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PHYSICS OF FLUIDS VOLUME 12, NUMBER 11 NOVEMBER 2000

On the Horton—Rogers—Lapwood convective instability with vertical
vibration: Onset of convection

G. Bardan and A. Mojtabi
U.F.R. M.L.G. bat. 1R2 U.M.R. 5502, partement de Meanique, UniversitePaul Sabatier, 118,
Route de Narbonne, 31062 Toulouse Cedex, France

(Received 5 January 2000; accepted 26 July 2000)

We present a numerical and analytical study of diffusive convection in a rectangular saturated
porous cell heated from below and subjected to high frequency vibration. The configuration of the
Horton—Rogers—Lapwood problem is adopted. The classical Darcy model is shown to be
insufficient to describe the vibrational flow correctly. The relevant system is described by
time-averaged Darcy—Boussinesq equations. These equations possess a pure diffusive steady
equilibrium solution provided the vibrations are vertical. This solution is linearly stable up to a
critical value of the stability parameter depending on the strength of the vibration. The solutions in
the neighborhood of the bifurcation point are described analytically as a function of the strength of
vibration, and the larger amplitude states are computed numerically using a spectral collocation
method. Increasing the vibration amplitude delays the onset of convection and may even create
subcritical solutions. The majority of primary bifurcations are of a special type of
symmetry-breaking bifurcation even if the system is subjected to vertical vibration20@®
American Institute of Physic§S1070-6631(00)00411-6]

I. INTRODUCTION flows with i andj rolls in the horizontal and vertical direc-
tions, respectively. The preferred mode of convectitre
Natural convection flow in porous media due to thermalone with the lowest critical Rayleigh numbealways has
buoyancy has been widely studied by Botiaad well docu-  one cell in the vertical direction: The number of cells in the
mented in the literature in the excellent book recently writtenhorizontal direction depends upon the aspect ratio. They also
by Nield and Bejarf, while only a few works have been emphasize that there is a close analogy between the porous
devoted to thermovibrational convection in porous mediamedium case and the pure fluid case, which is generally
(Gershuni and Lyubimd¥. Vibration of a cell containing a known as the Rayleigh—Bard problem. They sharg&,
saturated porous medium in the presence of a temperatusez, symmetry, but the porous medium problem possesses
gradient can give rise to vibrational convection. This convecin addition a translational invariance so that a two-cell solu-
tion mechanism also operates under conditions of weighttion in a cavity of aspect ratio 2 is equivalent to a four-cell
lessness, when there is no static gravity field. solution in a cavity of aspect ratio 4, and so on. This trans-
The present study is concerned with the bifurcationlational invariance arises from the slip boundary conditions
structure associated with steady thermovibrational conveowhich apply at the boundaries of the porous medium.
tion in a finite two-dimensional saturated porous cavity In this paper we present an extensive discussion of the
heated from below. effect of high-frequency vibration on the previous problem.
Beck seems to have been the first to consider convec- High frequency periodic accelerations occurring on mi-
tion in a finite three-dimensional horizontal box of porouscrogravity platforms(g-jitter), may induce disturbances in
material saturated with fluid and heated from below. Usingspace experiments that deal with liquids in the presence of
linear stability analysis, he found the critical Rayleigh num-density gradients. In the low-gravity environment of space
ber for the onset of convection in a box. In the present twostations, buoyancy-induced convection may be expected to
dimensional study we effectively restrict ourselves to thinbe minimized; howeveg-jitter induced by onboard machin-
three-dimensional boxes with length greater than or equal tery or excited by crew activities can result in convection in
the height. For three-dimensional boxes, numerical solutionfiuids when there are density gradients. These convective
based on the Galerkin method have been reported by Straeffects may have an influence on fluid or porous medium
and Schubert;” Schubert and Strafs,and Caltagirone science experiments or on material processing as, for ex-
etal? The number of numerical investigations into two- ample, solidification processes. Thgitter is modeled by a
dimensional large amplitude convection is also substantialinidirectional, harmonically oscillating, small-amplitude ac-
and we refer to the work of Riley and Wintéf&Their main  celeration field Alexandet). Since the governing equations
results concern a nonlinear study and mode interactionsre nonlinear, the fluctuating acceleration with zero average
They also deal with linear stability. For a cavity of fixed induces a periodic response consisting of a steady solution
aspect ratio, an analytical linear stability study shows that avith a nonzero mean superimposed on a time-dependent,
countably infinite set of eigenmodes exists. These eigenzero-average fluctuatioiGershuni and Zhukhovitsks). The
modes occur at discrete eigenvalues and represent convectisreeraged field, also referred to in the literature as streaming
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z Il. MATHEMATICAL MODEL AND BASIC EQUATIONS
A T=249, We consider a fluid-saturated porous medium enclosed
H in a container of heightd and lengthL. Figure 1 represents

the flow configuration and coordinate system. The flow do-
main is &,z) e Q=[0,L]X[0,H]. The horizontal walls ar

g =0 andz=H are kept at constant and uniform temperatures
T _ aT _ 0, and 6,, respectively. The situation wheré;> 6, is
oz — oz adopted. The vertical wall@tx=0 andx=L) are insulated.

All the boundaries are assumed rigid. The cavity with its
boundaries is subjected to linear harmonic oscillations.

- A. Approximations

(1) The solid matrix is homogeneous, nondeformable,
and chemically inert with respect to the fluid.

(2) The fluid is single phase and Newtonian.

(3) The Darcy number is small so that the inertia terms

bsin (wt) k may be neglected.

(4) The solid and fluid phases are in thermal equilib-
FIG. 1. Geometrical configuration and axis of coordinates. Sketch of therium

cavity configuration. . .
(5) The relative temperature differences are small

enough for the Boussinesq approximation to hold.
flow, is significant because it can give a relevant contribution  (6) Thermal dissipation is negligible and an effective
to the heat transfer in a time-averaged sense. thermal conductivity may be assumed.

Studies on thermal convection in a gravitationally modu-  (7) The vibration frequency is large and the displace-
lated fluid layer with rigid, isothermal boundaries heated ei-ment amplitude is small enough for the averaging method to
ther from below or from abovdi.e., for the Rayleigh— hold.

Benard problem)include the early work by Gresho and

Sant® and Rosenblat and TanakbMore recently, this work  B. The mathematical model

has been extended by Ropebal. }® Halerset al.® and Ho-
henberg and Swift’ A number of experiments, in reasonable
agreement with the theoretical predictions, have been pe

The saturated porous medium in the cavity is considered
to satisfy the Boussinesq approximation. The thermophysical

18 : l'piroperties are constant except for the density in the buoyancy
I'Or(;nter? t)y H?Ierlsat_gl. t_and Ntlekrjr_}_ela ?r?d S?fnn_elfk?.ﬂ:ety term, which depends linearly on the local temperature. The
ind that vertical vibrations stabilize the diffusive solution, equation of state has the following form:

i.e., the value of the critical Rayleigh number increases with
the strength of vibration. p(0)=pref(1—By6— b)), (1)
To our knowledge, only a few works on the effect of
vibration have been performed for an enclosure filled by purdvherep ei=p(6ier) and Sr=—Llpdp/ 96 are the density at
fluid. Bardanet al?® present the effect of high frequency standard temperatui= 6, and the thermal expansion co-
jitter in a differentially heated cavity situation and Farooq efficient, respectively. By introducing the appropriate coor-
and Homsﬁl and Grassia and Horngystudy the effects of dinates connected with OSCiIIating SyStemS, the gravitational
low frequency J|tter on Streaming and buoyant flows. field is replaced by the sum of the graVitational and the vi-
The effect of vibration on a porous medium is also of brational acceleratiof2) in the momentum equation
interest for the petroleum research community. Vibration .
production technology is a simple, economic, and efficient g——gztbw’sin(wi)k, )
way to increase oil production in some oil fieffs<hallouf  \yherek= cosax+sinaz is the unit vector along the axis of
et al* made a numerical study of some properties of conyjipration anda=(x,k) is the angle of vibration is the
vective oscillations in porous medium. This study was re-gisplacement amplitude, anathe angular frequency.
stricted to the case of finite frequencies. In the limiting case  These hypotheses lead to the following dimensionless
of high frequencies, they found that the effect of vibrationconservation equations for may, momentun{4), and en-
disappeared as a _result of the simplificatiqn ad_opted_in th@rgy (5), with the Boussinesq approximation. Using the ve-
Darcy model. In this paper, we present a first discussion ofycity u, the pressure, and the temperatur@as independent

the effect of vibration on gorous mediuntonfined in an  yariables, the nondimensional equations of the Darcy—
enclosure heated from below. We will see that a classicagoussinesq model are

Darcy model is not suitable for taking into account the effect

of vibration. A mean flow formulation for an adapted Darcy V-u=0, 3)
model is proposed. The linear stability problem is solved by
means of a Galerkin method.. Th.e amplitude equation at the U+A5’_U: — Vp+Radz—RaRgsin(at)k, 4)
onset of the preferred mode is given. at
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96 the mean flow and the other for the fluctuating component of
E+(u-V)0=V20. (5)  the flow. The object of applying the averaging method is
then to establish the connection between the oscillatory and
In Egs. (3)—(5), using the thermal diffusion time as the mean variables. Let us introduce the additional varialile
time-scale factor, lengths are nondimensionalizedHbye-  which constitutes the solenoidal part of the temperature field

locity by a/H (ais the thermal diffusivity), time by4%a, @  contribution to the gravitational force in the following Helm-
by a/H?, and temperature relative # by 6;— 6,. In line holtz decomposition:
with the problem description, the corresponding nondimen-

sional forms of the boundary conditions are VUTk=VUWr, (13)
u-n=0 on dQ (n is the outside normal vectgr V-Wr=0. (14)
(6) Using the high frequency hypothesis and assuming that
6=1 for z=0,Vx, 7) the amplitude of displapement is very low, i.eb
<H/B1(6,— 6,), the equations of the oscillatory component
0=0 for z=1,Vx, (8) are linearized according to the procedure developed by Si-
monenkoet al?® These conditions are valid wheff (wt)
‘9_6:0 for x=0 andA_,Vz (9) <T(t). The theoretical justification is given by

X Simonenkd,” where he proves the convergence of solutions

The problem includes five nondimensional numbers; th& the averaged system to averaged solutions of the system

Rayleigh number RagB,K(6,— 6,)H/va (K is the perme- (3)—(5). A numerical description of this convergence is given
ability), the g-number R=bw?/g, the pulsation & 0¥ Khallouf?® Consequently this allows us to establish the

= wH?a, A=DaM/ePr and the aspect ratié, =L/H. Pr following relationships between mean and fluctuating vari-
= vla is the Prandtl number defined as the ratio between th@P!es:

thermal and viscous diffusive timds and a are the kine- RaR

matic and thermal diffusivity, respectivélyDa= K/H? is the U'= 227277 (—sin(wt)+Aw cogwt)) Wy, (15)
Darcy numberM the volumetric specific heat ratio, aedhe

porosity. AsA is of the order 10° in classical porous media, , RaR (1 )

the contribution of the terndu/dt in Eq. (4) can be ne- 0=~ i1 ZCOS(“’U+AS'”(“’U W-VT. (16)

glected but with high-frequency vibration this simplification

cannot be made. The term sif allows very large variation The mean motion is then determined by

of du/dt andAdu/gt=0(u). V-Uu=0, (17)
C. The averaged flow equations A%+ U=—VP+RaTz+Ra, W1V (Tk), (18)
In the asymptotic case of high-frequency oscillations

where the period of the displacement2n/w is very low ,

compared to the characteristic times of thermal and kine- EJF(U’V)T:V T, (19)
matic diffusion (r<H?/a and r<H?/v) the application of

the averaging method of Bogljubov and Mittropol€kibnly VUOTk=VIOWr, (20)
allows the mean flow and heat transfer to be solved. The V-W-=0 21)

=0.

basic idea consists in treating the periodic flow with an ap-
proach similar to that used in studying turbulent flows. The ~ We note Ra=R& R?A/2(A’w?+1), the modified vi-
quantities under investigation are divided into two parts: theprational Rayleigh number, is hereafter called the vibrational
first, denoted= = f (time independent for a-periodic behav- Rayleigh number. The boundary conditions are in accor-
ior), varies slowly with time and the second, denoféd(r  dance with the physical statement of problef@s-(9) and
periodic), varig; rapidly with time. Thus we have the follow- W;-n=0 on dQ. (22)
ing decomposition: _

Note that, for the classical Darcy model, the term

u=U(t)+u'(wt), (10)  Agu/at in Eq. (4) is neglected as~10"°. Eliminating this
_ / term leads tonrong mean equations which are independent
—0,=T(t)+ t), 11 - . ~ i
6= 0,=T()+6"(wt) (11) of the vibration. As one can see, everAit=10"° the vibra-
p=P(t)+p’'(wt). (12) tional Rayleigh number Ra R& R?A/2(A’w?+1) can

. . . . . have a finite value.
For a given functiorf, its average value is defined by

— t+7/2
F=f=(1/r) f(s)ds lll. LINEAR STABILITY
t—7l2 A. Mechanical equilibrium and stability problem
soU(t)=U, T(t)=0-0,, andP(t)=p. formulation

Substituting this decomposition in the momentum equa-  An important question is whether or not the state of me-
tions, we obtain two coupled systems of equations, one fochanical equilibrium(i.e., the state at which the mean and
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pulsational velocities are zerexists in our situation. In or- 5 J 92
der to prove the existence of a conductive solution of the v —Raa &2
system(17)—(21), we set upJ=0, W:=0 and d/dt=0 in
this system and seek a valid solution for arbitrary values of L= = V2 0 (34)
the nondimensional parameters. We obtain the following X '
system: 9
_ V2
V(RaT,2) =0, (23) X
At the boundaries of the cavity the streamfunctions van-
AT,=0, (24)  ish and thus
VOTk=0, (25) ¥'|0=0, (35)
with the following boundary conditions: T(z=0)=T'(z=1)=0 Vxe[0A], (36)
To=1 for z=0,Vx, (26) —(x=0)=—(x=A,)=0 Vze[0,1], (37)
IX ox
To=0 for z=1,Vx, 27 '
0 @7) ¢1|{90:O- (38)
aT Equation(31) with boundary condition$35)—(38) is in-
290 forx=0, A_Vz (28) quation(31) with boundary condition$35)~(38)1s i

X

Equation (24) with boundary condition$26) and (27)
leads toTy=1-2z.
The conditiong25) lead toa= /2. Consequently in this

case we have a strict mechanical equilibrium, i.e., the oscil-

latory components of the velocity also vanigee Eqs(15)
and (16)].

In the following, we only deal with the case of vertical
vibration.

B. Stability of the equilibrium solution

It is convenient to rewrite Eq917)—(21) as evolution

equations for two-dimensional perturbations superimposed

variant under two reflections. These operations are described
by the operators,, S,, andS,=S,S, defined by

' -y’

S| T |x2=| T |[(AL—x2), (39)
1 -
lﬂ’ _lp’

S| T |x2=| —T | (x1-2), (40)
1 — i
W' o'

S| T |(x2=| —T" |(AL—x,1-2), (41)
1 1

on this equilibrium state. We denote the perturbations byand are generalized reflections sirﬁé= 1, S§=1 and Sg

(U’,P’,T',W%) and introduce the following streamfunction
representations:

Uy=—3dy'1dz, U,=adplox, (29)

Wi =—ayi/oz, Wi =dylox, (30)

=1. HereS,, S,, andS,S, represent left—right, up—down,
and centrosymmetries, respectively. The representdtioh
the groupZ, X Z, isI'={ld,S,,S,,S,}, where Id is the iden-
tity operator and this group plays an important role in the
bifurcation analysis described in the following. In particular,
it is known that, in the presence of this symmetry group
(Crawford and KnoblocR? Golubitsky and Schaefféf, and

As a result, a positive streamfunction corresponds to &iley and Winter&), the conduction state can only lose sta-

clockwise cell. Eliminating?’ we obtain:

P —AAY ¥ Ra, N1(¢1,T")
Sl T =L T N T | @D
0 W 0
where for all pairs {,g) of real functions
NLCF Pt a9 of 9’9 o*f ag of d%g
=Gz ox T 2o e a7 ax axaz’
(32)
of 99 of ag
NZ(f’g)_Eﬁ_ﬁﬂ’ (33)

L is the Jacobian matrix such that

bility to states that are eith&, symmetric,S, symmetric,S,
symmetric or have all the symmetry properti&; ( S, and
S,). The resulting bifurcations are pitchforks except for the
last case. Without vibration, it is known th&-symmetric
solutions are always unstable and result from at least a sec-
ond primary bifurcation. The first two primary bifurcations
are supercritical pitchforks with eitheB,-symmetric or
S,-symmetric solutiongBeck)). In addition to these symme-
tries, slip condition(35) implies a translational invariance in
the x andz directions. The i(,j) mode corresponding to de-
velopments43)-(45) possesses translational symmetiiés
andT{, wherep=1,2,...,i-1,9=1,2,...j—1, and

o' o'
T | (x,2=| T
1 1

(42)

2pA, 2
X+ piL,z+ q)
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Ra"T||i RaTIH The bifurcation points are located by solving the linear
algebraic system £X=0 with= (a;; ,b;; ,Cij)i=0n;j-0m and
£ is evaluated by the Galerkin method.

For particular valuegRa, ),), the determinant of £ is

zero, indicating a bifurcation point. We find that

420 I

100 100 n m
detg)=]1 II [f(A,Ra,Ra,Qn,ALiLj)+10Q,(Alj?

09 2 1 3 AL [ 0o 7 T 3 ALB i=1j=1
+i2)2( AL PA+ AL+ 7Pi2A) ], (46)

with f a real function. As det(£)=0 only if both its real part
andits imaginary part vanish, this leads p,=0. The prin-
ciple of stability exchange applies for this problem even if
the linear problem inot self-adjoint.

The critical thermal Rayleigh number which determines
\ . 55 the limit of the even and odd solutions can be studied ana-
03 3 1 ; lytically by

FIG. 2. Critical Rayleigh number Raf a few primary bifurcations vs the 2,52 2A2\3, A2
aspect raticA, . Only the modes, obtained within the truncatian=6, m Ra,— (174 ] AL) +i"Al Ra,
=3), are representeda) Static case Ra=0. (b) Ra,=50. (c) Ra,=100.S iZAE(i 24 2AE)
branches possess all the symmetry properties.

(47)

The graphs of the primary bifurcation points are shown
This symmetry has an important consequence for then Fig. 2. The cellular modesi {44,j a0 areS, symmetric,
crossing of paths of bifurcation pointsee the following). (i odds i even) @re’S, symmetric, {evemjodd areS, symmetric,
Here, the translational symmetry arising from the slip condi-and ( o,enjeven) POSSeESS all of these aforementioned symme-

tion guarantees that the paths corresponding toi taedi  tries (see Fig. 3). If Raincreases, the curves of the critical
+1 modes will cross because these paths break dlﬁererﬂaweigh number are both translated up and r|ght and res-
symmetries §, and S, for the first primary bifurcation). caled(Fig. 2) but keep the same shape.

C. Analytical results

The linear stability problem is solved by means of a|y. NONLINEAR ANALYSIS
Galerkin method using the following expansions:
nom Weakly nonlinear analysidn this section we use a mul-
'(X,2) = ai sin(i wx/A, )sin(jwz)e'®t (43 tiple scale analysis to reduce systé€di) to a simpler form,
vx2) izo ,Zo i Sin( /A )sin(j 2) “3) called a normal form, valid near onset of the first primary
instability, i.e., forRa—Ra|/Ra.<1. We expand the pertur-

n m
, _ ) : o 1t bations, the Rayleigh number, and time in powers of a small
T'(x,2) 2,0 P bj; cogi mx/A )sin(jmz)e' M, (44) parametere=0:
n m
Pi(x,2)=2, > ¢ sin(imx/A )sin(jmz)e'nt,  (45) o' =epV+ ey D+ (48)
=0 =0
where(),, is a real number,=—1, and {,j) e \°. T — T4 2T@ 4. (49)

The S,-symmetric eigenmodes contain an even number
of rolls in the x direction whereas thé&,-symmetric ones
contain an even number of rolls in taalirection. The num- = eV + PP+ -
ber of cells is linked with the valuesandj, i.e., i is the
number of cells along thg axis andj along thez axis. The
S,-symmetric eigenmodes contain an odd number of cells in ﬁ_ J J (51)

: (50)

2. 4.,
+E&t(2)+ ,

both directions. The eigenmodes which possess all the sym- ot €ot®
metry properties contain an even number of cells in both
directions. Foij =1 (first primary bifurcation, the eigenvec-

tor could be eitheS, symmetric orS, symmetric. So, fojj Ra=Ra+eRd"+&Rd? +- . (52)
=2 (second primary bifurcation), the eigenvector could be

eitherS, symmetric or have all the symmetry properti&; ( At order € we recover the linear eigenvalue problem.
S,, andS)). The perturbation eigenmodes can be written in the form
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FIG. 3. Streamfunction foA_ =1 in the static casda)
S,-symmetric solution(b) S,-symmetric solution,(c)
S,-symmetric solution, andd) solution with all the
symmetry properties.

for ALH<AL<ALi. Figure 4 shows the variation of these

analytical curves for increasing RaThe vibrations stabilize
the diffusive solution and the onset of motion occurs for
larger values of the Rayleigh numbevi, [A —A_ |

=f(Ra,,i) is the length of box for which the number of cells

80
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z ' z T
0.8 0.8
0.6 0.6
f
0.4 0.4
0.2 0.2
| |
K 0.2 0.4 0.6 0.8 1 M) 0.2 0.4 0.6 0.8 1
X
(a) (b)
z * B z
0.6 0.6
!
0.4 0.4
| |
b 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
X
(c) (d)
w(l)
TD :K(t(k))
1
vy
72(2AZ 4192 [ ax| :
—5 5 ——SIN | —|SI T
1272 A, | SN
72(j2AE+i%) [ ax|
———CO0S | — Sl w4 ,
™ AL n(jmz)

sm(l A—L sin(j mz)

(53)

where the amplitudk depends on the slow timea$9, k
=1,2,.... We note that fanoderatevalues of Rg, whatever

50 -

40

the aspect ratio value, the mode of lowest critical Rayleigh
number always has unit vertical wave number, while the cor-
responding horizontal wave number is dependent both on the
aspect ratio and on Ra We will see later the meaning of
moderate. The wave number of this mode changes frém
i+1atA =A_ (Letus say thaf =0). In the static casé
A= (i(i+1))"* but this relationdoes not holdwith vibra-
tion. The critical Rayleigh number associated with the first
primary bifurcation point formoderatevalues of Ra is

FIG. 4. Critical Rayleigh number Raf the first primary bifurcation point

vs the aspect ratid\_ . The vertical vibrations increase the value of the

72(i2+A?)3+i*A% Ra,
PAL(I2+AD)

(54)

critical Rayleigh number. FoA <A_, S,-symmetric one-cell flow, for
AL <AL<AL S,-symmetric two-cell flow. FoA <A <A_ , (i+1)-cell
flow which is S, symmetric fori odd orS, symmetric fori even.
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increases by one. Consequently/f(Ra,,i) approximates

the wave number of the infinite horizontal layer. In the static
casef(0,i)~1, which corresponds to the well-known wave
number of7r. The important thing is that vertical vibration  Rgq,
can generate a one-cell flow whatever the valueApfas
f(Rg,) — when Rg— . For a finite value o\, there is a

finite value Ra, of Ra, such that the preferred mode has a
one-cell structure. This upper limit Ra= w2(1+A2)(20A;
+13A2+2)/A? defines the upper limit of thenoderatedo-

main of Rg .

For Ra>Rg,., the preferred mode is the (},mode
with j=2 and the critical Rayleigh number value associated
with the preferred mode is given by E@7) with i=1 and
j=2. The mode of lowest critical Rayleigh humber always
has unithorizontal wave number, while the corresponding

500

Apg

Ars

Arg

. . . / la
vertical wave number is then dependent ory RBhe surpris- Sm // Sp2 , SPS s Szu - SP5/ Spy Sg; A“
. . . . . . . . yd P8_. ALy
ing thing is that increasing Rawill also increase the valuge 0 ;7 /L o T T
of the preferred mode which means tisédickedrolls (S, or 0 2 4 6 8 10

S,-symmetric solutionsare then stable solutions at the onset A

of convection. This type of symmetry has not been observea L

in convection experiments but this system allows experimengiG. 5. For a chosen paiA{ — Ra,) the first primary bifurcation could be

tal investigation of this state. On earth, we need to impose a supercritical stable pitchforkSp) or subcritical unstable pitchforkSb).

vibrational field intensity which is bigger than 40 We The subscript (Spor Sh) indicates the number, of cells on the emerging
hould i that this t £l d b i b branch of the solution. As previously mentioneddd means the solution is

should menuon tha 'S. ype o OW_ cou e gaS| y_ 0 S, symmetric and even the solution i§, symmetric {=1).

served by a space experiment for which the gravity will be

strongly reduced.

In the following, only moderate, and also more realistic, i2+AE

values of Ra are considered. b=—72—" (59)
At order €2, whatever the value of the aspect rafip, -

the quadratic terms in the amplitude equation necessarily Ra, 78(i2+A}?  #8(i2+A%)"

vanish and we can set R&=0 and omit the time scalé?). c= 8Al T T EiAd (60)

At order €3, the existence of a convective solution re- _ . _ _
quires the solvability lemnfato be satisfied, i.e., there must ~ FOrA_ =A_ a codimension two bifurcation results from
be a nonzero solution to the following adjoint linear eigen-the interaction betwee§,- andS,-symmetric solutions. The

value problem: mode interaction is not the purpose of the present paper but
P the analysis is currently under way.
V2 —_— 0 When c<0 (respectively,c>0), the bifurcation is su-
IxX N percritical and stablérespectively, subcritical and unstable
J ) J ¢* 0 as —bula<0 (respectively, —bu/a>0). Whatever the
Ra&_x v Ix T* = 0], (55)  mode considered and the aspect ratiayhich has a negative
1 0 value for Rg=0, becomes positive as Racreases. This
%i 0 V2 occurs within the moderate range of Réigure 5 represents
Ix? the different scenarios occurring at the onset of convection

with identical boundary conditions. This condition yields the @1d depending on both the aspect ratio angd.Ra

result
R =Ra.. (56)

The amplitude equatiofs7) now follows on applying
the Fredholm alternative

V. NUMERICAL RESULTS
A. Numerical method

The system of equationd.7)—(21) was solved numeri-
cally using a spectral methddThe method used is based on
, the projection diffusion algorithm developed by Khall&f.

at(z) =bK(p+cK?), (57) Temporal integration consists of a semi-implicit second-

order finite difference approximation and transforms the sys-

with .=(Ra—Ra)/€’ the bifurcation parameter. This am- tem into a Helmholtz problem arising from the advection-
plitude equation applies foh, <A <A and the coeffi- giffusion equations(19) coupled to the Poisson problems
cientsa, b, andc are evaluated analytically: (20) and(21) with appropriate boundary conditions. The lat-

An 2 A2\3, 2 o S oa2 ter are solved using the Uzawar Poisson-typeflormulation

AT AD T .(f"-:”) (A A'-' (58) of Azaiezetal® All the subproblems obtained are either

4I°AL Helmholtz or Poisson-type operators. A high-accuracy spec-
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FIG. 7. Bifurcation diagram in thg{(0.5,0.5}-Ra plane for different values

of Ra, whenA_ =3. The insets are streamlines and lines of constant mean
temperature at Ral65 for Ra=20 (a), Rg =100 (b), Rg =240 (c), and
Ra,=400 (d). Only the branch corresponding to the preferred mode is rep-
resented. Resolution is 333.

0 300
Ra

FIG. 6. Bifurcation diagram in thg{(0.5,0.5}-Ra plane for different values .

of Ra, whenA,_=1. The insets are streamlines and lines of constant meaétrucw_reisee.F'g- G(b)]- Wha.tever the vgl_ue szRSBO: the
temperature at Ra=165 for Ra0 (a) or Rg,= 250 (b). Only the branch  first primary bifurcation remains a subcritical pitchfork.
corresponding to the preferred mode is represented. Resolutionki3333

2. A rectangular cavity A ;=3

tral method, namely one utilizing Legendre collocation  rjgyre 7 presents the bifurcation diagram for different
points, solves the Helmholtz or Poisson-type operators. SUGja e of Ra. In this case, the situation differs from the
cessive diagonalization is used to invert these operators. Wﬁ’revious one. As presented in Fig. 5, the type of flow at the
mention that the Darcy—Euler solvers are direct and guarargnset of convection is centrosymmetric but possesses a
tee an accurate spectral solution with divergence-free solgp ee-cell structure in the static cafsee Fig. 7(a)]. When
noidal fields over the entire domain, including the bound-RaU increases up to Ra 40, the conduction solution re-
aries. For the ca_lcula_ltions discusse(_j in this paper, a gr?d With sins stable up to a larger value of the Rayleigh number.
25x25 mesh points in thex(z) domain accurately describes he emerging branch is a supercritical pitchfork along which
the flow. We selected a 3333 grid for our calculations. e solutions have a three-cell structure i%,, symmetric.
For 40<Rg,<160, the emerging branch remains a super-
critical pitchfork but the solutions have a two-cell structure,
For the numerical study, we cho#ge =1 or A =3 in i.e., S, symmetric[see Fig. 7(b)]. For 160Rg,<350, the
order to investigate cases in which there are substantiallpitchfork bifurcation becomes subcritical and the emerging
different effects of vibration(see Fig. 5). The numerical branch is unstable. This branch undergoes a saddle-node bi-
simulations were done as follows: The vibrational Rayleighfurcation and becomes stable. Along this stable branch, the
number was fixed and we increased the value of the thermabolutions consist of two-cell flow structurgsee Fig. 7(c)].
Rayleigh number. The following results apply in our compu-For Rga>350 up to the end of our computational domain,

B. Numerical results

tational domain, i.e., 0<Ra<300 and<Ra,<400. the first primary bifurcation becomes supercritical but the
) solutions along this branch then have a one-cell structure
1. Square cavity A =1 [see Fig. 7(d)]. For Ra 1250 the pitchfork bifurcation be-

The bifurcation diagram is presented in Fig. 6. In thecomes subcritical.
static case, the pitchfork bifurcation point occurs at Ra Increasing the strength of vibration will increase the
~47? and the emerging branch is supercritical and stablevalue of the critical Rayleigh number and in this sense sta-
Along this branch, the solution is a one-cell flggee Fig. bilize the diffusive solution. In fact the vibration imposes
6(a)], i.e.,S, symmetric for the range of Rayleigh numbers lines of constant temperature perpendicular to the axis of
investigated. By increasing the vibrational Rayleigh numberyibration, which in our present will be study horizontal and
we delay the onset of convection but the pitchfork remainghe horizontal profile of these lines defines the restless state.
supercritical up to Ra=80. For Rg>80, the vibration de- The variations of these lines are shown by in Figs)@nd
stabilizes this pitchfork branch which becomes subcritical 6(b) or Figs. 7(a)-7(d).
i.e., unstable. The subcritical branch undergoes a saddle- Moreover, a sufficiently high strength of vibration forces
node bifurcation and becomes stable. Along this stabléhe motion to have a one-cell flow structure at the onset of
branch, the solutions consist of symmetric one-roll flowconvection.
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