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Abstract

Horn’s problem, i.e., the study of the eigenvalues of the sum C “ A`B of two matrices, given
the spectrum of A and of B, is re-examined, comparing the case of real symmetric, complex
Hermitian and self-dual quaternionic 3 ˆ 3 matrices. In particular, what can be said on the
probability distribution function (PDF) of the eigenvalues of C if A and B are independently
and uniformly distributed on their orbit under the action of, respectively, the orthogonal, unitary
and symplectic group ?

While the two latter cases (Hermitian and quaternionic) may be studied by use of explicit
formulae for the relevant orbital integrals, the case of real symmetric matrices is much harder. It
is also quite intriguing, since numerical experiments reveal the occurrence of singularities where
the PDF of the eigenvalues diverges.

Here we show that the computation of the PDF of the symmetric functions of the eigenvalues
for traceless 3ˆ 3 matrices may be carried out in terms of algebraic functions –roots of quartic
polynomials– and their integrals. The computation is carried out in detail in a particular case,
and reproduces the expected singular patterns. The divergences are of logarithmic or inverse
power type.

We also relate this PDF to the (rescaled) structure constants of zonal polynomials and
introduce a zonal analogue of the Weyl SUpnq characters.

Keywords: Horn problem. Honeycombs. Polytopes. Zonal polynomials. Littlewood–Richardson
coefficients.
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Introduction

Recall what Horn’s problem is: given two nˆn matrices A and B of given spectrum of eigenvalues,
what can be said about the spectrum of their sum C “ A ` B? The problem has been addressed
by many authors, see [1] for a review and references. For Hermitian matrices, the support of the
spectrum of C has been completely determined after some crucial work by Klyashko [2] and by
Knutson and Tao [3, 4, 5].
In a recent paper [6], a more specific question was considered: given α “ tα1 ě α2 ě ¨ ¨ ¨αnu and
β “ tβ1 ě β2 ě ¨ ¨ ¨βnu, take the Hermitian matrices A and B uniformly and independently dis-
tributed on the orbit of diag pαq and diag pβq under the action of the SUpnq group. The probability
distribution function (PDF) of the eigenvalues γ of C “ A ` B may then be computed, see also
[7, 8].

The same question may, however, be raised if instead of Hermitian matrices, one considers other
classes of matrices and the action of an appropriate group. The case of skew-symmetric real ma-
trices was considered in [6], but more interesting is that of real symmetric matrices and the action
of the orthogonal group SOpnq.

Let us start with a numerical experiment with specific 3ˆ 3 matrices. Since trC “ trA` trB,
only two eigenvalues of C, say γ1 and γ2 are linearly independent. Then compare the distribution
of points in the pγ1, γ2q-plane for the three cases of
(a) orbits of real symmetric matrices A and B equivalent to Jz :“ diag p1, 0,´1q under conjugation
by the orthogonal group SOp3q;
(b) orbits of such matrices, regarded as Hermitian, under conjugation by the unitary group SUp3q;
(c) orbits of such matrices, regarded as quaternionic self-dual, (i.e., AbI2, BbI2 as 6ˆ6 matrices),
under conjugation by the unitary symplectic group USpp3q.
Following the nomenclature introduced by Dyson, we label these three cases by the index β “ 1,2
or 4, respectively1.

Some features appear clearly on the plots and histograms of Fig. 1:
(i) the PDF vanishes faster on the boundaries of the Horn domain as β increases;
(ii) the non-analyticities are stronger and stronger as β decreases;
(iii) these singularities seem to appear at the same place in the pγ1, γ2q plane (for α and β fixed).
In the Hermitian case (and in the quaternionic case as well, see below), it is known that the PDF
is a piece-wise polynomial function. The plots of Fig. 1 (a) show that this cannot be true for real
symmetric matrices.
It should be emphasized that these general features do not depend on the explicit case we have
chosen. Similar singular patterns have been observed in numerical experiments with other matrices
A and B, see Fig. 7 in [6].

The aim of this paper is to compare the three cases, to reproduce analytically the previous
empirical observations and in particular to analyse the location and nature of the singularities that
occur in the symmetric case. After a brief review of known results on the relevant orbital integrals
(sect. 1), we treat rapidly the easy case of quaternionic self-dual matrices (sect. 2), before turning
to the more challenging case of real symmetric matrices in sect. 3 and 4. In sect. 3, it is shown
that for 3 ˆ 3 traceless matrices, the introduction of the two symmetric functions p and q of the
three eigenvalues (of vanishing sum) simplifies matters: one may express the PDF ρpp, qq in terms
of roots of some polynomial equations and integral thereof, see (33) below. The actual computation
is carried out again for our pet example of α “ β “ p1, 0,´1q in sect. 4. In particular we reproduce
and analyze in sect. 4.4 and 4.5 the singularities that are apparent in Fig. 1 (a). Finally in sect. 5,
we show that this function ρpp, qq is related to the distribution of the (rescaled) structure constants
of zonal polynomials, thus elaborating on a claim of [9].

1The reader should not confuse this index β with the multiplet β of eigenvalues of the B matrix.
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(a) (b) (c)

Figure 1: Plots and histograms of pγ1, γ2q for A „ B „ Jz in the three cases: (a) orbits under
SO(3), (b) under SU(3), (c) USp(3). Plots made of 104 points, histograms of 106 points.

1 The orbital integrals for β “ 1, 2, 4

Consider the orbital integrals

IβpX,Aq “
ż

Gβ

dΩ exprtrXΩAΩ:s (1)

1. β “ 1, Ω P G1 :“ SOpnq, X,A real symmetric matrices;

2. β “ 2, Ω P G2 :“ Upnq, X,A complex Hermitian matrices;

3. β “ 4, Ω P G4 :“ USppnq, X,A real quaternionic self-dual matrices.

In fact each of these integrals depends only on the eigenvalues αi, resp. xi, of A, resp. X, and by
a small abuse of notations, we write them Iβpx, αq in the following.
For β “ 2, this orbital integral is well known, [10, 11]

I2px, αq “
n´1
ź

p“1

p!
ÿ

PPSn

1

∆pxq∆pαP q
e
ř

xjαPj “

n´1
ź

p“1

p!
det exiαj

∆pxq∆pαq
. (2)

Here and below, ∆ with no subscript denotes the Vandermonde determinant ∆pxq “
ś

iăjpxi´
xjq.
For β “ 4 and for a given n, as shown by [13], we have closed formulae

I4px, αq “ κ̂n
ÿ

PPSn

1

∆pxq3∆pαP q3
e
ř

xjαPjfnpτpα, P qq , (3)

where fn a polynomial in the variables

τpα, P q “ tτij :“ pxi ´ xjqpαPi ´ αPjq |1 ď i ă j ď nu , (4)
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and κ̂n is an α- and x-independent constant. For example for n “ 2, κ̂2 “ ´12 and f2pτpα, P qq “
1´ 1

2τ12 while for n “ 3, κ̂3 “ ´2ˆ 3!ˆ 6! and

f3pτpα, P qq “ 1´
1

3
pτ12 ` τ13 ` τ23q `

1

6
pτ12τ13 ` τ13τ23 ` τ23τ12q ´

1

12
τ12τ13τ23 .

These closed formulae allow an explicit computation of the PDF, see [6] and below, sect. 2.
In contrast, for β “ 1, i.e., for real symmetric matrices under the action of the orthogonal group
SOpnq, the best that can be achieved is an expansion in zonal polynomials [12, 13, 9]

I1px, αq “
8
ÿ

m“0

1

m!
śm´1
q“0 p1` 2qq

ÿ

κ$m

cpκq
ZpκqpxqZpκqpαq

ZpκqpIq
(5)

where the second sum runs over partitions κ of m with no more than n parts, and cpκq is a constant
which depends on the normalization of the Zpκq’s, see sect. 5. If the zonal polynomials in the above
formula are written with the so-called James normalization, one can uses the values of ZpκqpIq and
of the coefficient cpκq tabulated by James up to m “ 4, for all n (the dimension of I) in the
Appendix of [12], p.157; one can also use commands contained in the Mathematica package [14].
The infinite sum in the previous expansion, however, makes the computation of the PDF intractable
(as far as we can see), and we will have to follow another route, see below section 3.

In section 5, however, we return to this formulation in terms of zonal polynomials and show a
connection between the PDF and the distribution of (rescaled) “zonal multiplicities” i.e., appropri-
ate structure constants of zonal polynomials.

2 Quaternionic case for n “ 3

We start with a warming up exercise: compute the PDF of the eigenvalues γ for a sum of two
self-dual quaternionic matrices that are independently and uniformly distributed on their orbit
under the action of the unitary symplectic group. The computation of the PDF of the γ’s follows
the same lines as that in the Hermitian case. We will therefore be a bit sketchy in its derivation,
referring the reader to [6] for details of the computation.

Up to an overall factor, this PDF is given by the integral of three orbital integrals of the type
I4 in (3).

ppγ|α, βq “
κ2
n

p2πqN
∆pγq4

ż n
ź

i“1

dxi ∆pxq4 I4px, iαq I4px, iβq I4px,´i γq , (6)

where N “ np2n´1q is the number of independent matrix elements of a self-dual quaternion matrix

and κn “
p2πqpN´nq{2

n!p2n´1q!p 1
2
npn´1qq!

stems from the change from those N variables to the n eigenvalues.

Thus

ppγ|α, βq “
2κ2

nκ̂
3
n

p2πqN
p´1qnpn´1q{2πnδp

ÿ

k

pαk ` βk ´ γkqq
∆pγq

∆pαq3∆pβq3
Jn (7)

Jn “
n!

i npn´1q{2πn´1

ÿ

P,P 1PSn

εP εP 1

ż

dn´1u

∆15puq

n´1
ź

j“1

eiujAjpP,P
1,Iqfnpτpiα, P qqfnpτpiβ, P

1qqfnpτp´i γ, Iqq

(8)

with uj :“ xj ´ xj`1, ∆1puq :“
ś

1ďiăjďnpui ` ui`1 ` ¨ ¨ ¨uj´1q and

AjpP, P
1, P 2q “

j
ÿ

k“1

pαP pkq ` βP 1pkq ´ γP 2pkqq . (9)
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Figure 2: Comparing the histogram of 104 points with the PDF of (10) for (left) α “ β “ p1,´1q
and (right) α “ p1,´1q, β “ p2,´2q.

The power 5 of ∆1puq results from 3 ˆ 3 (three denominators ∆3pxq), minus 4 from the Jacobian
∆4pxq.

With the little extra complication caused by the fn factors of (3), the integration may be carried
out as in [6], namely by partial fraction decomposition of the integrand and repeated use of the
Dirichlet formula for the Cauchy principal value

P

ż

R

du

ur
eiuA “ iπ

piAqr´1

pr ´ 1q!
εpAq ,

with ε the sign function. The result, though cumbersome, is completely explicit.
For n “ 2, we leave as an exercise for the reader to check that for α2 “ ´α1, β2 “ ´β1, we

have ppγ|α, βq “ 6 ∆pγq
∆3pαq∆3pβq

δpγ1 ` γ2qJ2 with

J2 “
1

4

`

´pα2
1 ´ β

2
1q

2 ` 2pα1
2 ` β2

1qγ1
2 ´ γ1

4
˘

pεpγ1 ´ α1 ` β1q ` εpγ1 ` α1 ´ β1q ´ εpγ1 ´ α1 ´ β1q ´ εpγ1 ` α1 ` β1qq

“
1

2

`

´pα2
1 ´ β

2
1q

2 ` 2pα1
2 ` β2

1qγ1
2 ´ γ1

4
˘

p1Ipγ1q ´ 1´Ipγ1qq . (10)

showing that the spectrum of γ1 is supported by two segments I :“ r|α1 ´ β1|, α1 ` β1s and ´I,
or only by the former if one imposes γ2 ď γ1. Compare with the analogous formulae obtained for
Hermitian and real symmetric matrices in [6]. In Fig. 2, we show the agreement with the histogram
made of 104 for two pairs α “ β “ p1,´1q and α “ p1,´1q, β “ p2,´2q.

For n “ 3,

ppγ|α, βq “ 8640
∆pγq

∆3pαq∆3pβq
δp
ÿ

k

γk ´ αk ´ βkqJ3 (11)

where J3 is a piecewise polynomial of degree 13 in γ1 and γ2; indeed

J3 “
3!

i 3π2

ÿ

P,P 1PS3

εP εP 1

ż

du1du2

pu1u2pu1 ` u2qq
5
ei pu1A1`u2A2qF pu1, u2q , (12)

(F pu1, u2q stands for the product f3pτpiα, P qqf3pτpiβ, P
1qqf3pτp´i γ, Iqq in (8), see also (4)), whence,

by homogeneity, a behavior as rγs15´2“13.
J3 is of differentiability class C2: indeed as u1, say, goes to infinity, the integrand behaves as
1
u4

1
eiA1u1 (up to subdominant terms), so that the integral is twice continuously differentiable with

respect to A1 (or γ), hence of class C2. Non-analyticities are expected (and do occur) along the
boundaries of the Horn polygon and across the same singular lines (or half-lines) as in the Hermitian
case, namely

γ2 “ α2 ` β2; (13)

γ1 “ α1 ` β2, γ2 ě α3 ` β1; γ2 “ α3 ` β1, γ1 ď α1 ` β2; γ3 “ α2 ` β3, γ1 ě α1 ` β2 ,

the same with αØ β .
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Figure 3: The four sectors in the Horn polygon of the quaternionic case for α “ β “ t1, 0,´1u.

For our favorite example of A „ B „ Jz “ diag p1, 0,´1q, the function has four sectors of
piecewise polynomiality, labelled by i “ 1, ¨ ¨ ¨ , 4 according to Fig. 3. In each of these four sectors
the function takes the form

J3|sector i “ ´
2ˆ 5!

13!
Pipγ1, γ2q (14)

where
Pipγ1, γ2q “ pipγ1, γ2q

3 p̃ipγ1, γ2q , (15)

pipγ1, γ2q “

$

’

’

’

’

&

’

’

’

’

%

p2´ γ1 ´ γ2q in sector 1, i.e., γ1 ě 1, γ2 ě 0, 2´ γ1 ´ γ2 ě 0

p2´ γ1q in sector 2, i.e., γ1 ď 2, γ2 ď 0, γ1 ` γ2 ě 1

pγ2 ´ γ3q “ pγ1 ` 2γ2q in sector 3, i.e., γ2 ď 0, γ1 ` γ2 ď 1, γ1 ` 2γ2 ě 0

pγ1 ´ γ2q in sector 4, i.e., γ1 ď 1, γ2 ě 0, γ1 ´ γ2 ě 0 ,

and each of the p̃ipγ1, γ2q “ 40γ10
1 ` ¨ ¨ ¨ is too cumbersome to be given here 2.

Note that the form (15) guarantees that J3 vanishes “cubically” on each boundary of the
polygon. This explains one of the features observed on the plots of Fig. 1 (c). As a side remark,
we note that p̃4pγ1, γ2q is symmetric under γ1 Ø γ2, and p̃3pγ1, γ2q is symmetric under γ2 Ø γ3 “

´γ1 ´ γ2. One may also compute the transition functions between adjacent domains:

P1 ´ P2 “ γ3
2 p¨ ¨ ¨ q (16)

P2 ´ P3 “ p1´ γ1 ´ γ2q
3 p¨ ¨ ¨ q

P3 ´ P4 “ γ3
2 p¨ ¨ ¨ q

P4 ´ P1 “ p1´ γ1q
3 p¨ ¨ ¨ q

where in each case, the ellipsis stands for a polynomial of degree 10 that we refrain from displaying.
Just like on the boundary, the transition functions vanish cubically along the non-analyticity lines.
This is in agreement with the differentiability argument above.

The resulting PDF is plotted in Fig. 4 (a) and compared to the “experimental” histogram of
Fig. 4 (b).

A good check of our calculation is that the integral of the PDF over the whole domain of
γ’s, made of 3! copies of the Horn polygon rHα,β, (see below in (19)), is indeed 1, thanks to
ş

rHα,β
dγ1dγ2∆pγqJ3 “

1
810 .

2 Suggestion : This may be found on the web site http://www.lpthe.jussieu.fr/~zuber/Z_Unpub2.html. Other
data that are not given explicitly in this paper may be found either on this web site or on http://www.cpt.univ-mrs.

fr/~coque/Varia/JackZonalSchurResults.html
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(a) (b)

Figure 4: Comparing the result of (7–15) with the “experimental” histogram.

3 Computing the PDF for a sum for two real symmetric matrices

As explained above, in contrast with the unitary or the symplectic groups, there is no closed
expression for the orbital integral on the orthogonal group and the formula

ppγ|α, βq “ const. |∆pγq|

ż n
ź

i“1

dxi |∆pxq| I1px, iαq I1px, iβq I1px,´i γq . (17)

remains intractable. We thus have to resort to a different approach. We first trade the PDF of
eigenvalues γi of the sum C “ A`B for the PDF ρpp, qq of symmetric functions of the γ’s, see (20)
below. The relation between the two is given below in (24).

3.1 The support of the symmetric functions P and Q

For 3ˆ 3 real symmetric traceless matrices A and B, the characteristic polynomial of their sum C
reads3

detpzI´ Cq “ detpzI´A´Bq “ z3 ` Pz `Q . (18)

The support of the eigenvalues γi of C is a convex polygon rHα,β in R2, defined in terms of the
eigenvalues αi and βi of A and B by the same Horn inequalities as in the Hermitian case [1]:

γ3min :“ α3 ` β3 ď γ3 ď minpα1 ` β3, α2 ` β2, α3 ` β1q “: γ3max

γ2min :“ maxpα2 ` β3, α3 ` β2q ď γ2 ď minpα1 ` β2, α2 ` β1q “: γ2max (19)

γ1min :“ maxpα1 ` β3, α2 ` β2, α3 ` β1q ď γ1 ď α1 ` β1 “: γ1max

as well as pby conventionq γ3 ď γ2 ď γ1 .

This translates for the symmetric functions P “ γ1γ2 ` γ2γ3 ` γ3γ1 and Q “ ´γ1γ2γ3 into a
curvilinear polygon, whose sides are either segments of lines cp` q “ ´c3 (for sides of rHα,β where

some γi “ c) or arcs of the cubic 4p3 ` 27q2 “ 0 for sides of rHα,β where γi “ γj . See Fig. 5 for an
example with α “ t11,´1,´10u, β “ t7, 4,´11u.

It has been suggested [6] that the Horn problem for real symmetric matrices not only shares
the same support as in the Hermitian case (for given α and β), as proved by Fulton [1], but has
also singularities at the same locations, although the latter look much stronger. Thus we expect

3The assumption of tracelessness is harmless: one may always translate A and B by a multiple of the identity
matrix so as to enforce it, at the price of shifting the eigenvalues of their sum C by a common real number.

6



γ1=γ2

γ2=γ2max

γ3=γ3min

γ1=γ1max

γ2=γ2min

γ2=γ3

γ3=γ3max

γ1=γ1min

γ2=α2+β2

γ2=α3+β1

γ1=α1+β2

γ3=α2+β3

γ2=α1+β3

γ1=α2+β1

γ3=α3+β2

10 15
γ1

-6

-4

-2

2

4

6

γ2

γ1=γ2

γ2=γ2max

γ3=γ3min

γ1=γ1max

γ2=γ2min

γ2=γ3
γ3=γ3max

γ1=γ1min

γ1=α1+β2

γ2=α3+β1

γ3=α2+β3

γ2=α2+β2 γ2=α1+β3
γ1=α2+β1

γ3=α3+β2

-400 -300 -200 -100
p

-1000

1000

q

Figure 5: The Horn-tensor polygon rHαβ in the pγ1, γ2q plane, and the curlinear polygon in the
pp, qq plane, drawn here for α “ t11,´1,´10u, β “ t7, 4,´11u. The dashed (blue, red and
green) lines are the expected loci of singularities of the PDF. (A histogram of eigenvalues
γ for an equivalent configuration of pα, βq has appeared in [6], Fig. 7.)

singularities to occur for 3ˆ 3 matrices along the same lines (or half-lines) as in (13)4. These lines
are illustrated in Fig. 5 for α “ t11,´1,´10u, β “ t7, 4,´11u in the pγ1, γ2q and in the pp, qq
planes.

3.2 The statistics of the symmetric functions P and Q

For 3ˆ 3 real traceless symmetric matrices A and B, of respective eigenvalues α and β, the char-
acteristic polynomial of their sum C reads

detpz I3 ´ Cq “ detpz I3 ´ diag pαq ´R diag pβqRT q “ z3 ` P pRqz `QpRq .

For given α’s and β’s, and R regarded as a random variable uniformly distributed in SO(3) (in
the sense of the Haar measure), P pRq and QpRq are also random variables, whose PDF may be
written as

ρpp, qq “ E
`

δpP ´ pqδpQ´ qq
˘

“

ż

DR δpP pRq ´ pq δpQpRq ´ qq . (20)

We parametrize R in terms of Euler angles

R “ RzpφqRypθqRzpψq

with
0 ď φ ď 2π, 0 ď θ ď π, 0 ď ψ ď 2π

and the normalized Haar measure is then

DR “ 1

8π2
sin θ dθ dφ dψ . (21)

4There may be non-analyticities at other places, though.
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Pp :“ P ´ p and Qq :“ Q´ q are then degree 2 polynomials of the variable c :“ cos θ, of the form

Pppcq “ ´α1
2 ´ α1α2 ´ α2

2 ´ β1
2 ´ β1β2 ´ β2

2 ` α1pβ2 ´ β1q ` α2pβ1 ` 2β2q

`x2pα1 ´ α2qpβ2 ` 2β1q ` y
2pα2 ` 2α1qpβ1 ´ β2q ´ x

2y2pα1 ´ α2qpβ1 ´ β2q ´ p

`2xypα1 ´ α2qpβ1 ´ β2q sinφ sinψ c

´
`

α1 ` 2α2 ` α1x
2 ´ α2x

2
˘ `

β1 ` 2β2 ` β1y
2 ´ β2y

2
˘

c2 (22)

Qqpcq “ pα1 ` β1qpα1 ` α2 ´ β2qpα2 ´ β1 ´ β2q ` pα1 ´ α2qpα1 ` α2 ´ β2qp2β1 ` β2qx
2

´p2α1 ` α2qpα2 ´ β1 ´ β2q pβ1 ´ β2qy
2 ´ pα1 ´ α2qpβ1 ´ β2qpα1 ` α2 ` β1 ` β2qx

2y2 ´ q

`2xypα1 ´ α2qpβ1 ´ β2qpα1 ` α2 ` β1 ` β2q sinφ sinψ c

`
`

pα1 ` 2α2qpα1 ` β1qpβ1 ` 2β2q ´ pα1 ´ α2qpα1 ` α2 ´ β1qpβ1 ` 2β2qx
2

`pα1 ` 2α2qpα1 ´ β1 ´ β2qpβ1 ´ β2qy
2 ´ pα1 ´ α2qpβ1 ´ β2qpα1 ` α2 ` β1 ` β2qx

2y2
˘

c2

where x :“ cosφ and y :“ cosψ.
Note the peculiar feature of these polynomials in c: their degree 0 and 2 terms are (degree 1)

polynomials in the variables x2 and y2, while their degree 1 term in c is of the form xy sinφ sinψ,
up to a (α- and β- dependent) factor.

Note also that these expressions are π-periodic in φ and ψ, making it possible to restrict these
angles to the interval p0, πq where their sine is non negative. This will be implicit in the following.

Thus

ρpp, qq “
1

2π2

ż π

0
dφ

ż π

0
dφ

ż 1

´1
dc δpQqqδpPpq . (23)

The PDF for the independent variables γ1, γ2 then follows simply:

ppγ1, γ2q “ |∆pγq| ρpp, qq . (24)

3.3 Reducing δpQqqδpPpq to δpRq

In this subsection, we show that
ş

dc δpQqqδpPpq may be reduced, up a factor, to a single δpRq,
where R is the resultant of the two polynomials Pppcq and Qqpcq. We shall make repeated use of
two classical identities [15]:
– for fptq a function with a finite number of “simple” zeros ti (i.e., such that f 1ptiq ‰ 0),

δpfptqq “
ÿ

ti

δpt´ tiq

|f 1ptiq|
; (25)

– for f and g two functions with no common zero,

δpfptqgptqq “
δpfptqq

|gptq|
`
δpgptqq

|fptq|
, (26)

to which we may then apply the previous identity. Then starting from the product δpQqqδpPpq,
we assume that the discriminant ∆Q of Qq is positive, in such a way that the roots c1,2 are real
and distinct, and we may write

δpQqq “
1

a

∆Q
pδpc´ c1q ` δpc´ c2qq

and
ż

dc δpQqqδpPpq “
1

a

∆Q
pδpPppc1qq ` δpPppc2qqq

(where it is understood that the delta’s act on functions of the remaining variables φ and ψ or x
and y).
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We want to compare this expression with δpRq where, as said above, R is the resultant of the two
polynomials Pppcq and Qqpcq. If a and a1 are the coefficients of terms of degree 2 of the polynomials
Qq and Pp, respectively, and c11, c

1
2 the roots of the latter, thus

Pppcq “ a1pc´ c11qpc´ c
1
2q Qqpcq “ apc´ c1qpc´ c2q ,

the resultant R defined as a2a12
ś

i,j“1,2pci ´ c
1
jq may also be written as

R “ a2Pppc1qPppc2q .

(For the polynomials of (22), this is a quite cumbersome polynomial of degree 5 in u “ x2 and in
z “ y2, with 4089 α- and β-dependent terms2.)

According to (26), one writes

δpRq “
1

a2

ˆ

δpPppc1qq

|Pppc2q|
`
δpPppc2qq

|Pppc1q|

˙

. (27)

But Pppc1,2q has the general form

Pppc1,2q “ A˘B
a

∆Q

with A and B functions of x and y. Thus whenever Pppc1q vanishes for some px, yq, i.e., A “

´B
a

∆Q, we have Pppc2q “ ´2B
a

∆Q for those values. And vice versa, if Pppc2q vanishes, then
Pppc1q “ 2B

a

∆Q. One may thus rewrite (27) as

δpRq “
1

2a2|B|
a

∆Q
pδpPppc1qq ` δpPppc2qqq “

1

2a2|B|

ż

dc δpQqqδpPpq , (28)

a non trivial and useful identity.
For the polynomials Pp and Qq of (22), it is easy to compute that 2a2B “ pxy sinφ sinψq B̃,

with

B̃ “ 2pα1 ´ α2qpβ1 ´ β2q ˆ (29)

rp2α1 ` α2qpα1 ` 2α2qppβ1 ´ β2qz ` pβ1 ` 2β2qq ` p2β1 ` β2qpβ1 ` 2β2qppα1 ´ α2qu` pα1 ` 2α2qqs

while the prefactor |x| |y| sinφ sinψ (recalling that x “ cosφ, y “ cosψ) enables us to change
variables to u “ x2, z “ y2, with the result that

ρpp, qq “
1

2π2

ż 1

0
dz

ż 1

0
du |B̃| δpRq . (30)

The final transformation of this expression follows from (25). If uipzq denote those roots of the
polynomial Rpu, zq that belong to the interval r0, 1s, we may write

ρpp, qq “
1

2π2

ż 1

0
dz

ÿ

i

|B̃pui, zq|

|R1upui, zq|
. (31)

This integral will be studied more explicitly in a particular example in the next section.
Three remarks are in order:

– we have assumed from the start that the discriminant ∆Q is positive, and this led us to (30).
Conversely, the vanishing of R for real values of the variables u and z encompassed in (30) implies
that Pppcq and Qqpcq have a common root, and this may only be possible if that root is a root of
aPp ´ a1Qq which is a degree 1 polynomial in c with real coefficients. Thus the common roots of
Pppcq and Qqpcq are necessarily real, justifying our assumption that ∆Qě0;
– the roots c1 and c2 have to lie in r´1, 1s for the consistency of the derivation;
– the two functions Pppc1q and Pppc2q have to have no common zero. Otherwise if that happened
at some values px, yq, both A and B would vanish.
The two latter points will be verified in the particular case that we discuss now.
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Figure 6: Left, the curlinear polygon, bounded by the lines 2p ` 8 ˘ q “ 0 and two arcs of the
cubic pp{3q3 ` pq{2q2 “ 0; (right) the distribution of 8000 points in the pp, qq plane for
A “ B “ diag p1, 0,´1q. The (red and black) dashed lines along which singularities are
expected are q “ 0 and p “ ´1˘ q

4 The particular case A „ B „ Jz

4.1 Symmetries and reduction to algebraic equations

From now on, we restrict ourselves to the particular case of α “ β “ t1, 0,´1u. The polynomials
Pp and Qq then reduce to

Pppcq “ P pRq ´ p “ ´c2p1` x2qp1` y2q ` 2cxy sinφ sinψ ´ px2 y2 ´ 2x2 ´ 2y2 ` 3q ´ p

Qqpcq “ QpRq ´ q “ 2c2
`

1´ x2y2
˘

` 4cxy sinφ sinψ ´ 2
`

1´ x2
˘ `

1´ y2
˘

´ q ,

where we recall that c “ cos θ, x “ cosφ, y “ cosψ, and we could substitute sinφ “
?

1´ x2, sinψ “
a

1´ y2 since φ and ψ are restricted to p0, πq. Note that these expressions are invariant under the
exchange of φ and ψ, or of x and y.

Another symmetry of the problem will be quite useful. Because ´Jz is conjugate to Jz by
the action of Rypπ{2q, it is clear that the distribution of the γ’s will be invariant under change of
sign, and the distribution of the pp, qq variables will be invariant under change of sign of q. This is
apparent in Fig. 6 where we see that both the support of ρ, here a curvilinear quadrangle, and the
distribution of points (here a simulation with 8000 points), are symmetric under q Ñ ´q. Our for-
malism, however, does not have that manifest symmetry, and we will find it useful in the following
to choose q negative, as we see shortly. The PDF for all values of q will then be reconstructed by
symmetry.

The discriminant of Qq is ∆Q “ 16p1´ x2qp1´ y2q ` 8qp1´ x2y2q. As explained previously, its
positivity follows by consistency from the vanishing of the resultant R. For ´2 ď q ď 0, one may
check that, if ∆Q ě 0, the real roots obey |c1,2| ď 1 for all x, y P r´1, 1s. We shall hereafter
assume that ´2 ď q ď 0.

Following the discussion of sect. 3.3, we then determine the resultant of the two polynomials
Pppcq and Qqpcq, a degree 4 polynomial in u and z

R “ RespPp, Qq; cq “ 4p2p1´ uzq2 ` 4pqp1` uqp1` zqp1´ uzq

´8p
`

´ 4` 2pu` zq ` pu` zq2 ´ 2uzpu` zq ` uzpu´ zq2
˘

`q2
`

p1` uzq2 ` pu` zq2 ` 2uzpu` zq ` 2pu` zq
˘

(32)

`4q
`

p4´ u3 ` 2u2z2 ´ z3 ` 2pu` zq ´ uzpu` zq ´ 3pu` zq2 ` 3uzpu2 ` z2qq
˘

`4
`

u4 ´ 8u3z ´ 2u2z2 ´ 8uz3 ` z4
˘

` 16pu` zq3 ´ 16pu´ zq2 ` 64p´u´ z ` 1q

Of course, this polynomial R is also symmetric under the swapping of u and z, since P and Q were
under xØ y. The factor B̃ appearing in (30) is B̃ “ 4p2` x2 ` y2q. Then, according to (31), the
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PDF reads

ρpp, qq “
2

π2

ż 1

0
dz

ÿ

roots ui of R
0ďuiď1

p2` u` zq

|R1u|

ˇ

ˇ

ˇ

u“ui
. (33)

4.2 Roots ui of the resultant R and their singularities

Let us start with some general features of the roots uipzq of R:
– The polynomial Rpu, zq being symmetric in u, z, its roots uipzq or zipuq are built by the same
function: z

ςi
ÞÑ uipzq, u

ςi
ÞÑ zipuq. This means that their graph is symmetric with respect to the first

diagonal, see Fig. 10 below.
– Within the full domain q ď 0, there are either 0, two or four roots uipzq P r0, 1s for z P r0, 1s.
When z varies in p0, 1q, this number may change: either some of these roots may evade the interval
r0, 1s through one of its end points 0 or 1, but they always do it pairwise; or a pair of real roots
“pops out” of the complex plane or disappears into it, but this may occur only when they coalesce.
In both cases, the discriminant ∆R of R with respect to u vanishes. We compute

∆Rpz, p, qq “ 8192p8` 2p´ qq2p1´ zq2z2∆
p1q
R pz, p, qq (34)

where ∆
p1q
R pz, p, qq is a fairly cumbersome polynomial of degree 8 in z that we refrain from writing

here 2. The vanishing of the first factor does not occur for q ă 0 and p ą ´4. In the following, we
denote the ordered roots zs of ∆R belonging to r0, 1s as

zs0 “ 0 ď zs1 ď ¨ ¨ ¨ zsr ď 1 . (35)

It turns out there are up to five roots zs of ∆
p1q
R pz, p, qq in the open interval s0, 1r, hence seven

in r0, 1s. Some of these roots zs may be irrelevant, in the sense that they are associated with the
merging of irrelevant roots uipzq of R, i.e., roots that do not satisfy ui P r0, 1s.

At some particular values of pp, qq, the number of zs roots may change. Either some zs evade

the interval r0, 1s or enter it, through 0 or 1: computing ∆
p1q
R p0, p, qq and ∆

p1q
R p1, p, qq, one finds that

this happens along the lines p˘ q ` 1 “ 0 and q “ 0 which are the dashed lines in Fig. 6. Or two

roots of ∆
p1q
R pz, p, qq coalesce, and this occurs for values of pp, qq that are roots of the discriminant

∆
p2q
R of ∆

p1q
R pz, p, qq with respect to z,

∆
p2q
R pp, qq “ q4p2´ qq2p1` p´ qq2p4` p´ qq2p5` p´ qq2p8` 2p´ qq2p4p3 ` 27q2q ˆ (36)

p64` 16p´ 48q ´ 8pq ` 13q2 ` pq2 ´ q3q2p8` 10p` 2p2 ´ 19q ´ 10pq ´ p2q ` 8q2 ` 2pq2 ´ q3q2pT pp, qqq3

where T pp, qq is a horrendous polynomial of degree 21 in p and 18 in q 2. The relevant roots

of ∆
p2q
R (in fact of T ) for our discussion define the “horned” (red) curve in the upper right part

of Fig. 7. The cusp of that curve occurs at ppc, qcq “ p´1.37657 ¨ ¨ ¨ ,´0.234765 ¨ ¨ ¨ q. Note that

this pc is a root of the “third generation discriminant” ∆
p3q
R ppq :“ ∆T , in fact of its factor p2 ´

3p ´ p2 ` 3p3 ` p4q. The horned curve intersects the q-axis at p “ p0 :“ ´1.21891 ¨ ¨ ¨ , a root of
1328 ` 1325p ` 171p2 ´ 17p3 ` p4, which is a factor of T pp, 0q. Also, it intersects the dotted line
p` q ` 1 “ 0 at p “ ´0.910988 ¨ ¨ ¨ , q “ ´0.089012 ¨ ¨ ¨ ; it intersects the dashed line p´ q ` 1 “ 0
at p “ ´1.14617 ¨ ¨ ¨ , q “ ´0.146174 ¨ ¨ ¨ .

A detailed analysis shows that one has to distinguish six regions in the domain of pp, qq, q ď 0,
see Fig. 8. These regions differ by the subset of relevant values zs. Note that we have to carry
out the z-integration of (33) in each interval pzsi , zsi`1q, after one another, because the integrand
is singular at each zsj , as we discuss in the next subsection. The properties of these six regions are
summarized in Table 1; the pattern of zs when q varies while p is fixed at some value are displayed
in Fig. 9; and the various scenarii for the roots uipzq, which describe several branches of a closed
curve in the pz, uq plane, are illustrated in Fig. 10, where colors refer to points of Fig. 7.
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Figure 7: The q ď 0 part of the domain in the pp, qq-plane. The special curves are the lines
p ´ q ` 1 “ 0 (dashed) and p ` q ` 1 “ 0 (dotted), and an arc of the “horned” curve
where T “ 0 (red). The colored dots refer to the plots of Fig. 10
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Figure 8: Zoom on the 6 regions
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Figure 9: Plot of the roots zs of ∆
p1q
R as a function of q: (a) for p “ ´3.5; (b) for p “ ´1.5; (c) for

p “ ´1.25, for qminppq ď q ď 0; (d) zoom of the latter on ´.25 ď q ď 0. The cusps at
q “ ´0.179503 and q “ ´0.0868984 lie on the boundary of the horned domain. In each
case, the largest zs is irrelevant.

Region Number of zs Ps0, 1r Relevant zs Intervals Roots ui
I 2 zs0 “ 0, zs1 0 ď z ď zs1 u1 ď u2

0 ď z ă zs1 u1 ď u2

II 4 zs0 “ 0, zs1 , zs2 , zs3 zs1 ă z ă zs2 u1 ď u3 ď u4 ď u2

zs2 ă z ă zs3 u4 ď u2

zs1 ď z ă zs2 u1 ď u2

III 5 zs1 , zs2 , zs3 , zs4 zs2 ă z ă zs3 u1 ď u3 ď u4 ď u2

zs3 ă z ă zs4 u4 ď u2

zs2 ď z ă zs3 u1 ď u2

IV 5 zs2 , zs3 , zs4 , zs5 zs3 ă z ă zs4 u1 ď u3 ď u4 ď u2

zs4 ă z ă zs5 u1 ď u3

V 3 zs1 , zs2 zs1 ď z ď zs2 u1 ď u2

VI 3 zs2 , zs3 zs2 ď z ď zs3 u1 ď u2

Table 1. Pattern of roots zs of ∆R and of roots uipzq of R in the various regions

For example, in region II, (shaded triangle X horned region), there are four roots zsj , j “

1, ¨ ¨ ¨ , 4, of ∆
p1q
R but only the first three are relevant, and four relevant roots for ∆R, namely

zs0 “ 0, zs1 , zs2 , zs3 :
* for 0 ď z ď zs1 , there are two roots 0 ď u1 ď u2 ď 1;
* at z “ zs1 , a new pair of roots pu3, u4q pops out of the complex plane;
* for zs1 ă z ă zs2 , we have four roots 0 ď u1 ď u3 ď u4 ď u2 ă 1;
* at z “ zs2 , the pair pu1, u3q merges and disappears into the complex plane;
* for zs2 ď z ď zs3 , we are left with two roots u4 ď u2, which merge at z “ zs3 and disappear

in the complex plane;
* for z ą zs3 , there is no root in the interval u P r0, 1s. The z-integration must be carried out

separately on the three intervals p0, zs1q, pzs1 , zs2q, and pzs2 , zs3q.

4.3 The integrand ϕpzq

Consider the integrand in (33)

ϕpzq :“
ÿ

roots ui of R
|ui|ď1

p2` u` zq

|R1u|

ˇ

ˇ

ˇ

u“ui
(37)

It has both integrable and non-integrable singularities, the latter where the integral diverges. Typ-
ical plots of ϕpzq in the various regions are displayed in Fig. 11.
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Figure 10: A portrait gallery. At various points of the pp, qq domain, 1st line: plot of the roots
uipzq of R, which describe several branches of a closed curve; 2nd line: the value of pp, qq
and the region number; 3d line: the values of the relevant zs.

14



z
zsz s

ϕ

z
i+1i

ϕ

zsi
zsi+1

zsi+2
zsi+3

Figure 11: Typical plots of ϕpzq in regions I, V or VI (left) or II, III, IV (right). In the latter,
the middle and right intervals have been dilated for clarity. The discontinuity of ϕpzq
at zsi`1 , zsi`2 is due to the contribution of two new roots u3 and u4 in that interval.

The singularities of ϕ as a function of z come either from singularities of uipzq, or from zeros of
the denominator |R1upuiq|. Both cases are associated with the merging of roots uipzq of R, which
occurs at some relevant root zs of its discriminant ∆R. The singularity of ui in the numerator
is, however, at worst of square root type and gives rise to no divergence of the integral. We thus
concentrate on the possible vanishing of the denominator R1u.
If we write the polynomial R in a factorized form, R “ c

ś

jpu ´ ujpzqq, its derivative at ui reads
R1upuiq “ c

ś

j‰ipuipzq ´ ujpzqq, and vanishes when ui coalesces with some uj , thus at some value
z “ zs, a root of the discriminant ∆R.
– Either the pair of roots pui, ujq belonging to r0, 1s emerges from or disappears into the complex
plane at zs with a square root behaviour, ui,jpzq „ ui,jpzsq˘

1
2a|z´zs|

1{2`¨ ¨ ¨ , hence |uipzq´ujpzq| „

a|z´zs|
1{2`.... Graphically, it manifests itself as a smooth curvature of the “portraits” of uipzq and

ujpzq at the points of vertical tangent in Fig. 10. This is what happens at z “ zs0 “ 0 above the
dashed line; and generically at the various relevant roots zs of ∆R. At such a point, the singularity
of ϕpzq is integrable.
– Or the two roots ui, uj cross at a finite angle at zs: uipzq ´ ujpzq „ bpz ´ zsq ` opz ´ zsq with
a finite coefficient b. This is what happens along the lines p ´ q ` 1 “ 0, or q “ 0, and translates
graphically into an angular point in Fig. 10, see for example cases (a),(d),(g). At such a point,
the integral of ϕpzq diverges “logarithmically” at z “ zs, which supposes the introduction of some
cut-off that measures the departure of pp, qq from the singular point. This explains the growths
of the PDF observed in Fig. 6 along the lines q “ 0, p ´ q ` 1 “ 0 and (by symmetry q Ø ´q)
p` q ` 1 “ 0, as we discuss in the next subsection.
– Or at exceptional points, the difference uipzq´ujpzq may vanish faster at zs. This is what happens
at the point p´1, 0q, where it vanishes as |zs ´ z|3{2. Graphically, the two curves uipzq and ujpzq
form a cusp, see for instance Fig. 10.(f). In that case, the integral of ϕpzq diverges as an inverse
power of the cut-off, see below.

But there is another source of divergence of ρ. The function ϕ itself may diverge as pp, qq
approaches a singular point. This is what happens at the three corners p´4, 0q, p´3,´2q, p0, 0q of
the domain, where we shall see that R1upuiq vanishes for all z in the integration interval.

4.4 The PDF, plots and divergences

We are now in position to draw the plot of the PDF ρpp, qq resulting from the integration in (33)
for q ď 0, supplemented by its mirror image by q Ñ ´q, and to compare it with the histogram
obtained by a simulation with 106 points, see Fig. 12 and 13.

An important check consists in comparing the probability of occurrence of pp, qq in a finite
domain computed by integrating the PDF ρpp, qq over that domain to that estimated from a big
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Figure 12: Left: plot of the function ρ computed on a grid of mesh 10´2; the regions I to VI, q ă 0
have been plotted in different colors (deep blue, orange, green, red, violet and brown),
while their symmetric partners, for q ą 0, are all in light blue. Right: histogram of 106

points in the pp, qq plane.

Figure 13: The same, in the pγ1, γ2q plane.

sample of “random events”. For example, Pp´3.6 ď p ď ´3.5, q ď 0q
ˇ

ˇ

ˇ

computed
“ 0.04496 while the

estimate from a sample of size 106 gives 0.044886.
As anticipated, the computed ρ exhibits singularities along the lines q “ 0 and p ˘ q ` 1 “ 0.

Note that the computation of ρ is carried out point by point on a grid of mesh 10´2 in the pp, qq-
plane, cutting off the vicinity of the singular lines, while the histogram uses bins of width 0.02
throughout the domain. This explains the slight difference of appearance of the singularities.

By a long (and fairly tedious) case by case analysis, we may assert that the singularities are
logarithmic in the approach of generic points of the singular lines q “ 0; p´q`1 “ 0 for q ď 0; and
p` q ` 1 “ 0 for q ě 0. At the end points and intersection of these lines, i.e., at the corners of the
pp, qq-domain, as well as the point pp, qq “ p´1, 0q, the divergence is stronger, as an inverse power.
This is summarized in the following Table, which gathers results obtained in the detailed discussion
of the next subsection. The reader will also find in that subsection numerical verifications of the
asserted divergences.

In most cases, we proceed as follows: as pp, qq approaches a singular point, some zs approaches
a limiting value zs˚ while the common value of a pair of coinciding roots, say, us “ u1pzsq “ u2pzsq
approaches us˚ “ u1,2pzs˚q. Series expansions of zs and us in powers of a “distance” ε ! 1 to
the singularity may be computed. On the other hand, the roots u1pzq and u2pzq as well as the
denominator R1u of ϕpzq in (33) may be expanded in powers of ζ “

a

|z ´ zs|. Finally, a double
series expansion in powers of ε and ζ is obtained for R1upu1,2pzqq, which upon integration in the
vicinity of zs, yields the singular contribution to ρ of zs˚. This program is carried out in detail in
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the next subsection. Three particular singular points are treated separately.

Position of singularity Approach to singularity Divergent part of ρ
and pzs˚, us˚q

p´ q ` 1 “ 0, q ď 0
zs˚ “ 0, us˚ “ pp` 3q{2 p´ q ` 1 Ñ 0 ρdiv “

1

π2
?

2pp`3q
?
´p1`pq

ˇ

ˇ log |p´ q ` 1|
ˇ

ˇ

zs˚ “ pp` 3q{2, us˚ “ 0

q “ 0, ´4 ă p ă ´1 q Ñ 0, p fixed ρdiv “
1

2π2|p|
?
p`4

ˇ

ˇ log |q|
ˇ

ˇ

zs˚ “ 1, us˚ “ 1

q “ 0, ´1 ă p ă 0

zs˚ “ p` 1, us˚ “ 1 q Ñ 0, p fixed ρdiv “
1

2π2|p|
pp1` pq´

1
2 ` p4` pq´

1
2 q
ˇ

ˇ log |q|
ˇ

ˇ

zs˚ “ 1, us˚ “ 1
zs˚ “ 1, us˚ “ p` 1

pp, qq “ p´1, 0q
zs˚ “ 0, us˚ “ 1 q Ñ 0, p “ ´1 ρdiv “

1

2
?

6π|q|
1
2
`Oplog |q|q

zs˚ “ 1, us˚ “ 0
zs˚ “ us˚ “ 1 : subdominant

pp, qq “ p´4, 0q

zs˚ “ 0, us˚ “ 0 κpp` 4q “ ´q Ñ 0 , ρdiv “ Cpκq{|q|
1
2

zs˚ “ us˚ “
2´κ
3κ`2 0 ă κ ă 2

pp, qq “ p0, 0q κp3 “ ´27q2 Ñ 0 ρdiv “ C2pκq{|q|2{3 „ 1{|p|
zs˚ “ us˚ “ 1 0 ă κ ă 4

pp, qq “ p´3,´2q pp` 3q “ κpq ` 2q Ñ 0 ρdiv “ C 1pκq{pq ` 2q
1
2

zs˚ “ us˚ “ 0 ´ 1
2 ď κ ď 1

Table 2. Position and expression of the singularities of ρpp, qq in the q ă 0 part of the domain of
Fig. 6. The expressions of the coefficient functions Cpκq etc are given in the next subsection.

Finally, note the PDF ρpp, qq does not vanish along the boundaries of the Horn domain in the
pp, qq-plane. In particular, on the lower or upper sides of the domain, i.e., along the arcs of the
cubic q “ ¯2p´p{3q3{2, ρpp, qq has a finite limit. This is in no contradiction with the expected
vanishing of the PDF ppγ1, γ2q on the left boundaries γ1 “ γ2 and γ2 “ γ3 of the Horn domain in
the pγ1, γ2q-plane, because of (24) and of the vanishing of the Vandermonde determinant ∆ along
those curves.

4.5 Analysis of the singularities

In this subsection, we proceed to a detailed –and lengthy– case-by-case analysis of the divergent
singularities of ρ.

A preliminary observation is that, due to the uØ z symmetry of our particular case, the u ă z
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and u ą z sectors will contribute equally:
ż ż

dudzδpRpu, zqqp2` u` zq “

ż ż

uăz
dudzδpRpu, zqqp2` u` zq `

ż ż

uąz
dudzδpRpu, zqqp2` u` zq

“ 2

ż ż

uąz
dudzδpRpu, zqqp2` u` zq .

This will be apparent in the following.

As explained in the previous subsection, we proceed heuristically, making appropriate Taylor
expansions close to the singularities. We do it in detail in the first case (singularity along the
dashed line), and are then more sketchy.

1. Along the dashed line p ` 1 ´ q “ 0, the integrand ϕ has two non-integrable singularities:
ϕ „ 1{z for z Ñ zs0 “ 0, corresponding to u1,2pzq Ñ us0 “ pp ` 3q{2, and, by symmetry
between u and z, ϕ „ 1{pzs ´ zq for z Ñ zs “ pp` 3q{2. Thus the integral diverges and the
PDF is infinite along the line.

• For q “ p ` 1 ` ε, (i.e., close to and above the line), zs remains equal to zero, and we
determine the common value of the two roots at that point by plugging a series expansion
of the form us “

p`3
2 ` αε` ¨ ¨ ¨ in the equation Rpus, zs “ 0q “ 0, whence

u1,2p0q “ us “
p` 3

2
`

5` p

2p9` pq
ε` ¨ ¨ ¨

• For z close to zs0 “ 0, we write z “ ζ2, approximate u1,2pzq “ us`β1,2ζ`γ1,2ζ
2`Opζ3q,

and determine the coefficients of that expansion by plugging it again in the equation
Rpu1,2pzq, z “ ζ2q “ 0. β1 (resp. β2) is the negative (positive) root of an equation
which, for q “ p` 1` ε reduces to

β2 “ ´
2p3` pqp1` pqp7` pq2

p9` pq3
ε`Opε2q (38)

and the coefficient γ is given by

γ1,2 “ ´
p3 ` 5p2 ´ 13p` 15˘ 4

?
2pp` 3qpp` 7q

?
´p´ 1

2pp` 9q2
`Opεq . (39)

• We then expand the denominator R1u of (37), for z close to zs0 “ 0 and ε small and of
order ζ2, as

R1upu1,2, z “ ζ2q “ 2
?

2
a

´p´ 1pp` 3qpp` 7q

ˆ
c

p` 9

p` 3

?
ε¯ 2ζ

˙

ζ ` opε, ζ
?
ε, ζ2q (40)

• and we finally derive the divergence of
şzs
0 dzϕ at the lower end point 0 as

ż

0
dz ϕ

ˇ

ˇ

ˇ

div
“

ÿ

u1,u2

ż

0

2ζdζ pp` 7q{2

|R1upu1,2, zq|

ˇ

ˇ

ˇ

div
“

1

4
a

´2pp` 1qpp` 3q
| log ε| .

As explained above, the divergence of the integral at its other end point, obtained by the
symmetry uØ z, contributes the same amount.

Thus the total divergence of ρpp, qq as the dashed line is approached from above is

ρpp, qq
ˇ

ˇ

p´q`1Ñ0
« ρdiv :“

1

π2
?

2pp` 3q
a

´p1` pq

ˇ

ˇ log |p´ q ` 1|
ˇ

ˇ . (41)
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Figure 14: ρ´ ρdiv above (blue disks) or below (yellow squares) the dashed line for p “ ´2.5, q “
p` 1˘ ε, ε “ 3´j´3, plotted against j “ 1, ¨ ¨ ¨ , 20.

This formula is well verified on numerical data, see Fig. 14. Note that the logarithmic behavior
is enhanced in the approach to p “ ´1, q “ 0 and to p “ ´3, q “ ´2, at the southern end of
the plot. This will be reconsidered in detail in items 4 and 7 below.

One also checks that the same formula applies to the approach to the dashed line from below
(ε ă 0). The relevant expressions are

zs1 “
pp` 9q|ε|

4pp` 3q
; us1 “

p` 3

2
´
pp` 5q|ε|

2pp` 9q
; u1,2pz “ zs1 ` ζ

2q “ us1 ¯ βζ ` γ1,2ζ
2 ` ¨ ¨ ¨

with β ą 0 and γ1,2 as given in (38) and (39), and the same expression for R1u as in (40):

R1upu1,2, zs1 ` ζ
2q « ˘2ζ

a

´2p1` pqpp` 7qpp` 3qp´
a

pp` 9q{p3` pq
a

|ε| ` 2ζq

and hence the same divergence as above the line, see Fig. 14 for an illustration at p “ ´2.5.

2. By a similar discussion, one finds that when q Ñ 0 with ´4 ď p ď p0 “ ´1.21891, (i.e.,
in region I), the singularity at zs0 “ 0 is integrable while that at zs1 Ñ 1 gives rise to a
divergence of the integral. We write for short zs “ zs1 . For |q| small,

zs “ 1` 2q{p4` pq `Opq2q , us “ u1pzsq “ u2pzsq “ 1´ 8q{ppp4` pqq `Opq2q ;

as z Ñ zs, we write z “ zs´ζ
2, and the two roots u1,2 « us¯β1ζ´γ1,2ζ

2, for some computable
coefficients β1, γ1,2, so that R1upu1,2, zs´ζ

2q « ¯32|p|p
?

4` p ζ`
?
´2qqζ, whence a divergence

of the integral
şzs dzϕpzq „ 1

4|p|
?

4`p
| log |q||.

The same applies in region II, p0 “ ´1.21891 ď p ă 1, where now four values of zs exist, (see
sect. 4.2 and Table 1), but the singularities of R1u at the points zs0 “ 0, zs1 and zs2 are of
inverse square root type, hence integrable, and only the linear vanishing of R1u at zs3 matters.
Hence

ρpp, qq
ˇ

ˇ

qÑ0
´4ăpă´1

« ρdiv :“
1

2π2|p|
?
p` 4

ˇ

ˇ log |q|
ˇ

ˇ . (42)

See Fig. 15 for comparison with numerical data.

As p Ñ ´1, however, the singularities at zs0 “ 0 and zs2 Ñ 1 become sharper and sharper,
resulting in a stronger divergence at z “ 1, see below item 4.

3. In region IV, ( ´1 ă p ă 0), q is small (|q| ă 1{10), and the relevant values of pzs, usq are
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Figure 15: ρ´ ρdiv for p “ ´3.5, ¨ ¨ ¨ ,´1.1, q “ ´3´j´1, plotted against j “ 1, ¨ ¨ ¨ , 30.

well approximated, up to higher powers of q, by

zs2 « p` 1` αz2q

with αz2 the largest root of ´ 4` p` p2 ` 2αppp` 1q ´ 4pα2,

i.e., αz2 “ pp` p2 ´
a

´16p` 5p2 ` 6p3 ` p4q{p4pq

us2 « 1` αu2q, αu2 “
1

4

´

1` p8` 5p` p2q{
a

´16p` 5p2 ` 6p3 ` p4
¯

;

zs4 « 1`
2q

p` 4
, us4 « 1´

8

pp4` pq
q ;

zs5 « 1`
1

2
q , us5 « p` 1`

1

2
qpp` 3`

4

p
q .

(The value of zs3 where u3 and u4 merge, see Fig. 10 (g), is of no concern to us here, as ϕ is
integrable there.)

As q Ñ 0 three divergences occur:
– the pair of roots pu1, u2q merge toward us2 as z Ñ zs2 ; setting ζ2 “ z ´ zs2 , as ζ Ñ 0,
u 1

2
“ us2 ¯βζ`γ 1

2
ζ2`¨ ¨ ¨ with β2 and γ1,2 determined by a series expansion of the equation

Rpu, zq “ 0. One finds that β “ Op|q|
1
2 q, while γ1,2 “ Op1q. Consequently

R1upu 1
2
, zs2 ` ζ

2q « ¯8pp` 4qpp` 1q
1
2

`
a

´2p|q|
1
2 pp4 ` 6p3 ` 5p2 ´ 16pq

1
4 ` 2pζq

˘

ζ

whence a divergence of the integral at its lower bound
ş

zs2
ϕpzqdz

ˇ

ˇ

ˇ

div
“ 1

8|p|pp`1q
1
2
| log |q||;

– the pair of roots pu1, u3q converges to us5 as z Ñ zs5 , and R1upu1,3, zq « 16|p|ppp `
4q
?

1` pp1 ´ zq ` |q|q: this is just the image by the u Ø z symmetry of the latter, whence
another contribution | log |q||{p8|p|

?
p` 1q to the integral of ϕ;

– the pair of roots pu2, u4q converges to us4 as z Ñ zs4 . By similar expansions near zs4 one

finds that R1upu 2
4
, zs4 ´ ζ

2q “ 16|p|
`

¯2
?
´2q`p´pp`8q¯2pp`4q

1
2 ζ
˘

ζ, whence a divergence

of the integral
şzs4 dzϕpzq

ˇ

ˇ

ˇ

div
“ | log |q||{p4|p|

?
p` 4q.

Thus as above in regions I and II, for q « 0, ρ „ C log |q|, but with a larger value of the

coefficient, C “ 1
2π2|p|

pp1` pq´
1
2 ` p4` pq´

1
2 q. The agreement between numerical results and

that coefficient C is illustrated in Fig. 16 for p “ ´0.8. It deteriorates at small values of |q|
where the convergence of the integral is bad.

4. At p “ ´1, q “ 0, one can see that, as z Ñ 0, u1 and u2 approach 1 with the same slope,
so that we have now |u1 ´ u2| „ αz3{2, causing a strong divergence of ρ. More precisely, for
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Figure 16: ρ´ ρdiv for p “ ´0.8, q “ ´3´j´3, plotted against j “ 1, ¨ ¨ ¨ , 18.

p “ ´1 and q small, zs1 “ ´q `Opq
2q and if z ´ zs1 “ ζ2 Ñ 0 , one finds

R1u| « 36
?

2pζ2 `
4

3
|q|qζ

whence a contribution to the divergent part of
ş

zs1
dzϕpzq equal to π

4
?

6|q|
1
2

. The coalescence

of roots u1 and u3 towards us4 « 0 at zs4 « 1 gives rise to the same divergence (by the u´ z
symmetry once again), while there is a weaker (logarithmic) divergence coming from u2 and
u4 merging to us3 « 1 as z Ñ zs3 « 1 (see Fig. 10 f). In total, we have

|ρpp, qq
ˇ

ˇ

ˇ

p“´1
qÑ0´

« ρdiv :“
1

?
6π|q|

1
2

(43)

up to a subdominant log |q| term. See Fig. 17-left for a numerical plot of ρ{ρdiv converging
to 1.

5. Divergence at pp, qq “ p´4, 0q. Let us approach that singular point in a linear way, letting
p ` 4 “ ε, q “ ´κε, ε Ñ 0, with 0 ă κ ă 2 (so as to remain within the Horn domain); then
to leading order in ε, the z-integration runs between zs0 “ 0 and zs1 “ p2 ´ κq{p2 ` 3κq.
Solving R “ 0 in that limit, one finds that the portrait pu1pzq, u2pzqq forms a vanishingly thin

ellipse-like curve along the diagonal: u 1
2
pzq “ z¯

?
2` 3κ

´

p1´zqzpzs1´zq
1`z

¯
1
2
ε

1
2 to the first non

trivial order in ε, and plugging this expression into R1u yields

|R1upu1,2q| “ 32
?

2` 3κ p1` zq
3
2

´

p1´ zqzpzs1 ´ zq
¯

1
2
ε

1
2 `Opεq
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Figure 17: Left: ρ{ρdiv for p “ ´1, q “ ´3´j Ñ 0, j “ 3, ¨ ¨ ¨ , 10, plotted against q.
Right: Plot of ρ{ρdiv as a function of p, in the approach of p´4, 0q along the line
p` q{κ “ ´4 for three values of κ.
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Figure 18: (Left) Plot of ρpp, qq{ρdiv in the approach of p0, 0q along the cubic κp3 ` 27q2 “ 0 for
κ “ 1, 2, 3 (in region VI). Convergence of the integral deteriorates for small values of
p.
(Right) Plot of ρpp, qq{ρdiv in the approach of p´3,´2q along the line p´ qκ “ ´3` 2κ
for five values of κ.

whence a divergence of ρ as |q|´
1
2

ρdiv :“
1

4π2

c

κ

2` 3κ

1

|q|
1
2

ż zs1

0

dz
a

zp1´ zqp1` zqpzs1 ´ sq
. (44)

in very good agreement with numerical data, see Fig. 17-right.

6. Divergence at p “ q “ 0. We let pp, qq approach p0, 0q in region VI, for example along the
cubic κp3 ` 27q2 “ 0, with κ ă 4; then the two end points zs2 and zs3 of the integral go to
1 as p “ ´ε2 goes to 0, i.e., zsi « 1 ´ αz,iε

2 ` Opε3q where αz,i, i “ 2, 3, are the second and
third largest roots of 27αzp1´αzq

2´ κ. Both z and u are thus confined in an interval of size
ε2 near 1, and solving the equation R “ 0 in the rescale variable z “ 1 ´ ζε2 and plugging
into R1u, one finds that the latter has a limiting shape described by the elliptic curve

R1upu2,3q “ ˘
26

3
?

3
ε4
a

ζp27ζp1´ ζq2 ´ κq

so that

ρdiv :“

?
3κ

1
3

4π2|q|
2
3

ż αz,2

αz,3

dζ
a

ζ p27ζpζ ´ 1q2 ´ κq
. (45)

This behavior is again well supported by numerical calculations, see Fig. 18-left.

7. Divergence at p “ ´3, q “ ´2. If one approaches that corner of the domain along lines
p “ ´3`κε, q “ ´2`ε with ´1

2 ă κ ă 1 so as to remain in region I, one finds that zs0 “ 0 and
zs1 “

1
6p1`2κqε to the lowest order in ε, so that both z and u remain small of order ε. Solving

the equation R “ 0 to order ε3, one finds that u 1
2
pzq “ zs1 ´ z ˘

2
9

´

12εp1´ κq
`

zpzs1 ´ zq
˘

¯
1
2

so that |R1upu1,2q| « 32
a

3p1´ κq
`

zpzs1 ´ zq
˘

1
2 ε

1
2 , and the z-integration may be carried out,

leading to

ρdiv :“
1

π
a

48p1´ κq

1

|q ` 2|
1
2

. (46)

This is corroborated by the numerical calculation at various values of κ, see Fig. 18-right.

The alert reader may wonder why the singularity along the line p ` q ` 1 “ 0 of the upper
half-plane, (a reflection of the singularity along the dashed line of the q ă 0 half-plane) does not
manifest itself along the dotted line of the lower half-plane. The reason is that, in that lower
half-plane, the two zs that merge there are in fact irrelevant for q ă 0.
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5 Zonal polynomials

In the Hermitian case, it is known that the Horn problem discussed so far has a discrete counter-
part, involving Littlewood–Richardson multiplicities, and may be regarded as a semi-classical limit
of the latter. The PDF ppγ|α, βq, or rather the “volume function” J equal to the latter up to a
Vandermonde factor, measures the distribution of (rescaled) Littlewood–Richardson multiplicities,
i.e., structure constants of Schur polynomials, in the large scale limit, see [5, 16]. In the real sym-
metric case, one expects similarly the PDF, or rather some “volume like function” J proportional
to it to measure, at least in the generic case, the distribution of (rescaled) “zonal multiplicities” i.e.,
appropriate structure constants of zonal polynomials, see [9]. This motivates the discussion of the
present section, where we pay special attention to the normalization and specializations of the Jack
and zonal polynomials. We shall in particular use SUpnq reduction5 of zonal (or Jack) polynomials
and introduce a notion of SUpnq zonal characters very similar to the usual Weyl characters.

5.1 About Jack and zonal polynomials

5.1.1 Jack polynomials and their normalizations

Zonal polynomials can be defined in many ways and we refer the reader to the abundant literature
(see for instance [17], [18]). One possible approach is to start from Jack polynomials (themselves
a particular case of the larger family called Macdonald polynomials). Sentence re-written A Jack
polynomial with n variables is labelled by an integer partition κ and a real parameter α. When
one specializes the value of α, Jack polynomials, in turn, give rise to various interesting families,
in particular the Schur polynomials (case α “ 1), the zonal polynomials (case α “ 2), and the
quaternionic polynomials (case α “ 1{2).

Actually there are three variants of the Jack polynomials, denoted JαX with X “ P,C, J6

differing by an overall normalization (an overall α-dependent and partition-dependent numerical
factor): for example, one writes JJ “ cPJJP , etc. When α “ 2 one has therefore also three kinds of
zonal polynomials respectively denoted ZP , ZJ and ZC . When studying zonal or Jack polynomials,
many authors – in particular in old papers – use the James normalization (polynomials ZJ) without
saying so explicitly. As we shall see, the most interesting family, for us, is the family of the zonal
polynomials (and also the Jack polynomials) defined with the P normalization, the reason, that
will be discussed below, is that this normalization is compatible with SUpnq-reduction and with the
conjugation of irreducible representations (irreps) of SUpnq —the latter being described by integer
partitions with at most n´1 parts. When expanded in terms of monomial symmetric polynomials,
the J normalization of the Jack polynomial defined by the partition κ makes the coefficient of the
lowest order monomial r1ns equal to n!, whereas, using the same expansion, the P normalization
makes the coefficient of the monomial relative to the highest partition (i.e., κ) equal to 1. For a
given partition κ, the normalization factor cPJ is the lower α-hook coefficient of κ.
Note: Zonal polynomials, with an un-specified normalization, were denoted Zpκqpxq in (5).

5.1.2 Packages

Zonal polynomials and, more generally, Jack polynomials (variables are called xj), are usually
written in terms of monomial symmetric functions, or in terms of power sums, not very often in
terms of the variables xj themselves because this would take too much space. To the authors’
knowledge there are very few computer algebra packages devoted to the manipulation of those
polynomials; we should certainly mention [23], written for Mapple (that we did not use), and the

5i.e., eliminate integer partitions κ when ιpκq ą n, ι being the length of κ, and, when ιpκq “ n, replace κ by
κmod t1, 1 . . . , 1u, the latter being therefore an extended partition (see footnote 7) with a last part equal to 0.

6the capital subscripts J and C, for both Jack and zonal polynomials, refer to the original papers of James [20, 21],
and Constantine [22], see also [19].
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small package [24] written for Mathematica (but it is slow, unstable (division by 0), and uses an
obsolete version of the language). For those reasons we developed our own, using Mathematica:
the definition chosen for Jack polynomials uses a recurrence algorithm in terms of skew Young
diagrams and a modified Pieri’s formula described by Macdonald in [18], see also [25]; our code,
which also contains commands to convert Jack, Schur and zonal polynomials to several other basis
(elementary symmetric polynomials, power sums, monomial sums, complete sums), and commands
for calculating structure constants in each basis, is freely available on the web site [14]; the same
package contains commands giving the coefficients ZpκqpIq and cpκq that appear in formula (5),
with various normalization choices.

5.1.3 Structure constants

Zonal polynomials form a basis of the space of the ring of symmetric polynomials in n variables.
Structure constants in this basis are only rationals (by way of contrast, the coefficients of Schur
polynomials in the expansion of a product of two Schur polynomials are non-negative integers). For
illustration, let us consider the zonal polynomial(s) for the extended7 partition t2, 1, 0u (i.e., three
variables x1, x2, x3), and the decomposition of its square, using the three standard normalizations;
we also give the decomposition obtained for the square of the Schur polynomial spt2, 1, 0uq.

ZP pt2, 1, 0uq
2
“

25

12
ZP pt2, 2, 2uq `

12

5
ZP pt3, 2, 1uq `

4

3
ZP pt3, 3, 0uq `

4

3
ZP pt4, 1, 1uq ` ZP pt4, 2, 0uq

ZJpt2, 1, 0uq
2
“

5

54
ZJpt2, 2, 2uq `

12

35
ZJpt3, 2, 1uq `

4

135
ZJpt3, 3, 0uq `

32

405
ZJpt4, 1, 1uq `

1

27
ZJpt4, 2, 0uq

ZCpt2, 1, 0uq
2
“

3

4
ZCpt2, 2, 2uq `

12

25
ZCpt3, 2, 1uq `

21

25
ZCpt3, 3, 0uq `

12

25
ZCpt4, 1, 1uq `

63

125
ZCpt4, 2, 0uq

spt2, 1, 0uq2 “ spt2, 2, 2uq ` 2 spt3, 2, 1uq ` spt3, 3, 0uq ` spt4, 1, 1uq ` spt4, 2, 0uq .

Specifying the number of variables matters. In the previous example for instance, the square of
ZP pt2, 1, 0, 0uq, i.e., four variables, reads: 125

63 ZP pt2, 2, 1, 1uq`
25
12ZP pt2, 2, 2, 0uq`

25
18ZP pt3, 1, 1, 1uq`

12
5 ZP pt3, 2, 1, 0uq`

4
3ZP pt3, 3, 0, 0uq`

4
3ZP pt4, 1, 1, 0uq`ZP pt4, 2, 0, 0uq. Of course ZP ptκ1, κ2, κ3, 0uq

restricts to ZP ptκ1, κ2, κ3uq if x4 “ 0, but the last decomposition also contains new terms like
ZP pt2, 2, 1, 1uq that vanish when x4 “ 0.

5.1.4 A particular feature of structure constants in the ZP basis

We pause here to notice that the coefficients of ZP pt3, 3, 0uq and of ZP pt4, 1, 1uq are the same (both
equal to 4{3), with the same remark for the coefficients of spt3, 3, 0uq and of spt4, 1, 1uq, which are
both equal to 1. This is not so for ZJ and ZC .

In the Schur case this remark is not surprising: indeed, in terms of irreps of SU(3), the Schur
decomposition of spt2, 1, 0uq2 corresponds to the tensor decomposition of the square of the adjoint
representation labelled8 by its highest weight r1, 1s; in other words one recovers the well-known
decomposition r1, 1sb2 “ r0, 0s‘2 r1, 1s‘r0, 3s‘r3, 0s‘r2, 2s. The two integer partitions t3, 3u and
t4, 1, 1u determine, once they are reduced to SU(3), two conjugate Young diagrams of respective
shapes t3, 3u and t3u describing the two complex conjugate irreducible representations r0, 3s and
r3, 0s of SU(3). The irrep r1, 1s, associated with the partition t2, 1, 0u, is self-conjugate, actually
real, and the coefficients of those complex conjugate irreps that appear in its square, in particular
r0, 3s and r3, 0s, are, of course, equal.

7Given an integer partition κ, say of length s, of the integer m, it is convenient, in order to specify the number
of variables in symmetric polynomials, to call “extended partition” of length n, assuming that n ě s, the partition
that is obtained from κ by padding n´ s zeros to the right of κ. The length of the obtained partition (no longer an
integer partition in the strict sense) is then equal to n, the chosen number of variables. Example: ZP pt2, 1, 0, 0uq “
ZP pt2, 1uqpx1, x2, x3, x4q.

8The components of a highest weight λ “ rλ1, λ2s are written in the Dynkin basis (the basis of fundamental
weights).
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More generally we observe (the proof of this conjecture is left to the reader) that the following
property holds in the zonal P case9: If λ is a self-conjugate irreducible representation of SUpnq
described by a Young diagram of shape χ (an integer partition, or an extended partition of length
n), and if χ1 and χ2 are two partitions appearing in the decomposition of the square of the zonal
polynomial ZP pχq in the ZP basis that give rise, after SUpnq reduction, to complex conjugate
representations, the coefficients (structure constants) of ZP pχ

1q and of ZP pχ
2q are equal.

Actually, the same property seems to hold for all values of the Jack parameter α, when using the
P normalization. It does not hold for the normalizations J and C of zonal polynomials.

Remember that the notion of complex conjugation on SU(n) irreps can be described in purely
combinatorial terms: if κ is the integer partition describing some irrep of SU(n), its length (number
of parts) obeys ιpκq ă n; then one obtains the partition describing the complex conjugate repre-
sentation by taking the complement of (the Young diagram of) κ in a rectangle which is κp1q units
wide (κp1q being the largest part of κ) and pιpκq ` 1q units deep.

5.2 From zonal polynomials to SUpnq zonal characters

Although we have in mind applications to the zonal case α “ 2, or to the quaternionic (zonal) case
α “ 1{2, most of our considerations, in the section that follows, apply to arbitrary values α of the
Jack parameter.

5.2.1 SUpnq-zonal characters

An irrep of SUpnq, is characterized by its highest weight (hw) λ. Its components in the basis of
fundamental weights (Dynkin labels) are denoted rλ1, . . . , λn´1s. When considering irreps of Upnq
one adds a last index λn; here we only consider the case SUpnq, but it is often handy to keep this
last index, while setting λn “ 0. One can also characterize the same irrep λ by the Young diagram
defined by the extended partition α “ `pλq with components `ipλq “

řn
j“i λj , i “ 1, ¨ ¨ ¨ , n, obeying

the constraint αi ě αi`1 for all i. Conversely, given a partition δ of length n, extended or not,
one obtains a highest weight λ for SUpnq by setting λi “ δi ´ δi`1; such a partition δ differs from
α “ `pλq by a constant shift. We denote by Nν

λµ the multiplicity10 of the irrep ν in the tensor
product of the irreps of SUpnq defined by λ and µ.

Given a dominant weight λ of SUpnq, i.e., a non-negative integer combination of the fundamental
weights, call `pλq its associated partition of length n (i.e., `pλqn “ 0) and take the Jack-P polynomial
JαP p`pλqqpx1, . . . , xnq determined by the partition `pλq. We then consider the following Laurent
polynomial in the variables y1, . . . , yn´1:

JαP p`pλqqpx1 “ y1, x2 “
y2

y1
, . . . , xj “

yj
yj´1

, . . . , xn´1 “
yn´1

yn´2
, xn “

1

yn´1
q

If α “ 1, JαP is a Schur polynomial and the previous Laurent polynomial is recognized as the Weyl
character χpλq of the irrep λ, for the Lie group SUpnq.
If α “ 2, i.e., when JαP is a zonal polynomial ZP (with the normalization P ), we introduce, by
analogy, and for lack of a better name, the following notation and definition11:

9We remind the reader that Schur polynomials can be obtained from Jack polynomials, with the P normalization,
just by setting α “ 1 (no pre-factors).

10Nν
λµ is sometimes called the Littlewood-Richardson (LR) multiplicity, although, strictly speaking, the latter refers

to the coefficient of `pνq in the decomposition in the Schur basis of the product of two Schur polynomials respectively
defined by the partitions `pλq and `pµq. This decomposition often contains terms labelled by integer partitions of
length larger than n, therefore not contributing to the tensor product of SUpnq representations—a Young diagram of
SUpnq cannot have more than n´ 1 lines.

11Another notion of “zonal character” can be found in the literature, [26], but it is related to the symmetric group,
not to irreducible representations of SUpnq. It differs from the notion that we consider here.
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Definition 1. The zonal character χZpλq of SUpnq associated with the dominant weight λ is defined
as the Laurent polynomial

χZpλqpy1, . . . , yn´1q “ ZP p`pλqqpy1,
y2

y1
, . . . ,

yj
yj´1

, . . . ,
yn´1

yn´2
,

1

yn´1
q

Now, moving to the Lie algebra supnq – or, equivalently, to trigonometric characters, we start
from the same ZP polynomial expressed in terms of xj variables but this time perform the following

transformations on its arguments: xi Ñ eipai´
1
n

řn
j ajq, then aj Ñ a1 ´

řj´1
i“1 ui. The result is a

trigonometrical expression in the variables uj , that we call the Lie algebra zonal character of supnq
associated with the hw λ, or the trigonometric zonal character of SUpnq associated with the hw λ.

Let us give one example. Take n “ 3 and λ “ r1, 1s. The associated (extended) partition
is `pλq “ t2, 1, 0u. The Jack polynomial JαP pt2, 1, 0uq in terms of the variables x1, x2, x3, the
associated Laurent polynomial, and its trigonometric version are given below. The Schur polynomial
spt2, 1, 0uq and the Zonal-P polynomial ZP pt2, 1, 0uq are obtained from the first expression by setting
respectively α “ 1 and α “ 2. The corresponding SUpnq and supnq zonal characters are obtained
from the last two expressions by setting α “ 2

JαP pt2, 1, 0uq “ x2
1x2 ` x1x

2
2 ` x

2
2x3 ` x2x

2
3 ` x

2
1x3 ` x1x

2
3 `

6x1x2x3

2` α

χSUpnq
α pr1, 1sq “

6

α` 2
`
y2

1

y2
`
y2

2

y1
`
y1

y2
2

`
y2

y2
1

` y1y2 `
1

y1y2

χsupnq
α pr1, 1sq “ 2

ˆ

3

α` 2
` cosu1 ` cosu2 ` cos pu1 ` u2q

˙

Taking α “ 1 in the second expression, one recognizes the Weyl character of the adjoint represen-
tation of SU(3), the powers (positive or negative) of the yj being, as usual, the components of the
weights of the weight system of this representaton in the basis of fundamental weights. What hap-
pens in the zonal case, and more generally when α ‰ 1 is that the “multiplicities” of the weights are
no longer integers. For this particular irrep, only the multiplicity of the weight at the origin of the
weight system is modified by α, its value being 2 in the usual (Schur) case but 3{2 in the zonal case.
Notice that the trigonometric expression is real —it is so because the hw r1, 1s is self-conjugate,
otherwise the obtained expression would be complex. The arguments being specified (partitions or

Dynkin labels), we shall denote χ
SUpnq
α , in the cases α “ 2 and α “ 1{2, by χZ and χQ.

5.2.2 Structure constants for SU(n)-zonal characters

Given two SUpnq irreps, there are many ways to obtain the decomposition of their tensor products
into a sum of irreps. The honeycomb technique, for instance, is very fast12 but it is not available in
the zonal case that we consider. However, we can replace the multiplication of the associated SUpnq
Weyl characters by the multiplication of the associated SUpnq zonal characters as defined above,
which amounts to use the structure constants for the appropriate product of zonal polynomials.
Let us illustrate this with our favorite example, the square of r1, 1s. From the already given
decomposition of the square of ZP pt2, 1, 0uq we obtain immediately:

χZpr1, 1sq
2 “

25

12
χZpr0, 0sq `

12

5
χZpr1, 1sq `

4

3
χZpr0, 3sq `

4

3
χZpr3, 0sq ` χZpr2, 2sq

12and the semi-magic square algorithm, valid for SUp3q, is even faster, see [27].
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The same decomposition can be obtained by using Laurent polynomials since the associated SU(3)
zonal characters are as follows (the reader can then check that the previous equality holds):

t2, 1, 0u Ñ χZpr1, 1sq “
y21

y2
`

˜

y2 `
1

y22

¸

y1 `
y22 `

1
y2

y1
`
y2

y21

`
3

2
“

2y2y
4
1 ` 2y32y

3
1 ` 2y31 ` 3y22y

2
1 ` 2y42y1 ` 2y2y1 ` 2y32

2y21y
2
2

t2, 2, 2u Ñ χZpr0, 0sq “ 1

t3, 2, 1u Ñ χZpr1, 1sq “ already given

t3, 3, 0u Ñ χZpr0, 3sq “
1

5

˜

5y31

y32

`
3y21

y2
` 3y2y1 `

3y1

y22

` 5y
3
2 `

3y22

y1
`

3

y2y1
`

3y2

y21

`
5

y31

` 2

¸

t4, 1, 1u Ñ χZpr3, 0sq “
1

5

˜

5y
3
1 `

3y21

y2
` 3y2y1 `

3y1

y22

`
5

y32

`
3y22

y1
`

3

y2y1
`

3y2

y21

`
5y32

y31

` 2

¸

t4, 2, 0u Ñ χZpr2, 2sq “
1

6

˜

6y41

y22

`
4y31

y32

` 4y
3
1 ` 6y

2
2y

2
1 `

6y21

y2
`

6y21

y42

` 6y2y1 `
6y1

y22

` 4y
3
2 `

4

y32

`
6y22

y1
`

6

y2y1
`

6y42

y21

`
6y2

y21

`
6

y22y
2
1

`
4y32

y31

`
4

y31

`
6y22

y41

` 9

¸

The previous result – and more generally any decomposition of a product of such characters – can
be checked by using a concept of dimension. The dimension of an irreducible representation is the
value taken by the associated Weyl SUpnq character at yj “ 1 (or the value taken by the supnq
character at uj “ 0), for all j. In the same way one can define a “zonal dimension” for an irrep
of hw λ as the value taken by the SUpnq zonal character χpλq for yj “ 1 (or the value taken by
the supnq character for uj “ 0). This is a slight terminological abuse since the obtained number is
not an integer in general, but this dimension function is obviously compatible with addition and
multiplication, as it should. In the case13 of SU(3), we conjecture that

dimZprλ1, λ2sq “
λ1!λ2!p2λ1 ` 2λ2 ` 1q!!

p2λ1 ´ 1q!!p2λ2 ´ 1q!!pλ1 ` λ2q!

Written
2
?
πΓpλ1`1qΓpλ2`1qΓpλ1`λ2`

3
2q

Γpλ1`
1
2qΓpλ2`

1
2qΓpλ1`λ2`1q

this expression looks very similar to the standard SU(3) di-

mension dimprλ1, λ2sq “
p1`λ1qp1`λ2qp2`λ1`λ2q

2 “
Γpλ1`2qΓpλ2`2qΓpλ1`λ2`3q
2Γpλ1`1qΓpλ2`1qΓpλ1`λ2`2q . This zonal dimension is

(non-surprisingly) related to the normalization coefficient ZppIq that enters (5), and was introduced
by A.T. James in [12]:

dimZpλq “
Z`pλqpIq

cPJp`pλq, α “ 2q

It may be interesting to notice that both the numerator and the denominator of this formula are
not invariant under a global shift (translation of the partition `pλq by an arbitrary integer), but
their ratio is invariant —this can be interpreted as a kind of “gauge freedom” in the writing of the
SUpnq highest weight λ as a partition.

Going back to our favorite SU(3) example, we can check the consistency of the obtained result
for χZpr1, 1sq

2 in terms of dimensions. The (usual) dimensions of irreps labelled [0,0], [1,1], [0,3],
[3,0], [2,2] are 1, 8, 10, 10, 27, and the usual decomposition of χpr1, 1sq2 is compatible with the
identity 8ˆ8 “ p1`2ˆ8`1ˆ10`1ˆ10`1ˆ27). The zonal dimensions of the same irreps are 1, 15/2,
7, 7, 35/2, and the decomposition of χZpr1, 1sq

2 implies p15
2 q

2 “ 25
12 `

12
5 ˆ

15
2 `

4
3 ˆ7` 4

3 ˆ7`1ˆ 35
2 .

Finally, still another way to calculate a structure constant is to use the (α-dependent) Hall
inner product, see for instance [18] or [28], for which Jack polynomials – and in particular zonal
polynomials – are orthogonal. Using it, one can see for instance that the “multiplicity” of r1, 1s in
the decomposition of the square of r1, 1s, or of t3, 2, 1u in the square of t2, 1, 0u, which is 2 in the
usual case (α “ 1), and 12{5 in the zonal-P case (α “ 2) is more generally (i.e., in the Jack-P case)
equal to

ă JP pt2, 1, 0uqJP pt2, 1, 0uq, JP pt3, 2, 1uq ą

ă JP pt3, 2, 1uq, JP pt3, 2, 1uq ą
“

6α
`

2α2 ` 11α` 2
˘

pα` 2qp2α` 1qp3α` 2q
.

13In the case of SU(2) we find that the zonal dimension is given by dimZrλs “
?
πΓpλ`1q

Γpλ` 1
2 q

“
p2λq!!
p2λ´1q!!

, a formula

which is the zonal analog of dimrλs “ Γrpλ` 2qs{Γrpλ` 1qs “ λ` 1.
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In particular we can also find in this way the decomposition of JP rt2, 1, 0us
2 :

3α2
pα` 3qp2α` 1q

pα` 1q2pα` 2q2
JP r2, 2, 2s `

6α
`

2α2
` 11α` 2

˘

pα` 2qp2α` 1qp3α` 2q
JP r3, 2, 1s `

2α

α` 1
JP r3, 3, 0s `

2α

α` 1
JP r4, 1, 1s ` JP r4, 2, 0s

and we recover the first and last decompositions already given in sect. 5.1.3 by setting α “ 2 or 1.

5.3 Back to the PDF (symmetric case) and to the “volume function”

In the Hermitian case it is known that one may associate with a given admissible triple pλ, µ, νq a
convex polytope Hνλµ, the “polytope of honeycombs”, in a d ď pn´ 1qpn´ 2q{2-dimensional space
[3]. As recalled above, it is known that the function called J in [16], which differs from the PDF
ppγq mainly by a Vandermonde factor ∆, measures the volume of Hνλµ and that it is also a good

approximation of the LR multiplicity Nν
λµ of that triple14. More precisely J is equal to the highest

degree coefficient of the stretching (or LR) polynomial that gives the multiplicity when the triple
pλ, µ, νq is scaled by a factor s, i.e., J is also the dominant coefficient of the Ehrhart polynomial
of the polytope Hνλµ. Since this multiplicity is known to be given by the number of integral points
inside the polytope[3], this property is just expressing that in the large s limit, a semi-classical
picture approximates well this number of points by the volume15 of the polytope.

In the symmetric case multiplicities are not integral, there are no honeycombs (at least the
concept was not (yet?) generalized to cover this case), no polytope Hνλµ, and no volume function
either. However, as already mentioned, one expects the PDF ppγq, or rather the “volume like
function” J “ ppγq{∆ “ ρ, (see (17,24)), to measure, at least in the generic case where J does
not vanish, the behavior of “zonal multiplicities” (i.e., appropriate zonal structure constants) under
scaling.

A claim going in that direction was actually already made in [9]. Some of the tools developed in
the previous subsection could certainly be developed further and we hope to return to this problem
someday but we are happy, in the present paper, to show “experimentally” that the overall features
of the PDF ρ computed in section 4 are consistent with the values obtained for zonal multiplicities,
when the argument (written as a highest weight), is scaled. Remember that the list of eigenvalues
p1, 0,´1q chosen for the example studied in sections 2, 3 and 4 differs from the partition t2, 1, 0u
(aka r1, 1s if reinterpreted in terms of SU(3) highest weights) only by a constant shift16; we are
therefore led to consider the behavior of the zonal structure constants that appear in the reduction
of the square of st2, 1, 0u, with a scaling factor s “ 1, 2, . . ., with the plot of the function ρ in terms
of Dynkin labels. Using [14] we could perform exact calculations of multiplicities, i.e., obtain the
decomposition of the square of χZpsr1, 1sq up to the value s “ 6 of the scaling factor17. The same
considerations and calculations extend to the quaternionic case, where we compare multiplicities
in the decomposition of χQpr6, 6sq

2 with the function J3 computed in sect. 2.

In Fig. 19, we compare the multiplicities obtained for the decomposition of χZpr6, 6sq
2, χpr6, 6sq2

and χQpr6, 6sq
2 with the plot of the volume functions ρ or J3. We conclude that already with s “ 6,

the classical limit provided by the “volume” approximates very well the distribution of multiplicities.

14provided the triple is generic, i.e., provided J does not vanish.
15For nˆ n matrices, and in the generic case, this is its pn´ 1qpn´ 2q{2 volume.
16 In the same way, the partitions that appear in the decomposition of the square of ZP pt2, 1, 0uq, namely t2, 2, 2u,

t3, 2, 1u, t3, 3, 0u, t4, 1, 1u, t4, 2, 0u, whose reduction to SUp3q are t0, 0, 0u, t2, 1, 0u, t3, 3, 0u, t3, 0, 0u, t4, 2, 0u,
and read r0, 0s, r1, 1s, r0, 3s, r3, 0s, r2, 2s in terms of Dynkin labels, differ by a constant shift from the following
lists of eigenvalues (traceless condition for γ1, γ2, γ3 see section 3.1): t0, 0, 0u, t1, 0,´1u, t1, 1,´2u, t2,´1,´1u,
t2, 0,´2u, and appear in the Horn polygon of Fig. 6 as (special) points with respective coordinates pp, qq given by
p0, 0q, p´1, 0q, p´3, 2q, p´3,´2q, p4, 0q.

17The explicit reduction of χZprs, ssq ˆ χZprs, ssq, for s “ 1, 2, . . . can be obtained from the web site http://www.

cpt.univ-mrs.fr/~coque/Varia/JackZonalSchurResults.html
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Figure 19: First line: Interpolating function surfaces representing an array of “multiplicities”.
Left: Decomposition of χZpr6, 6sq

2 on SUp3q zonal characters.
Middle: Decomposition of χpr6, 6sq2 on SUp3q Weyl characters.
Right : Decomposition of χQpr6, 6sq

2 on SUp3q (zonal) quaternionic characters.

Second line: Plot of the “volume” function in the three cases. The four colors refer to
the four sectors of Fig. 3, but here in Dynkin labels.

6 Conclusion

To summarize:
– we have reproduced the main features of the Horn problem for symmetric matrices and understood
the analytic origin of the singularities, at least for n “ 3, and in detail for the particular case of
A „ B „ Jz;
– we have confirmed, at least in that particular case, that the divergences of the PDF occur on the
same locus of non-analyticities as in the Hermitian and quaternionic cases;
– we have also confirmed numerically the connection between the “volume functions” and the
(asymptotic) distribution of multiplicities in the product of zonal/Schur/quaternionic polynomials.

This leaves, however, open several issues and room for further progress:
– a more synthetic and general discussion of the singularities in the symmetric case would clearly
be desirable. Can one understand their origin from a geometric point of view and assert a priori
their location and nature without detailed calculations? Beside the divergences analyzed in the
present paper, are there other non-analyticities?
– what happens for higher n and/or for generic β (or α “ 2{β)? The methods developed recently
in [29] should be helpful in that respect.

The points we find most challenging are the following:
– There is an enhancement of particular eigenvalues in the Horn spectrum of real symmetric matri-
ces, due to the divergences of the PDF. Is this enhancement observable in some physical process?
– The discussion of sect. 5 has pointed to an analogue of the volume function for real symmetric or
quaternionic matrices: is there an underlying geometric interpretation to this “volume”? is there
a geometric object generalizing the polytope Hνλµ of the Hermitian case, whose volume is com-
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puted there? on a representation theoretic side, what is the origin of the enhancement of certain
multiplicities ?

We leave these questions to the sagacity of our readers. . .
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and hive polytopes, Ann. Inst. Henri Poincaré Comb. Phys. Interact., 5 (2018) 339-386, http:
//arxiv.org/abs/1706.02793

[17] A.M. Mathai, S. B. Provost, and T. Hayakawa, Bilinear Forms and Zonal Polynomials, Lecture
Notes in Statistics 102, Springer Verlag, 1995

[18] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Science Publications
1998

[19] Hua Lo-Ken, Harmonic analysis of functions of several complex variables in the classical do-
mains, AMS Translations, 6 (1963) (1958 in Chinese)

[20] A.T. James, Normal multivariate analysis and the orthogonal group, The Annals of Mathe-
matical Statistics, 25 (1954) 40–75

[21] A.T. James, Zonal polynomials of the real positive definite symmetric matrices. Annals of
Mathematics, 74 (1961) 456–469

[22] A. G. Constantine, Some noncentral distribution problems in multivariate analysis, The Annals
of Mathematical Statistics, 34 (1963) 1270–1285

[23] I. Dumitriu, A. Edelman and G. Shuman, MOPS: Multivariate Orthogonal Polynomials (sym-
bolically), preprint 2004, http://arxiv.org/abs/math-ph/0409066

[24] W. Baratta, 2008, http://www.ms.unimelb.edu.au/~wbaratta/index.html

[25] J. Demmel and P. Koev, Accurate and efficient evaluation of Schur and Jack functions, Math-
ematics of Computation, 75 (2005) 223–239

[26] V. Feray and P. Sniady, Zonal polynomials via Stanley’s coordinates and free cumulants,
Journal of Algebra 334 (2010) 338–373

[27] R. Coquereaux and J.-B. Zuber, On some properties of SU(3) Fusion Coefficients, Nucl. Phys.
B 912 (2016) 119–150 , http://arxiv.org/abs/1605.05864

[28] R.P. Stanley, Some Combinatorial Properties of Jack Symmetric Functions, Advances in Math-
ematics 77 (1989) 76–115

[29] V. Gorin and A. W. Marcus, Crystallization of random matrix orbits, http://arxiv.org/
abs/1706.07393 ;
A. Bufetov and V. Gorin, Fourier transform on high-dimensional unitary groups with applica-
tions to random tilings, http://arxiv.org/abs/1712.09925

31

http://www.cpt.univ-mrs.fr/~coque/Computer_programs/index.html
http://www.cpt.univ-mrs.fr/~coque/Computer_programs/index.html
https://github.com/RobertCoquereaux/Lie-AffineLie-Representations
https://github.com/RobertCoquereaux/Lie-AffineLie-Representations
http://arxiv.org/abs/1706.02793
http://arxiv.org/abs/1706.02793
http://arxiv.org/abs/math-ph/0409066
http://www.ms.unimelb.edu.au/~wbaratta/index.html
http://arxiv.org/abs/1605.05864
http://arxiv.org/abs/1706.07393
http://arxiv.org/abs/1706.07393
http://arxiv.org/abs/1712.09925

	1 The orbital integrals for =1,2,4
	2 Quaternionic case for n=3
	3 Computing the PDF for a sum for two real symmetric matrices
	3.1 The support of the symmetric functions P and Q
	3.2 The statistics of the symmetric functions P and Q
	3.3 Reducing (Qq) (Pp) to (R) 

	4 The particular case ABJz
	4.1 Symmetries and reduction to algebraic equations
	4.2 Roots ui of the resultant R and their singularities
	4.3 The integrand (z)
	4.4 The PDF, plots and divergences
	4.5 Analysis of the singularities

	5 Zonal polynomials
	5.1 About Jack and zonal polynomials
	5.1.1 Jack polynomials and their normalizations
	5.1.2 Packages
	5.1.3 Structure constants
	5.1.4 A particular feature of structure constants in the ZP basis

	5.2 From zonal polynomials to SU(n) zonal characters
	5.2.1 SU(n)-zonal characters
	5.2.2 Structure constants for SU(n)-zonal characters

	5.3 Back to the PDF (symmetric case) and to the ``volume function''

	6 Conclusion

