC will not
change down to 10GeV, the upper limit we calculated disagrees
with HAWC’s flux estimation at a confidence level of 85%.
The likely counterpart of 2HWC J1953+294 and VER J1952

+293 is the PWNDA495. As shown in Figure 6, the emission
seen by VERITAS overlaps with the radio contours of DA 495, an
X-ray compact source, 3FGL J1951.61+2926, and 2HWC J1953
+294. DA 495 is seen as an extended, central concentration of
emission in the radio band. X-ray observations by ROSAT and
ASCA revealed a compact central object, 1WGA J1952.2+2925,
surrounded by an extended nonthermal X-ray source(Arzouma-
nian et al. 2004). The implied blackbody temperature and
luminosity, measured by Chandra, suggest that the central object
is an isolated neutron star. Together with the extended emission
surrounding the compact object, this confirms the PWN
interpretation of the source(Arzoumanian et al. 2004, 2008).
Kothes et al. (2008) suggested that DA 495 may be an aging PWN
with an age of ∼20,000 yr, based on the low-energy break
measured in the radio band. Nondetection of an SNR shell
suggests that the supernova exploded in a very low density
environment. The distance to DA 495 is estimated to be
1.0±0.4 kpc based on H I absorption measurements(Kothes
et al. 2008). The extension of the PWN is 25′ (Kothes et al. 2008)
in radio and ∼40″ in X-ray (Arzoumanian et al. 2008). The
detected TeV gamma-ray extension by VERITAS matches well
with the radio extension.

Figure 6. VERITAS gamma-ray counts map of the PWN DA 495 and the
surrounding region with extended-source search cuts, θ<0°. 3. The region used
for the spectral analysis with VERITAS data is shown with a white dashed
circle. The yellow circle is the centroid measured by VERITAS. Two dark
green crosses and ellipses are the location and 1σ uncertainty of the location of
3FGL sources. Blue “x” marks indicate the centroids of two HAWC sources in
the region, with blue circles showing 1σ uncertainty. White contours are
HAWC’s significance contours of 5σ. The cyan diamond is the location of an
X-ray compact source, 1WGA J1952.2+2925 (Arzoumanian et al. 2004). Light
pink contours show the radio contours around PWN DA 495 measured by the
Canadian Galactic Plane Survey in the 1.42 GHz band (Taylor et al. 2003). The
extension of radio emission from SNR G65.1+0.6 is marked with a dashed
black line.

Figure 7. Fermi-LAT, VERITAS, and HAWC flux measurements in the
vicinity of the PWN DA 495. Green triangles and dashed line show the flux of
nearby 3FGL sources, 3FGL J1951.6+2926. The teal rectangles are the upper
limits of Fermi-LAT data assuming the extension of the source to be 25′. Blue
solid regions are HAWC’s flux measurements. Red squares are the flux
measurement from VERITAS with θ<0°. 3.
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There is a Fermi-LAT source, 3FGL J1951.61+2926,
coincident with DA 495. The extrapolated flux of this source
to the HAWC energy range is much lower than the flux
measured by HAWC, as shown in Figure 7. Karpova et al.
(2015) suggested that 3FGL J1951.61+2926 is likely asso-
ciated with the central pulsar of DA 495, although no evidence
for pulsations has been identified.

4.3.2. 2HWC J1955+285

The second HAWC source in the region, 2HWC J1955
+285, is 1° away from 2HWC J1953+294. There is a nearby
radio-quiet gamma-ray pulsar, PSR J1954+2836, detected by
Fermi-LAT (3FGL J1954.2+2836). The positions of this
pulsar and 2HWC J1955+285 agree within 2σ. But, similar
to DA 495, the extrapolation of PSR J1954+2836 to higher
energies lies far below HAWC’s flux measurement, as shown
in Figure 8.

These sources are within the extent of SNR G65.1+0.6,
a very faint shell-type SNR detected in the radio band
(Landecker et al. 1990; Kothes et al. 2006). Tian & Leahy
(2006) reported the distance to the SNR to be 8.7–10.1 kpc and
the average diameter of the SNR to be 70′. The large size and
diffusive appearance of the SNR suggest that it likely exploded
in a low-density environment (Kothes et al. 2006; Tian &
Leahy 2006). The size of the SNR is larger than the PSF of
HAWC. However, even though 2HWC J1955+285 is found in
the HAWC point-source search, the 2HWC analysis cannot
rule out the possibility of the source being extended. As
mentioned in the previous section, the measured flux
discrepancy between VERITAS and HAWC on DA 495 can
be explained as an overestimation of the 2HWC flux due to
contamination from 2HWC J1955+285 if this source has a
large extension. Further studies with additional HAWC
exposure will be needed to clarify the connection between
2HWC J1955+285 and SNRG65.1+0.6.

Figure 6 shows that VERITAS sees a region of excess
gamma-ray counts around 2HWC J1955+285. The maximum
pretrial significance in this region is 3.5σ offset by 0°.35 from
the position of the HAWC source. With the current data set, it
is unclear whether this is a weak source or simply a statistical
fluctuation.

5. Discussion

5.1. VERITAS Follow-up Studies of Unassociated
2HWC Sources

As shown in Figure 1, there is large overlap between the
energy range covered by HAWC and VERITAS for most of the
sources selected for this study. Since the VERITAS sensitivity
for a point source is better than that of HAWC, VERITAS
should be able to detect a small-sized (radius <0°.5) source
with a substantially shorter exposure time. The angular
resolution of VERITAS is also better than that of HAWC, so
a VERITAS measurement should provide additional insight
into the source morphology and extension.
New HAWC sources generally have low TS values

compared to the 2HWC sources associated with known TeV
gamma-ray-emitting sources. Among the 14 sources we
selected for this follow-up study, 11 sources have a TS value
less than 36, except for 2HWC J1852+013*, 2HWC J1928
+177, and 2HWC J2006+341. The average spectral index of
the selected sources is 2.6, with individual indices ranging from
1.5 to 3.3.
Among the 14 selected new sources, four were detected by

an extended-source search with HAWC. These sources are
2HWC J0700+143, 2HWC J0819+157, 2HWC J1040+308,
and 2HWC J1949+244. Of these, 2HWC J0700+143 and
2HWC J1949+244 were detected by the search for sources
with an extension of 1°, while 2HWC J0819+157 and
2HWC J1040+308 were detected by the search for sources
with an extension of 0°.5. The exposure of VERITAS on these
sources is relatively small (1.8∼5.8 hr), and the upper limits
are not strongly constraining.
The other 10 sources were found by a search for point-like

sources with HAWC. Nine of the 10 sources were not detected
by VERITAS, and we find that the 99% flux upper limits from
VERITAS (assuming a point-source hypothesis) are lower than
the expected flux obtained from the best-fit spectra provided by
HAWC. Treating the uncertainties in the HAWC fluxes as
Gaussian and considering the statistical errors only, we can
exclude six sources—2HWC J1852+013*, 2HWC J1902
+048*, 2HWC J1928+177, 2HWC J1938+238, 2HWC J2006
+341, 2HWC J2024+417*—as being point sources with the
same power-law energy distribution as measured by HAWC
with 95% confidence level. It is possible to explain this
disagreement with a changing spectral shape, as we have
demonstrated with SNR G54.1+0.3, if the source is indeed
point-like to VERITAS and HAWC.
In the extended-source analysis by VERITAS, the upper

limits are less constraining. With angular cuts of 0°.23, the
upper limits measured by VERITAS agree with the flux
estimated from HAWC for all but three sources: 2HWC J1852
+013*, 2HWC J1902+048*, and 2HWC J1907+084*. The
discrepancy between the VERITAS and HAWC measurements
is especially large for 2HWC J1852+013* and 2HWC J1902
+048*. The measurements for these two sources disagree at a
confidence level of greater than 95%. Both of these sources
have relatively large VERITAS exposures (>10 hr). To satisfy
both the VERITAS upper limit and the measured HAWC flux,
the source extension must be larger than a radius of 0°.23.

Figure 8. SED of 2HWC J1955+285. The description of the blue solid region,
red lines, and teal lines are the same as in Figure 5. The green triangles and
dashed line show the flux of the nearby 3FGL source, 3FGL J1954.2+2836.
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5.2. Comparison between IACT Measurements and 2HWC
Source Properties for TeV Gamma-ray Sources Previously

Detected by IACTs

We compared the flux measurements by VERITAS, MAGIC,
H.E.S.S., and HAWC for sources previously detected by IACTs
to check whether there are systematic differences in fluxes
measured by IACTs and HAWC, which may explain the
constraining upper limits measured in this study. We selected
only isolated HAWC sources if each source is coincident with a
single TeV source previously detected by IACTs. We required
the distance between the HAWC source and the selected TeV
source detected by IACTs to be smaller than 0°.2, and the TeV
source to have published spectral measurements. A total of seven
sources were selected: the Crab Nebula, HESS J1848-018
(Chaves et al. 2008), MGRO J1908+06 (Aliu et al. 2014a),
W 51 (Aleksić et al. 2012), SNRG54.1+0.3 (Acciari et al.
2010), VER J2019+368 (Aliu et al. 2014b), and TeV J2032
+4130 (Albert et al. 2008; Aliu et al. 2014c). Except for the
Crab Nebula and SNRG54.1+0.3, all sources were observed as
extended sources by the IACTs. Following the procedure
described in Section 4.1, we used spectral information provided
in the HAWC point-source search to calculate the integral flux of
HAWC in the energy range measured by IACTs. Then, these
values were compared to the integral fluxes measured by IACTs.
The energy threshold (Ethr) for each source reported by IACTs
varies from 75GeV (W51) up to 1 TeV (MGRO J2019+368).

Figure 9 shows the results. As visible in the left panel,
HAWC generally sees softer spectra than IACTs for these
sources. However, as shown in the right panel, integral flux
measurements by IACTs and HAWC agree well for most of the
sources, with the largest discrepancies appearing for
SNR G54.1+0.3 and TeV J2032+4130. We discussed the flux
difference for SNR G54.1+0.3 in Section 4.2. TeV J2032
+4130 is located inside a large GeV gamma-ray emission
region measured by Fermi-LAT, also known as the Cygnus
cocoon (Ackermann et al. 2011). Given the large PSF of
HAWC, it is likely the diffuse emission from the cocoon
increased the flux estimated by HAWC even with their point-
source assumption for the flux of 2HWC J2031+415.

By comparing the fluxes of known, isolated sources detected
by both IACTs and HAWC, we conclude that there is no clear

and large systematic difference in the fluxes estimated by these
instruments that could explain the nondetection of the new
HAWC sources by VERITAS. A change in spectral shape,
source extension, or an overestimation of the HAWC flux due
to additional diffuse emission in the source vicinity is likely the
cause.

5.3. Fermi-LAT Follow-up Studies of Unassociated
2HWC Sources

Extrapolation of HAWC spectra to the Fermi-LAT energy
range results in large uncertainties, so the flux estimates from
HAWC and upper limits measured by Fermi-LAT agree within
1–2σ for most of the sources for both the point-like and
extended-source searches. The most clear disagreement between
two measurements is for 2HWC J1852+013* as shown in the
Appendix; the measurements are discrepant at a confidence level
of 94% for both the point-source search and the extended-source
search. All of the upper limits measured by Fermi-LAT, except
for that of 2HWC J0819+157, are lower than the extrapolation
of the HAWC spectrum. Combined with the VERITAS results,
this suggests that there are likely spectral shape changes between
the Fermi-LAT energy range and the HAWC energy range. This
also could explain why there were no 3FHL sources coincident
with the selected HAWC sources.
Comparing the 3FGL catalog with the HAWC catalog, we

found that there are 3FGL sources in the vicinity of four
HAWC sources: 3FGL J1928.9+1739, 3FGL J1949.3+2433,
3FGL J1951.6+2926, and 3FGL J1954.2+2836. Three of
these sources were discussed in the previous sections. The
remaining source, 3FGL J1949.3+2433, is in the vicinity of
2HWC J1949+244. The flux measurements in the vicinity of
2HWC J1949+244 are shown in Figure 10. All of these 3FGL
sources have SEDs that decrease sharply above energies higher
than a few GeV and the extrapolations of the SEDs to the
HAWC energy range produce fluxes that are much lower than
the HAWC measurements. Whether there is any connection
between these two sets of measurements, such as pulsar
emission measured by Fermi-LAT and PWN emission
measured by HAWC, can be verified with further observations
with IACTs and other multiwavelength observations.

Figure 9. Spectral index (left) and integral flux (right) comparisons between HAWC and IACTs for known TeV sources. The energy range used to calculate the
integrated flux for each source was chosen to start at the threshold value for the IACT measurement and end at 30 TeV. Red lines are for the case where the two
measurements exactly match.
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6. Conclusion

Using VERITAS and Fermi-LAT, we searched for IACT
and GeV gamma-ray counterparts to 14 out of 19 new HAWC
sources without clear TeV associations. VERITAS detected
one weak source coincident with PWN DA 495. The flux of
DA 495 measured by VERITAS is about seven times lower
than HAWC’s measurement, while both measurements agree
on the spectral index. Fermi-LAT did not see gamma-ray
emission for the selected 14 sources for either point- or
extended-source searches. Fermi-LAT did detect point-like
emission from SNRG54.1+0.3, a PWN detected by both
VERITAS and HAWC. The combined SED of the three
instruments on SNRG54.1+0.3 covers a wide range of the
inverse Compton peak of the PWN, providing a good data set
for future modeling.

Upper limits measured by VERITAS are lower than
expected from HAWC’s measurement for nine sources. Among
these, nondetections by VERITAS exclude a point-source
hypothesis for six sources with a confidence level of 95%. The
discrepancy could be resolved if the sources are extended, or if
there is a spectral change in the energy range between
VERITAS and HAWC. For 2HWC J1852+013* and
2HWC J1902+048*, the extension of the source should be
larger than 0°.23 to satisfy all of the measurements. These
numbers are based on a comparison between the upper limits of
VERITAS and the flux estimation of HAWC. However, it is
possible that the HAWC flux is overestimated for some of the
sources, since the flux estimation has been made with a single
point source model for the likelihood analysis without
accounting for nearby sources. Unaccounted weak, diffuse
emission over a very large area would also cause an
overestimation of the flux. While Fermi-LAT will accumulate
more exposure time, a future IACT like the Cherenkov
Telescope Array (CTA) should be able to detect the sources
with its larger field of view and improved sensitivity. A
combined analysis with Fermi-LAT, CTA, and HAWC will
provide detailed gamma-ray data to study the nature of these
new VHE sources.
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Appendix
SEDs of Selected HAWC Sources

Figures 11 and 12 show individual SEDs of 10 2HWC
sources out of 14 selected 2HWC sources that were not shown
in the previous sections. Upper limits from Fermi-LAT and
VERITAS with a point-like source assumption and with an
extended-source assumption are shown together with HAWC’s
flux measurements. For extended-source studies, Fermi-LAT
assumed the size of the source to vary from a radius of
0°.23–1°.0 while VERITAS assumed a source radius of 0°.23.
The details of the analyses and results can be found in Section 3
and Table 2. In Figure 11, the spectral index measured by
HAWC was used to calculate the upper limits, while a spectral
index of 2 was used for Figure 12.

Figure 10. SED of 2HWC J1949+244. The description of the blue solid
region, red lines, and teal lines are the same as in Figure 5. The green
triangles and dashed line show the flux of the nearby 3FGL source,
3FGL J1949.3+2433.
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Figure 12. SEDs of undetected HAWC sources. Upper limits for Fermi-LAT (teal lines) and VERITAS (red lines) were calculated by using the spectral index of 2.
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