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ABSTRACT

This paper addresses the estimation of the kinematic struc-
tures composing a galaxy from a multispectral image. Each
structure corresponds to an emission line embedded in the
spectra of the image: the goal is to estimate the amplitude,
shift, and shape of the peaks assuming that these parameters
evolve slowly between two adjacent pixels. These parame-
ters are modeled as B-spline surfaces to favor their smooth
spatial evolution. The B-spline parameterization allows one
to describe the multispectral image using a reduced number
of parameters. Results on synthetic and real data validate the
proposed method.

Index Terms— Galaxy kinematics, sequence of signals,
smooth evolution, splines.

1. INTRODUCTION

Galaxies and intergalactic gas are in motion due to inner
physics and the Universe expansion [1]. The emission lines in
their spectra are shifted, proportionally to their apparent speed:
this is the well-known Doppler effect, also known as redshift.
A multispectral observation of an object shows different red-
shifts in each pixel (or spectrum). Besides, emission lines may
be embedded many times in a spectrum if different gas speeds
are observed in the line of sight.

The goal of this paper is to estimate the redshifts in a
multispectral observation of a galaxy, as it is considered in [1–
3]. This is equivalent to estimate the characteristics of the
emission lines (called peaks in the sequel), i.e., their amplitude,
spectral shift and shape. It is also needed to follow the peaks
through the observation to be able to infer the underlying
kinematic structures. The problem is challenging because
the peaks change from one spectrum to another and are very
correlated.

A common assumption in astronomy is to model the peaks
as a Gaussian [2] or Moffat [4] function. We also consider that
the peak characteristics evolve slowly from one pixel to its
neighbors (see Fig. 1) : the set of peaks showing a slow spatial
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Fig. 1: Left: a synthetic example of two overlapping structures
(red and blue). Right: spectra at four spatial positions (in
black) and the peaks to estimate (with colors indicating their
structure).

evolution is called a structure and a galaxy may have different
structures.

Galaxy kinematic in multispectral images has been studied
in [3, 5, 6]. In [2], a Bayesian approach was proposed that
also deals with the deconvolution of the image; however, this
method considers only one kinematic structure. Bouché et
al. [7] proposed to use a parametric model to fit the galaxy
kinematic, but the shift evolution was constrained to be linear.
On the contrary, spectral-spatial classification [8, 9] considers
only the classification task of each pixel without estimating the
peak characteristics in each pixel. Besides, the problem can
also be seen as convolutive source separation problem [10],
where the spectra and peaks are respectively associated with
the mixtures and sources. However, most of the classical
approaches make strong assumptions on the sources, such
as their statistical independence and decorrelation, which is
not valid in a real-application world such as in astronomy.
Other works, such as [11–13], are adapted to spectroscopic
signals, but they do not suppose the slow evolution of the
peak characteristics and cannot be applied to the detection of
spatially connected structures in an image. On the contrary,
some works [14] are adapted to multispectral images but use
an instantaneous source separation model which cannot model
the spectral shift and the shape evolution.

We propose to model the spatial evolution of the peak char-
acteristics through the image as B-spline surfaces to satisfy
the slow evolution of the characteristics from one pixel to its



neighbors. In consequence, the estimation of the characteris-
tics is replaced by the estimation of the B-spline control points,
yielding a significant reduction in the number of unknowns.
The generative model is presented in section 2. The inverse
problem is then addressed as a non-linear least squares opti-
mization problem and the proposed optimization strategy is
detailed in section 3. Results on synthetic and real data are
presented in section 4.

The notations used in this paper are as follows: bold and
lowercase variables correspond to vectors; bold and uppercase
variables correspond to matrices; the jth column of a matrix
M is denoted asM :j , and the notationM :,1:j selects the first
j columns ofM .

2. PROBLEM FORMULATION

Suppose the multispectral image has I pixels. We denote
i , [u v] a pixel with coordinates u and v. Each spectrum
xi =

[
xi(1) . . . xi(N)

]T ∈ RN gathers samples at N
wavelengths and is the noisy sum of J peaks (modeled by
a parametric function s(·;wij)) shifted in cij with spatially
varying shape parameter wij :

xi =

J∑
j=1

aijs
[
cij ;wij

]
+ ni (1)

where

s
[
cij ;wij

]
=
[
s(1− cij ;wij) . . . s(N − cij ;wij)

]T
(2)

is a N -dimensional vector gathering the samples of the peak j,
aij is the amplitude of peak j in pixel i and ni ∈ RN models
the noise. The physics imposes that aij ≥ 0 and cij ∈ [1, N ].
Moreover, we impose that wij ∈ [wmin, wmax] where wmin and
wmax are respectively the lower and upper bounds for the shape
parameter.

In order to impose a slow evolution of the parameters, their
evolution is modeled by bicubic B-splines i.e., bidimensional
functions defined from two cubic B-splines. A cubic B-spline
is a piecewise polynomial of degree 3 [15, 16]. The so-called
knot vector ku defined over the first spatial dimension u allows
us to define P cubic B-spline basis functions b1(u), . . . , bP (u).
Similarly, a knot vector kv defined over the second spatial
dimension v allows us to define Q B-spline basis functions
b1(v), . . . , bQ(v). A bicubic B-spline basis function centered
in [u v] is then defined as:

βp,q(i) = bp(u)bq(v) (3)

The amplitudes, shifts and shape parameters of a structure
j are modeled as a linear combination of M = P ×Q bicubic
B-splines (without loss of generality, the same B-spline bases

functions are used to model the parameters):

aij =

P∑
p=1

Q∑
q=1

φjp,qβp,q(i) = β
T
i φj ∀i, j (4)

cij =

P∑
p=1

Q∑
q=1

σjp,qβp,q(i) = β
T
i σj ∀i, j (5)

wij =

P∑
p=1

Q∑
q=1

ψjp,qβp,q(i) = β
T
i ψj ∀i, j (6)

where the discrete B-spline bases functions are gathered into
βTi ∈ RM , and the so-called control of the amplitudes φjp,q,
shifts σjp,q and shapes ψjp,q are respectively gathered into φj ,
σj , and ψj .

Eq. (1) now writes:

xi =

J∑
j=1

βTi φjs
[
βTi σj ;β

T
i ψj

]
+ ni (7)

The estimation of the peak characteristics is thus equivalent to
that of the control points φj , σj and ψj . Assuming a white
Gaussian noise, the maximum likelihood estimator minimizes
the following criterion:

O(Φ,Σ,Ψ) =
∑
i

∥∥∥∥xi−
J∑
j=1

βTi φjs
[
βTi σj ;β

T
i ψj

]∥∥∥∥2
2

(8)

where Φ, Σ and Ψ respectively gather the control points of
the amplitudes φj , shifts σj and shape parameters ψj .

Finally, (8) is minimized, yielding the following con-
strained non-linear least squares problem:

min
Φ,Σ,Ψ

O(Φ,Σ,Ψ) such that C =


Φ ∈ RM×J

+ ,

Σ ∈ [1, N ]M×J ,

Ψ ∈ [wmin, wmax]
M×J .

(9)

3. CONTROL POINT ESTIMATION

Because of the non-linearity of the unknowns (Σ and Ψ),
(8) is non-convex and the choice of the initial solutions for
optimization solver is crucial, especially for the shift control
points. We adopt an iterative strategy where the number of
estimated structures is incremented by one at each iteration.
In addition to the estimation of a new structure, the parameters
of the previous ones are also updated at each iteration. We
propose to initialize the shift control points as the wavelength
of highest intensity in the average spectrum (computed by
averaging all the spectra of the image); this is a simple and
efficient choice for finding a potential peak.

The proposed algorithm is given in Algorithm 1. At each
iteration, the number k of structures to estimate is incremented



Algorithm 1: Minimization of O(Φ,Σ,Ψ) w.r.t.
Φ,Σ,Ψ s.t. C

Outputs: Φ̂, Σ̂, Ψ̂
Initialization: Φ̂ = 0M×J , Σ̂ = 0M×J , Ψ̂ = 0M×J

1 for k = 1 : J do
// Initialization

2 λmax ← argmax
λ

∑
i

xi(λ)− k∑
j=1

βTi φ̂js
(
λ− βiσ̂j ;βiψ̂j

)2

3
(
Φ0,Σ0,Ψ0

)
←
(
Φ̂, Σ̂, Ψ̂

)
4 Σ0

:k ← λmax1M
5 Φ0

:k ∼ U(0,+∞)

6 Ψ0
:k ∼ U(wmin, wmax)

// Optimization

7 (Φ̂:,1:k, Σ̂:,1:k, Ψ̂:,1:k)← argmin
Φ:,1:k,Σ:,1:k,Ψ:,1:k

O(Φ,Σ,Ψ) s.t. C

8 end

from k = 1 to k = J . In other words, the optimization
problem (9) is solved with respect to a subset of the param-
eters, namely the first k columns of Φ, Σ and Ψ (line 7). A
sequential quadratic programming [17] is used to solve the
optimization problem. The solution found at iteration k is put
in the first k columns of the initial solutions Φ0, Σ0 and Ψ0 at
iteration k+1 (line 3). The k+1 column of Φ0 and Ψ0 is set
to a random value generated following a uniform distribution
U over the intervals in C (lines 5, 6). Whereas, all the ele-
ments in the k + 1 column of Σ0 are set, as said above, to the
wavelength with the highest intensity in the average residual
spectrum λmax (line 4). The computation of λmax takes place
in line 2.

4. RESULTS

4.1. Synthetic Image

To evaluate the performance of our method, we use a synthetic
multispectral image of dimension 50 × 50 × 70 and J = 2
structures that overlap in both spatial and spectral domains.
The two structures fill the image. The peaks are parameterized
by a Gaussian function s(λ;w) = e−λ

2/2w2

. The ground truth
parameters are generated using B-spline surfaces with random
control points and are displayed in Fig. 3. An additive Gaus-
sian noise with signal-to-noise ratio1 equal to 10 dB is added
to the image spectra. The knot vectors of the amplitudes, shifts
and shapes are the same in the two spatial dimensions and are
given by: ku = kv =

[
1 1 1 1 13 26 38 50 50 50 50

]
.

The first and last 4 knots are identical to allow for variable
boundary conditions [18]. The results in Fig. 2 show that
the multispectral image is correctly reconstructed (the mean

1Defined as 10 times the log-ratio of the mean energy of the noiseless
spectra and the noise variance.
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Fig. 2: The synthetic cube (a), the reconstruction computed
from the estimation (b) and their absolute difference (c). The
images represent multispectral images averaged along the spec-
tral dimension. The same color dynamic is used for the three
figures.

square error equals 0.18). Furthermore, the parameters are vi-
sually well estimated and keep a smooth evolution as expected
(Fig. 3). Thanks to the B-spline modeling of the parameters,
the number of unknowns is reduced from 5, 000 (the number
of amplitudes, shifts and shapes for I = 502 pixels and J = 2
structures) to 384. The computation time of the proposed
approach is only 8 minutes (with Matlab).

4.2. Galaxy NGC 4254

The proposed method is applied to a real observation in
the radio band (around the HI peak at 21 cm) of the
galaxy NGC 4254 [19] (Fig. 4a). The image is of dimen-
sion 140 × 140 × 42. The number of structures is set
to J = 2. Surface B-splines with the following knots
are used to model the shifts and shapes: ku = kv =[
1 1 1 1 24 47 70 93 116 140 140 140 140

]
. The

amplitudes are modeled with more knots so as to fit the com-
plex behavior of the intensities in the cube: ku = kv =[
1 1 1 1 12 33 44 54 65 76 87 97 108 119 129 140

140 140 140
]
. The number of unknowns is thus reduced

from 39, 200 (the number of amplitudes, shifts and shapes for
I = 1402 pixels and J = 2 structures) to 706.

Fig. 4b and 4c show that the galaxy is well reconstructed
(the mean square error equals 6.8 · 10−7). The estimated
parameters are displayed in Fig. 5. The pixels with estimated
amplitudes lower than a small value (threshold) are removed
from the estimation. Indeed, the first estimated structure repre-
sents the main kinematic structure of the Galaxy: two spiral
arms rotating around the center, yielding a different redshift in
each side of the galaxy. The estimated parameters of the sec-
ond structure highlights the presence of three structures. The
structure at the top is an artificial structure that was added for
evaluating the performance of the method: it is a disk with a
decreasing amplitude and a constant shift, as it is confirmed in
the results. The structure at the left is very faint and difficult to
find but the proposed method was able to find it automatically.
Finally, the structure at the right is mostly a part of the main
kinematic structure: the peaks in this region of the image is
not really Gaussian so a second structure is needed to fit the
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Fig. 3: (a)–(c) The ground truth of the amplitudesA, shifts C and shapesW of the first structure (resp. (d)–(f) for the second
structure). (g)–(i) the estimated parameter of the first structure (resp. (j)–(l) for the second structure).

peaks.
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Fig. 4: Real data (galaxy NGC 4254) with J = 2 structures.
(a) Averaged image of the dataX along the spectral dimension.
(b) Averaged image of the reconstruction X̂ (after threshold-
ing) (c) and of the residual .

5. CONCLUSION

This paper presents a novel method to estimate multiple kine-
matic structures within a galaxy multispectral image. The peak
characteristics (amplitude, shift and shape) representing the
structures in each spectrum are modeled by cubic B-spline
surfaces to ensure their smooth spatial evolution. Besides, this
modeling yields a significant reduction in the number of un-
known. The problem is addressed as a constrained non-linear
least squares problem and an iterative algorithm is proposed
where the structures are iteratively estimated. Results on syn-
thetic and real data show the effectiveness of the algorithm.
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Fig. 5: Real data (galaxy NGC 4254) with J = 2 structures.
(a) Averaged image of the dataX along the spectral dimension.
(b) Averaged image the reconstruction X̂ (after thresholding)
and of the residual (c). (d)–(f) Estimated amplitudes , shifts
and shape of the first structure 1. (g)–(i) Estimated amplitudes,
shifts and shape of the second structure.
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