
HAL Id: hal-01871723
https://hal.science/hal-01871723

Submitted on 11 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Horton–Rogers–Lapwood convective instability
with vertical vibration: Onset of convection

Gérald Bardan, Abdelkader Mojtabi

To cite this version:
Gérald Bardan, Abdelkader Mojtabi. On the Horton–Rogers–Lapwood convective instability
with vertical vibration: Onset of convection. Physics of Fluids, 2000, 12 (11), pp.2723-2731.
�10.1063/1.1313551�. �hal-01871723�

https://hal.science/hal-01871723
https://hal.archives-ouvertes.fr


  
 

 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/20633 
 

 

To cite this version:  
Bardan, Gérald and Mojtabi, Abdelkader On the Horton–
Rogers–Lapwood convective instability with vertical vibration: 
Onset of convection. (2000) Physics of Fluids, 12 (11). 2723-
2731. ISSN 1070-6631 

Official URL:  
http://doi.org/10.1063/1.1313551 
  

Open  Archive  Toulouse  Archive  Ouverte 

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/20633
http://doi.org/10.1063/1.1313551


PHYSICS OF FLUIDS VOLUME 12, NUMBER 11 NOVEMBER 2000
On the Horton–Rogers–Lapwood convective instability with vertical
vibration: Onset of convection

G. Bardan and A. Mojtabi
U.F.R. M.I.G. bat. 1R2 U.M.R. 5502, De´partement de Me´canique, Universite´ Paul Sabatier, 118,
Route de Narbonne, 31062 Toulouse Cedex, France

~Received 5 January 2000; accepted 26 July 2000!

We present a numerical and analytical study of diffusive convection in a rectangular saturated
porous cell heated from below and subjected to high frequency vibration. The configuration of the
Horton–Rogers–Lapwood problem is adopted. The classical Darcy model is shown to be
insufficient to describe the vibrational flow correctly. The relevant system is described by
time-averaged Darcy–Boussinesq equations. These equations possess a pure diffusive steady
equilibrium solution provided the vibrations are vertical. This solution is linearly stable up to a
critical value of the stability parameter depending on the strength of the vibration. The solutions in
the neighborhood of the bifurcation point are described analytically as a function of the strength of
vibration, and the larger amplitude states are computed numerically using a spectral collocation
method. Increasing the vibration amplitude delays the onset of convection and may even create
subcritical solutions. The majority of primary bifurcations are of a special type of
symmetry-breaking bifurcation even if the system is subjected to vertical vibration. ©2000
American Institute of Physics.@S1070-6631~00!00411-6#
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I. INTRODUCTION

Natural convection flow in porous media due to therm
buoyancy has been widely studied by Bories1 and well docu-
mented in the literature in the excellent book recently writ
by Nield and Bejan,2 while only a few works have bee
devoted to thermovibrational convection in porous me
~Gershuni and Lyubimov3!. Vibration of a cell containing a
saturated porous medium in the presence of a tempera
gradient can give rise to vibrational convection. This conv
tion mechanism also operates under conditions of weig
lessness, when there is no static gravity field.

The present study is concerned with the bifurcat
structure associated with steady thermovibrational conv
tion in a finite two-dimensional saturated porous cav
heated from below.

Beck4 seems to have been the first to consider conv
tion in a finite three-dimensional horizontal box of poro
material saturated with fluid and heated from below. Us
linear stability analysis, he found the critical Rayleigh nu
ber for the onset of convection in a box. In the present tw
dimensional study we effectively restrict ourselves to th
three-dimensional boxes with length greater than or equa
the height. For three-dimensional boxes, numerical soluti
based on the Galerkin method have been reported by S
and Schubert,5–7 Schubert and Straus,8 and Caltagirone
et al.9 The number of numerical investigations into tw
dimensional large amplitude convection is also substan
and we refer to the work of Riley and Winters.10 Their main
results concern a nonlinear study and mode interactio
They also deal with linear stability. For a cavity of fixe
aspect ratio, an analytical linear stability study shows tha
countably infinite set of eigenmodes exists. These eig
modes occur at discrete eigenvalues and represent conve
2721070-6631/2000/12(11)/2723/9/$17.00
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flows with i and j rolls in the horizontal and vertical direc
tions, respectively. The preferred mode of convection~the
one with the lowest critical Rayleigh number! always has
one cell in the vertical direction: The number of cells in t
horizontal direction depends upon the aspect ratio. They
emphasize that there is a close analogy between the po
medium case and the pure fluid case, which is gener
known as the Rayleigh–Be´nard problem. They shareZ2

3Z2 symmetry, but the porous medium problem posses
in addition a translational invariance so that a two-cell so
tion in a cavity of aspect ratio 2 is equivalent to a four-c
solution in a cavity of aspect ratio 4, and so on. This tra
lational invariance arises from the slip boundary conditio
which apply at the boundaries of the porous medium.

In this paper we present an extensive discussion of
effect of high-frequency vibration on the previous problem

High frequency periodic accelerations occurring on m
crogravity platforms~g-jitter!, may induce disturbances i
space experiments that deal with liquids in the presence
density gradients. In the low-gravity environment of spa
stations, buoyancy-induced convection may be expecte
be minimized; however,g-jitter induced by onboard machin
ery or excited by crew activities can result in convection
fluids when there are density gradients. These convec
effects may have an influence on fluid or porous medi
science experiments or on material processing as, for
ample, solidification processes. Theg-jitter is modeled by a
unidirectional, harmonically oscillating, small-amplitude a
celeration field~Alexander11!. Since the governing equation
are nonlinear, the fluctuating acceleration with zero aver
induces a periodic response consisting of a steady solu
with a nonzero mean superimposed on a time-depend
zero-average fluctuation~Gershuni and Zhukhovitsky12!. The
averaged field, also referred to in the literature as stream
3 © 2000 American Institute of Physics
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2724 Phys. Fluids, Vol. 12, No. 11, November 2000 G. Bardan and A. Mojtabi
flow, is significant because it can give a relevant contribut
to the heat transfer in a time-averaged sense.

Studies on thermal convection in a gravitationally mod
lated fluid layer with rigid, isothermal boundaries heated
ther from below or from above~i.e., for the Rayleigh–
Bénard problem!include the early work by Gresho an
Sani13 and Rosenblat and Tanaka.14 More recently, this work
has been extended by Roppoet al.,15 Halerset al.,16 and Ho-
henberg and Swift.17 A number of experiments, in reasonab
agreement with the theoretical predictions, have been
formed by Halerset al.18 and Niemela and Donnelly.19 They
find that vertical vibrations stabilize the diffusive solutio
i.e., the value of the critical Rayleigh number increases w
the strength of vibration.

To our knowledge, only a few works on the effect
vibration have been performed for an enclosure filled by p
fluid. Bardanet al.20 present the effect of high frequenc
jitter in a differentially heated cavity situation and Faro
and Homsy21 and Grassia and Homsy22 study the effects of
low frequency jitter on streaming and buoyant flows.

The effect of vibration on a porous medium is also
interest for the petroleum research community. Vibrat
production technology is a simple, economic, and effici
way to increase oil production in some oil fields.23 Khallouf
et al.24 made a numerical study of some properties of c
vective oscillations in porous medium. This study was
stricted to the case of finite frequencies. In the limiting ca
of high frequencies, they found that the effect of vibrati
disappeared as a result of the simplification adopted in
Darcy model. In this paper, we present a first discussion
the effect of vibration on aporous mediumconfined in an
enclosure heated from below. We will see that a class
Darcy model is not suitable for taking into account the eff
of vibration. A mean flow formulation for an adapted Dar
model is proposed. The linear stability problem is solved
means of a Galerkin method. The amplitude equation at
onset of the preferred mode is given.

FIG. 1. Geometrical configuration and axis of coordinates. Sketch of
cavity configuration.
Downloaded 24 Apr 2008 to 138.38.168.181. Redistribution subject to AIP
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II. MATHEMATICAL MODEL AND BASIC EQUATIONS

We consider a fluid-saturated porous medium enclo
in a container of heightH and lengthL. Figure 1 represents
the flow configuration and coordinate system. The flow d
main is (x,z)PV5@0,L#3@0,H#. The horizontal walls atz
50 andz5H are kept at constant and uniform temperatu
u1 and u2 , respectively. The situation whereu1.u2 is
adopted. The vertical walls~at x50 andx5L) are insulated.
All the boundaries are assumed rigid. The cavity with
boundaries is subjected to linear harmonic oscillations.

A. Approximations

~1! The solid matrix is homogeneous, nondeformab
and chemically inert with respect to the fluid.

~2! The fluid is single phase and Newtonian.
~3! The Darcy number is small so that the inertia term

may be neglected.
~4! The solid and fluid phases are in thermal equil

rium.
~5! The relative temperature differences are sm

enough for the Boussinesq approximation to hold.
~6! Thermal dissipation is negligible and an effectiv

thermal conductivity may be assumed.
~7! The vibration frequency is large and the displac

ment amplitude is small enough for the averaging method
hold.

B. The mathematical model

The saturated porous medium in the cavity is conside
to satisfy the Boussinesq approximation. The thermophys
properties are constant except for the density in the buoya
term, which depends linearly on the local temperature. T
equation of state has the following form:

r~u!5r ref~12bu~u2uref)), ~1!

wherer ref5r~uref) andbT521/r ref]r/]u are the density at
standard temperatureu ref5u2 and the thermal expansion co
efficient, respectively. By introducing the appropriate co
dinates connected with oscillating systems, the gravitatio
field is replaced by the sum of the gravitational and the
brational acceleration~2! in the momentum equation

g→2gz1bv2 sin~vt !k, ~2!

wherek5 cosa x1sina z is the unit vector along the axis o
vibration anda5~x,k! is the angle of vibration,b is the
displacement amplitude, andv the angular frequency.

These hypotheses lead to the following dimensionl
conservation equations for mass~3!, momentum~4!, and en-
ergy ~5!, with the Boussinesq approximation. Using the v
locity u, the pressurep, and the temperatureu as independen
variables, the nondimensional equations of the Darc
Boussinesq model are

“"u50, ~3!

u1A
]u

]t
52“p1Rauz2RaRu sin~v̂t !k, ~4!

e
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2725Phys. Fluids, Vol. 12, No. 11, November 2000 Symmetry breaking in an enclosed swirling flow
]u

]t
1~u"“ !u5¹2u. ~5!

In Eqs. ~3!–~5!, using the thermal diffusion time as th
time-scale factor, lengths are nondimensionalized byH, ve-
locity by a/H ~a is the thermal diffusivity!, time byH2/a, v
by a/H2, and temperature relative tou2 by u12u2 . In line
with the problem description, the corresponding nondim
sional forms of the boundary conditions are

u"n50 on ]V ~n is the outside normal vector!,
~6!

u51 for z50,;x, ~7!

u50 for z51,;x, ~8!

]u

]x
50 for x50 and AL ,;z. ~9!

The problem includes five nondimensional numbers;
Rayleigh number Ra5gbuK(u12u2)H/na ~K is the perme-
ability!, the g-number R5bv2/g, the pulsation v̂
5vH2/a, A5DaM /e Pr and the aspect ratioAL5L/H. Pr
5n/a is the Prandtl number defined as the ratio between
thermal and viscous diffusive times~n and a are the kine-
matic and thermal diffusivity, respectively!. Da5K/H2 is the
Darcy number,M the volumetric specific heat ratio, ande the
porosity. AsA is of the order 1026 in classical porous media
the contribution of the termA]u/]t in Eq. ~4! can be ne-
glected but with high-frequency vibration this simplificatio
cannot be made. The term sin(vt) allows very large variation
of ]u/]t andA]u/]t5O(u).

C. The averaged flow equations

In the asymptotic case of high-frequency oscillatio
where the period of the displacementt52p/v is very low
compared to the characteristic times of thermal and ki
matic diffusion (t!H2/a and t!H2/n) the application of
the averaging method of Bogljubov and Mittropolskil25 only
allows the mean flow and heat transfer to be solved. T
basic idea consists in treating the periodic flow with an
proach similar to that used in studying turbulent flows. T
quantities under investigation are divided into two parts:
first, denotedF5 f̄ ~time independent for at-periodic behav-
ior!, varies slowly with time and the second, denotedf 8 ~t
periodic!, varies rapidly with time. Thus we have the follow
ing decomposition:

u5U~ t !1u8~vt !, ~10!

u2u25T~ t !1u8~vt !, ~11!

p5P~ t !1p8~vt !. ~12!

For a given functionf, its average value is defined by

F5 f̄ 5~1/t!E
t2t/2

t1t/2

f ~s!ds

so U(t)5ū, T(t)5 ū2u2 , andP(t)5 p̄.
Substituting this decomposition in the momentum eq

tions, we obtain two coupled systems of equations, one
Downloaded 24 Apr 2008 to 138.38.168.181. Redistribution subject to AIP
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the mean flow and the other for the fluctuating componen
the flow. The object of applying the averaging method
then to establish the connection between the oscillatory
mean variables. Let us introduce the additional variableWT
which constitutes the solenoidal part of the temperature fi
contribution to the gravitational force in the following Helm
holtz decomposition:

“∧Tk5 ¹∧WT, ~13!

“"WT50. ~14!

Using the high frequency hypothesis and assuming
the amplitude of displacement is very low, i.e.,b
!H/bT(u12u2), the equations of the oscillatory compone
are linearized according to the procedure developed by
monenkoet al.26 These conditions are valid whenu8(vt)
!T(t). The theoretical justification is given b
Simonenko,27 where he proves the convergence of solutio
of the averaged system to averaged solutions of the sys
~3!–~5!. A numerical description of this convergence is giv
by Khallouf.28 Consequently this allows us to establish t
following relationships between mean and fluctuating va
ables:

u85
RaR

A2v211
~2sin~vt !1Av cos~vt !!WT, ~15!

u852
RaR

A2v211 S 1

v
cos~vt !1A sin~vt ! DWT"“T. ~16!

The mean motion is then determined by

“"U50, ~17!

A
]U

]t
1U52¹P1RaTz1Rav WT"“~Tk!, ~18!

]T

]t
1~U"“ !T5¹2T, ~19!

“∧Tk5“∧WT, ~20!

“"WT50. ~21!

We note Rav5Ra2 R2A/2(A2v211), the modified vi-
brational Rayleigh number, is hereafter called the vibratio
Rayleigh number. The boundary conditions are in acc
dance with the physical statement of problems~6!–~9! and

WT"n50 on ]V. ~22!

Note that, for the classical Darcy model, the ter
A]u/]t in Eq. ~4! is neglected asA'1026. Eliminating this
term leads towrong mean equations which are independe
of the vibration. As one can see, even ifA'1026 the vibra-
tional Rayleigh number Rav5Ra2 R2A/2(A2v211) can
have a finite value.

III. LINEAR STABILITY

A. Mechanical equilibrium and stability problem
formulation

An important question is whether or not the state of m
chanical equilibrium~i.e., the state at which the mean an
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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pulsational velocities are zero!exists in our situation. In or-
der to prove the existence of a conductive solution of
system~17!–~21!, we set upU50, WT50 and ]/]t50 in
this system and seek a valid solution for arbitrary values
the nondimensional parameters. We obtain the follow
system:

“∧~RaT0z!50, ~23!

DT050, ~24!

“∧T0k5 0, ~25!

with the following boundary conditions:

T051 for z50,;x, ~26!

T050 for z51,;x, ~27!

]T0

]x
50 for x50, AL ,;z. ~28!

Equation ~24! with boundary conditions~26! and ~27!
leads toT0512z.

The conditions~25! lead toa5p/2. Consequently in this
case we have a strict mechanical equilibrium, i.e., the os
latory components of the velocity also vanish@see Eqs.~15!
and ~16!#.

In the following, we only deal with the case of vertic
vibration.

B. Stability of the equilibrium solution

It is convenient to rewrite Eqs.~17!–~21! as evolution
equations for two-dimensional perturbations superimpo
on this equilibrium state. We denote the perturbations
(U8,P8,T8,WT8 ) and introduce the following streamfunctio
representations:

Ux852]c8/]z, Uz85]c/]x, ~29!

WTx
8 52]c18/]z, WTz

8 5]c1 /]x. ~30!

As a result, a positive streamfunction corresponds t
clockwise cell. EliminatingP8 we obtain:

]

]t S 2ADc8
T8
0

D 5LS c8
T8
c18

D 1S Rav N1~c18 ,T8!

N2~c8,T8!

0
D , ~31!

where for all pairs (f ,g) of real functions

N1~ f ,g!5
]2f

]x]z

]g

]x
1

] f

]z

]2g

]x22
]2f

]x2

]g

]z
2

] f

]x

]2g

]x]z
,

~32!

N2~ f ,g!5
] f

]z

]g

]x
2

] f

]x

]g

]z
, ~33!

L is the Jacobian matrix such that
Downloaded 24 Apr 2008 to 138.38.168.181. Redistribution subject to AIP
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L5 S ¹2
2Ra

]

]x
Rav

]2

]x2

]

]x
¹2 0

0 2
]

]x
¹2

D . ~34!

At the boundaries of the cavity the streamfunctions va
ish and thus

c8u]V50, ~35!

T8~z50!5T8~z51!50 ;xP@0,AL#, ~36!

]T8

]x
~x50!5

]T8

]x
~x5AL!50 ;zP@0,1#, ~37!

c18u]V50. ~38!

Equation~31! with boundary conditions~35!–~38! is in-
variant under two reflections. These operations are descr
by the operatorsSx , Sz , andSo5SxSz defined by

SxS c8
T8
c18

D ~x,z!5S 2c8
T8

2c18
D ~AL2x,z!, ~39!

SzS c8
T8
c18

D ~x,z!5S 2c8
2T8
2c18

D ~x,12z!, ~40!

SoS c8
T8
c18

D ~x,z!5S c8
2T8
c18

D ~AL2x,12z!, ~41!

and are generalized reflections sinceSx
251, Sz

251 and So
2

51. HereSx , Sz , andSxSz represent left–right, up–down
and centrosymmetries, respectively. The representationG of
the groupZ23Z2 is G[$Id,Sx ,Sz ,So%, where Id is the iden-
tity operator and this group plays an important role in t
bifurcation analysis described in the following. In particula
it is known that, in the presence of this symmetry gro
~Crawford and Knobloch,29 Golubitsky and Schaeffer,30 and
Riley and Winters10!, the conduction state can only lose st
bility to states that are eitherSx symmetric,Sz symmetric,So

symmetric or have all the symmetry properties (So , Sx , and
Sz). The resulting bifurcations are pitchforks except for t
last case. Without vibration, it is known thatSz-symmetric
solutions are always unstable and result from at least a
ond primary bifurcation. The first two primary bifurcation
are supercritical pitchforks with eitherSo-symmetric or
Sx-symmetric solutions~Beck4!. In addition to these symme
tries, slip condition~35! implies a translational invariance i
the x andz directions. The (i , j ) mode corresponding to de
velopments~43!–~45! possesses translational symmetriesTi

p

andTi
q , wherep51,2,...,i21, q51,2,...,j 21, and

Ti
pS c8

T8
c18

D ~x,z!5S c8
T8
c18

D S x1
2pAL

i
,z1

2q

j D . ~42!
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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2727Phys. Fluids, Vol. 12, No. 11, November 2000 Symmetry breaking in an enclosed swirling flow
This symmetry has an important consequence for
crossing of paths of bifurcation points~see the following!.
Here, the translational symmetry arising from the slip con
tion guarantees that the paths corresponding to thei and i
11 modes will cross because these paths break diffe
symmetries (So andSx for the first primary bifurcation!.

C. Analytical results

The linear stability problem is solved by means of
Galerkin method using the following expansions:

c8~x,z!5(
i 50

n

(
j 50

m

ai j sin~ ipx/AL!sin~ j pz!eIVht, ~43!

T8~x,z!5(
i 50

n

(
j 50

m

bi j cos~ ipx/AL!sin~ j pz!eIVht, ~44!

c18~x,z!5(
i 50

n

(
j 50

m

ci j sin~ ipx/AL!sin~ j pz!eIVht, ~45!

whereVh is a real number,I 5A21, and (i , j )PN2.
The Sx-symmetric eigenmodes contain an even num

of rolls in the x direction whereas theSz-symmetric ones
contain an even number of rolls in thez direction. The num-
ber of cells is linked with the valuesi and j, i.e., i is the
number of cells along thex axis andj along thez axis. The
So-symmetric eigenmodes contain an odd number of cell
both directions. The eigenmodes which possess all the s
metry properties contain an even number of cells in b
directions. Forj 51 ~first primary bifurcation!, the eigenvec-
tor could be eitherSx symmetric orSo symmetric. So, forj
52 ~second primary bifurcation!, the eigenvector could
eitherSz symmetric or have all the symmetry properties (So ,
Sx , andSz).

FIG. 2. Critical Rayleigh number Rac of a few primary bifurcations vs the
aspect ratioAL . Only the modes, obtained within the truncation (n56, m
53), are represented.~a! Static case Rav50. ~b! Rav550. ~c! Rav5100.S
branches possess all the symmetry properties.
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The bifurcation points are located by solving the line
algebraic system £X50 withX5 (ai j ,bi j ,ci j ) i 50,n; j 50,m and
£ is evaluated by the Galerkin method.

For particular values~Ra, Vh), the determinant of £ is
zero, indicating a bifurcation point. We find that

det~£!5)
i 51

n

)
j 51

m

@ f ~A,Ra,Rav ,Vh ,AL ,i , j !1IVh~AL
2 j 2

1 i 2!2~p2AL
2 j 2A1AL

21p2i 2A!#, ~46!

with f a real function. As det~£!50 only if both its real pa
and its imaginary part vanish, this leads toVh50. The prin-
ciple of stability exchange applies for this problem even
the linear problem itnot self-adjoint.

The critical thermal Rayleigh number which determin
the limit of the even and odd solutions can be studied a
lytically by

Rac5
p2~ i 21 j 2AL

2!31 i 4AL
2 Rav

i 2AL
2~ i 21 j 2AL

2!
. ~47!

The graphs of the primary bifurcation points are sho
in Fig. 2. The cellular modes (i odd, j odd) are So symmetric,
( i odd, j even) areSx symmetric, (i even, j odd) areSz symmetric,
and (i even, j even) possess all of these aforementioned symm
tries ~see Fig. 3!. If Rav increases, the curves of the critic
Rayleigh number are both translated up and right and
caled~Fig. 2! but keep the same shape.

IV. NONLINEAR ANALYSIS

Weakly nonlinear analysis. In this section we use a mul
tiple scale analysis to reduce system~31! to a simpler form,
called a normal form, valid near onset of the first prima
instability, i.e., foruRa2Racu/Rac!1. We expand the pertur
bations, the Rayleigh number, and time in powers of a sm
parametere.0:

c85ec~1!1e2c~2!1¯ , ~48!

T85eT~1!1e2T~2!1¯ , ~49!

c185ec1
~1!1e2c1

~2!1¯ , ~50!

]

]t
5e

]

]t ~1! 1e2
]

]t ~2! 1¯ , ~51!

Ra5Rac1e Ra~1!1e2 Ra~2!1¯ . ~52!

At order e we recover the linear eigenvalue problem
The perturbation eigenmodes can be written in the form
 license or copyright; see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. Streamfunction forAL51 in the static case.~a!
So-symmetric solution.~b! Sz-symmetric solution,~c!
Sx-symmetric solution, and~d! solution with all the
symmetry properties.
ig
o
t

f

rs

e

for

ls

e

S c~1!

T~1!

c1
~1!
D 5K~ t ~k!!

3S p2~ j 2AL
21 i 2!2

i 2AL
2 sinS i

px

AL
D sin~ j pz!

p2~ j 2AL
21 i 2!

iAL
cosS i

px

AL
D sin~ j pz!

sinS i
px

AL
D sin~ j pz!

D ,

~53!

where the amplitudeK depends on the slow timest (k), k
51,2,... . We note that formoderatevalues of Rav , whatever
the aspect ratio value, the mode of lowest critical Rayle
number always has unit vertical wave number, while the c
responding horizontal wave number is dependent both on
aspect ratio and on Rav . We will see later the meaning o
moderate. The wave number of this mode changes fromi to
i 11 atAL5ALi

~Let us say thatAL0
50). In the static case10

ALi
5( i ( i 11))1/2 but this relationdoes not holdwith vibra-

tion. The critical Rayleigh number associated with the fi
primary bifurcation point formoderatevalues of Rav is

Rac5
p2~ i 21AL

2!31 i 4AL
2 Rav

i 2AL
2~ i 21AL

2!
~54!
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h
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for ALi 21
,AL,ALi

. Figure 4 shows the variation of thes
analytical curves for increasing Rav . The vibrations stabilize
the diffusive solution and the onset of motion occurs
larger values of the Rayleigh number.; i , uALi

2ALi 21
u

5 f (Rav ,i ) is the length of box for which the number of cel

FIG. 4. Critical Rayleigh number Rac of the first primary bifurcation point
vs the aspect ratioAL . The vertical vibrations increase the value of th
critical Rayleigh number. ForAL,AL1

So-symmetric one-cell flow, for
AL1

,AL,AL2
Sx-symmetric two-cell flow. ForALi

,AL,ALi 11
( i 11)-cell

flow which is So symmetric fori odd orSx symmetric fori even.
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increases by one. Consequently,p/ f (Rav ,i ) approximates
the wave number of the infinite horizontal layer. In the sta
casef (0,i )'1, which corresponds to the well-known wav
number ofp. The important thing is that vertical vibratio
can generate a one-cell flow whatever the value ofAL as
f (Rav)→` when Rav→`. For a finite value ofAL there is a
finite value Ravc of Rav such that the preferred mode has
one-cell structure. This upper limit Ravc5p2(11AL

2)(20AL
4

113AL
212)/AL

2 defines the upper limit of themoderatedo-
main of Rav .

For Rav.Ravc , the preferred mode is the (1,j ) mode
with j>2 and the critical Rayleigh number value associa
with the preferred mode is given by Eq.~47! with i 51 and
j >2. The mode of lowest critical Rayleigh number alwa
has unithorizontal wave number, while the correspondin
vertical wave number is then dependent on Rav . The surpris-
ing thing is that increasing Rav will also increase the valuej
of the preferred mode which means thatstackedrolls (Sz or
So-symmetric solutions! are then stable solutions at the ons
of convection. This type of symmetry has not been obser
in convection experiments but this system allows experim
tal investigation of this state. On earth, we need to impos
vibrational field intensity which is bigger than 10g. We
should mention that this type of flow could be easily o
served by a space experiment for which the gravity will
strongly reduced.

In the following, only moderate, and also more realist
values of Rav are considered.

At order e2, whatever the value of the aspect ratioAL ,
the quadratic terms in the amplitude equation necessa
vanish and we can set Ra(1)50 and omit the time scalet (1).

At order e3, the existence of a convective solution r
quires the solvability lemma31 to be satisfied, i.e., there mu
be a nonzero solution to the following adjoint linear eige
value problem:

S ¹2
2

]

]x
0

Ra
]

]x
¹2 ]

]x

Rav

]

]x2 0 ¹2

D S c*
T*
c1*

D 5S 0
0
0
D , ~55!

with identical boundary conditions. This condition yields t
result

Rac* 5Rac . ~56!

The amplitude equation~57! now follows on applying
the Fredholm alternative

a
]K

]t ~2! 5bK~m1cK2!, ~57!

with m5(Ra2Rac)/e
2 the bifurcation parameter. This am

plitude equation applies forALi 21
,AL,ALi

and the coeffi-
cientsa, b, andc are evaluated analytically:

a5
p4A~ i 21AL

2!31p2~AL1 i I !2~AL2 i I !2AL
2

4i 2AL
3 , ~58!
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b5
i 21AL

2

4AL
, ~59!

c5
Rav p6~ i 21AL

2!2

8AL
4 2

p8~ i 21AL
2!5

8i 4AL
6 . ~60!

For AL5ALi
a codimension two bifurcation results from

the interaction betweenSo- andSx-symmetric solutions. The
mode interaction is not the purpose of the present paper
the analysis is currently under way.

When c,0 ~respectively,c.0), the bifurcation is su-
percritical and stable~respectively, subcritical and unstable!
as 2bm/a,0 ~respectively, 2bm/a.0). Whatever the
mode considered and the aspect ratio,c, which has a negative
value for Rav50, becomes positive as Rav increases. This
occurs within the moderate range of Rav . Figure 5 represents
the different scenarios occurring at the onset of convec
and depending on both the aspect ratio and Rav .

V. NUMERICAL RESULTS

A. Numerical method

The system of equations~17!–~21! was solved numeri-
cally using a spectral method.32 The method used is based o
the projection diffusion algorithm developed by Khallouf.24

Temporal integration consists of a semi-implicit secon
order finite difference approximation and transforms the s
tem into a Helmholtz problem arising from the advectio
diffusion equations~19! coupled to the Poisson problem
~20! and~21! with appropriate boundary conditions. The la
ter are solved using the Uzawa~or Poisson-type!formulation
of Azaiez et al.33 All the subproblems obtained are eith
Helmholtz or Poisson-type operators. A high-accuracy sp

FIG. 5. For a chosen pair (AL2Rav) the first primary bifurcation could be
a supercritical stable pitchfork~Sp! or subcritical unstable pitchfork~Sb!.
The subscript (Spi or Sbi) indicates the number,i, of cells on the emerging
branch of the solution. As previously mentioned,i odd means the solution is
So symmetric andi even the solution isSx symmetric (j 51).
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tral method, namely one utilizing Legendre collocati
points, solves the Helmholtz or Poisson-type operators. S
cessive diagonalization is used to invert these operators.
mention that the Darcy–Euler solvers are direct and gua
tee an accurate spectral solution with divergence-free s
noidal fields over the entire domain, including the boun
aries. For the calculations discussed in this paper, a grid
25325 mesh points in the (x,z) domain accurately describe
the flow. We selected a 33333 grid for our calculations.

B. Numerical results

For the numerical study, we choseAL51 or AL53 in
order to investigate cases in which there are substant
different effects of vibration~see Fig. 5!. The numerica
simulations were done as follows: The vibrational Rayle
number was fixed and we increased the value of the ther
Rayleigh number. The following results apply in our comp
tational domain, i.e., 0,Ra,300 and 0,Rav,400.

1. Square cavity A LÄ1

The bifurcation diagram is presented in Fig. 6. In t
static case, the pitchfork bifurcation point occurs at
'4p2 and the emerging branch is supercritical and sta
Along this branch, the solution is a one-cell flow@see Fig.
6~a!#, i.e.,So symmetric for the range of Rayleigh numbe
investigated. By increasing the vibrational Rayleigh numb
we delay the onset of convection but the pitchfork rema
supercritical up to Rav580. For Rav.80, the vibration de-
stabilizes this pitchfork branch which becomes subcritic
i.e., unstable. The subcritical branch undergoes a sad
node bifurcation and becomes stable. Along this sta
branch, the solutions consist of symmetric one-roll flo

FIG. 6. Bifurcation diagram in thec~0.5,0.5!–Ra plane for different values
of Rav whenAL51. The insets are streamlines and lines of constant m
temperature at Ra5165 for Rav50 ~a! or Rav5250 ~b!. Only the branch
corresponding to the preferred mode is represented. Resolution is 33333.
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structures@see Fig. 6~b!#. Whatever the value of Rav.80, the
first primary bifurcation remains a subcritical pitchfork.

2. A rectangular cavity A LÄ3

Figure 7 presents the bifurcation diagram for differe
values of Rav . In this case, the situation differs from th
previous one. As presented in Fig. 5, the type of flow at
onset of convection is centrosymmetric but possesse
three-cell structure in the static case@see Fig. 7~a!#. When
Rav increases up to Rav540, the conduction solution re
mains stable up to a larger value of the Rayleigh numb
The emerging branch is a supercritical pitchfork along wh
the solutions have a three-cell structure i.e.,So symmetric.
For 40,Rav,160, the emerging branch remains a sup
critical pitchfork but the solutions have a two-cell structur
i.e., Sx symmetric@see Fig. 7~b!#. For 160,Rav,350, the
pitchfork bifurcation becomes subcritical and the emerg
branch is unstable. This branch undergoes a saddle-nod
furcation and becomes stable. Along this stable branch,
solutions consist of two-cell flow structures@see Fig. 7~c!#.
For Rav.350 up to the end of our computational doma
the first primary bifurcation becomes supercritical but t
solutions along this branch then have a one-cell struc
@see Fig. 7~d!#. For Rav.1250 the pitchfork bifurcation be
comes subcritical.

Increasing the strength of vibration will increase t
value of the critical Rayleigh number and in this sense s
bilize the diffusive solution. In fact the vibration impose
lines of constant temperature perpendicular to the axis
vibration, which in our present will be study horizontal an
the horizontal profile of these lines defines the restless s
The variations of these lines are shown by in Figs. 6~a! and
6~b! or Figs. 7~a!–7~d!.

Moreover, a sufficiently high strength of vibration force
the motion to have a one-cell flow structure at the onse
convection.

n

FIG. 7. Bifurcation diagram in thec~0.5,0.5!–Ra plane for different values
of Rav whenAL53. The insets are streamlines and lines of constant m
temperature at Ra5165 for Rav520 ~a!, Rav5100 ~b!, Rav5240 ~c!, and
Rav5400 ~d!. Only the branch corresponding to the preferred mode is r
resented. Resolution is 33333.
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VI. CONCLUSION

Analytical and numerical techniques were used to stu
the linear stability of Lapwood convection in a two
dimensional cavity subjected to vibration. The termA]u/]t
in the Darcy modelcannot be neglectedwhen the cavity
medium is subjected to linear harmonic high-frequency
cillations. A pure mechanical equilibrium exists only forver-
tical vibrations which stabilize the no-flow state. More pr
cisely, vibrations move the onset of convection to larg
values of the Rayleigh number. The surprise is that vert
vibrations can generate aone-cellmode at the onset of con
vectionwhateverthe value of the aspect ratio. This is don
by crossing an appropriate number of codimension two
furcation points.

A natural extension of the present study will analyze
effect of vertical vibration on the primary and secondary
furcation points, i.e., on the modal exchange mechanism
Lapwood convection.
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